A REMARK ON THE EXISTENCE OF SPHERE WITH PRESCRIBED MEAN CURVATURE*

SHING TUNG YAU[†]

In 1976, the author (see the open problem section in [3]) asked the following question: if ρ is a function defined on R^3 , what is the condition on ρ so that there is a sphere in R^3 whose mean curvature is given by ρ . There were important works by Treibergs-Wei [2] and others on this question. Recently in a lecture that I gave in the Chinese University of Hong Kong, I realized that my work with R. Schoen on the existence of black hole can be used to settle the prescribed mean curvature question for a large class of ρ .

Recall that in [1], we are given on a three dimensional manifold M, two tensors (g_{ij}, p_{ij}) where $g_{ij} > 0$ is a Riemannian metric.

$$\mu = \frac{1}{2} \left[R - \sum_{i} p^{ij} p_{ij} + \left(\sum_{i} p_{i}^{i} \right)^{2} \right]$$

$$J^{i} = \sum_{i} D_{j} \left[p^{ij} - \left(\sum_{i} p_{k}^{i} \right) g^{ij} \right]$$

where R is the scalar curvature of M.

For a domain Ω in M, we define

$$Rad(\Omega)=\sup\Bigl\{r: \mbox{ for any simple closed curve }\Gamma\mbox{ in }\Omega$$
 which is homotopically trivial, Γ does not bound a disk in a tubular neighborhood $N_r(\Gamma)$ of radius $r\Bigr\}$

Then the major theorem in [1] says

Theorem 1. Let Ω be a bounded region on which $\mu - |J| \geq \Lambda > 0$ holds. Assume that $\Omega \subset \Omega_1$ where the mean curvature of $\partial \Omega_1$ (with respect to the outer normal) is strictly greater than the absolute value of the trace of $p_{ij}|\partial \Omega_1$. If $Rad(\Omega) \geq \sqrt{\frac{3}{2}} \frac{\pi}{\sqrt{\Lambda}}$, then Ω_1 contains a sphere Σ such that the mean curvature of $\Sigma = \pm \operatorname{tr}_{\Sigma}(p_{ij})$. Moreover, any such Σ lying within Ω has diameter at most $\frac{2\pi}{\sqrt{3}\sqrt{\Lambda}}$ and any such Σ intersecting $\partial \Omega$ has the property that $\Omega \cap \Sigma$ has everywhere within distance $\frac{2\pi}{\sqrt{3}\sqrt{\Lambda}}$ of $\partial \Omega$.

In this note, we apply this theorem to the prescribed mean curvature problem: Let $p_{ij} = \frac{\rho}{2}g_{ij}$. Then

$$2\mu = R + \frac{3}{2}\rho^2$$
$$J^i = (D_i\rho)q^{ij}$$

^{*}Received July 12, 1997; accepted for publication September 8, 1997.

[†]Department of Mathematics, Harvard University, Cambridge, MA 02138, U.S.A. (yau@math. harvard.edu) and Department of Mathematics, Chinese University of Hong Kong, Shatin, Hong Kong.

and $\mu - |J| = \frac{1}{2}R + \frac{3}{4}\rho^2 - |D\rho|$.

Hence we have the following theorem

Theorem 2. Let Ω_1 be a compact domain in M so that the mean curvature of $\partial \Omega_1$ (with respect to its outer normal) is greater than $|\rho|$. Let $\Omega \subset \Omega_1$ be a subdomain on which

$$\frac{1}{2}R + \frac{3}{4}\rho^2 - |D\rho| \ge \Lambda > 0$$

where R is the scalar curvature of M.

If $Rad(\Omega) \geq \sqrt{\frac{3}{2}} \frac{\pi}{\Lambda}$, then Ω_1 contains a sphere Σ intersecting Ω so that the mean curvature of $\Sigma = \pm \rho$. Moreover, any such Σ lying within Ω has diameter at most $\frac{2\pi}{\sqrt{3}\sqrt{\Lambda}}$ and any such Σ intersecting $\partial\Omega$ has the property that $\Omega \cap \Sigma$ lies everywhere within distance $\frac{2\pi}{\sqrt{3}\sqrt{\Lambda}}$ of $\partial\Omega$.

In [4], we also observed the following: Let $\lambda_1 \geq \lambda_2 \geq \lambda_3$ be eigenvalue of the symmetric tensor p_{ij} . Then if for some nonnegative function f and $\Omega \subset \Omega_1$ so that

$$\int_{\partial\Omega} f + \int_{\Omega} |\nabla f| < \int_{\Omega} f \min(\lambda_2 + \lambda_3, \lambda_2 + 2\lambda_3)$$

then there is a closed surface Σ such that the mean curvature of $\Sigma = \pm \operatorname{tr}_{\Sigma}(p_{ij})$.

THEOREM 3. Let Ω_1 be a compact domain in M so that the mean curvature of $\partial\Omega_1$, (with respect to outer normal) is greater than $|\rho|$. Suppose for some domain $\Omega\subset\Omega_1$, and for some nonegative function f,

$$\int_{\partial\Omega} f + \int_{\Omega} |\nabla f| < \int_{\Omega \atop \Omega > 0} f \rho + \frac{3}{2} \int_{\Omega \atop \Omega < 0} f \rho$$

Then there is a closed surface Σ whose mean curvature $= \pm \rho$. REMARK It is an interesting question to determine the genus of Σ .

REFERENCES

- R. SCHOEN AND S. T. YAU, The existence of a black hole due to condensation of matter, Comm. Math. Phys. 90 (1983) 575-579.
- [2] A. Treibergs and S. W. Wei, Embedded hyperspheres with prescribed mean curvature, J. Differential Geom. 18 (1983) 513-521.
- [3] S. T. YAU, Applications of geometric ideas in general relativity: black holes and conserved quantity, to appear.
- [4] S. T. YAU, Seminar on Differential Geometry, Princeton University Press, Princeton, 1982.