THE REGULARITY OF L^p-SCALING FUNCTIONS*

KA-SING LAU† AND MANG-FAI MA‡

Abstract. The existence of L^p -scaling function and the L^p -Lipschitz exponent have been studied in [Ji] and [LW] and a criterion is given in terms of a series of product of matrices. In this paper we make some further study of the criterion. In particular we show that for p an even integer or for all $p \geq 1$ in some special cases, the criterion can be simplified to a computationally efficient form.

1. Introduction. The solution f of a 2-scale dilation equation

(1.1)
$$f(x) = \sum_{n=0}^{N} c_n f(2x - n), \quad x \in \mathbb{R}$$

is called a scaling function. This class of functions has been studied in detail in recent literature in connection with wavelet theory [D] and constructive approximations [DGL]. The question of existence of continuous, L^1 and L^2 solutions was treated in Daubechies [D], Daubechies and Lagarias [DL1], Collela and Heil [CH], Eirola [E], Heil [H], and Micchelli and Prautzsch [MP]. The regularity of such solutions was studied, in addition to the above papers, in Cohen and Daubechies [CD], Daubechies and Lagarias [DL2,3], Herve [He], Lau, Ma and Wang [LWM] and Villemos [V1,2]. Also the existence of L^p -solutions has been characterized by Lau and Wang in [LW] and Jia[Ji].

In this paper, we will adopt the previous notations as in [CH], [DL1] and [LW]. Let $T_0 = [c_{2i-j-1}]_{1 \le i,j \le N}$ and $T_1 = [c_{2i-j}]_{1 \le i,j \le N}$ be the associated matrices of the coefficients $\{c_n\}$, i.e.,

$$T_0 = \begin{pmatrix} c_0 & 0 & 0 & \dots & 0 \\ c_2 & c_1 & c_0 & \dots & 0 \\ c_4 & c_3 & c_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & c_{N-1} \end{pmatrix}, \quad T_1 = \begin{pmatrix} c_1 & c_0 & 0 & \dots & 0 \\ c_3 & c_2 & c_1 & \dots & 0 \\ c_5 & c_4 & c_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & c_N \end{pmatrix}.$$

It is known that if $\sum_{n=0}^{N} c_n = 2$, then 2 is always an eigenvalue of $(T_0 + T_1)$. Furthermore, if $\sum c_{2n} = \sum c_{2n+1} = 1$, then 1 is an eigenvalue of both T_0 and T_1 . Let \mathbf{v} be a 2-eignevector of $(T_0 + T_1)$ (which means a right eigenvector associated with the eigenvalue 2) and let

$$\tilde{\mathbf{v}} := (T_0 - I)\mathbf{v} = (I - T_1)\mathbf{v}.$$

In [LW] the following theorem was proved:

THEOREM A. Suppose $1 \le p < \infty$ and $\sum_{n=0}^{N} c_n = 2$. Then equation (1.1) has a nonzero compactly supported L^p -solution (notation: L^p_c -solution) if and only if there exists a 2-eigenvector \mathbf{v} of $(T_0 + T_1)$ satisfying

$$\lim_{n\to\infty} \frac{1}{2^n} \sum_{|J|=n} ||T_J \tilde{\mathbf{v}}||^p = 0.$$

^{*} Received March 20, 1997; accepted for publication June 25, 1997.

[†] Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong (kslau@math.cuhk.edu.hk).

[‡] Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260.

In [Ji], Jai studied the same existence question by means of a "hat' function and obtained a similar criterion independently. Furthermore he showed that the existence of an L^p -solution implies that $\sum c_{2n} = \sum c_{2n+1} = 1$.

In this paper we will consider the regularity of the solution. We use the L^p Lipschitz exponent to describe the regularity. It is defined by

$$\operatorname{Lip}_p(f) = \liminf_{h \to 0^+} \frac{\ln \|\Delta_h f\|_p}{\ln h},$$

where $\Delta_h f(x) = f(x+h) - f(x)$. It is well known that for $1 \le p < \infty$, if

$$\limsup_{h \to 0^+} \frac{1}{h} ||\Delta_h f||_p < \infty$$

(which implies $\operatorname{Lip}_p(f) = 1$), then f' exists a.e. and is in L^p and f is the indefinite integral of f'. Recall that the g-Sobolev exponent of a function f is defined as

$$\sup\{\alpha: \int (1+|\xi|^{q\alpha})|\hat{f}(\xi)|^q d\xi < \infty\}.$$

For p=q=2, the 2-Sobolev exponent equals to the L^2 -Lipschitz exponent, and they are different when $p,q\neq 2$. In general the L^p -Lipschitz exponent describes the regularity of f more accurately than the Sobolev exponent. The q-Sobolev exponent has been studied in [He]. The L^p -Lipschitz exponent (in a slightly different terminology) has been used to investigate the multifractal structure of scaling functions in [DL3] and [J1,2].

Let $H(\tilde{\mathbf{v}})$ be the complex subspace spanned by $\{T_J\tilde{\mathbf{v}}: J \text{ is a multi-index }\}$. (We use complex scalar because it will be more convenient to deal with the complex eigenvalues and eigenvectors.).

THEOREM B. Suppose that $\sum c_{2n} = \sum c_{2n+1} = 1$ and either (i) 1 is a simple eigenvalue of T_0 and T_1 or (ii) $H(\tilde{\mathbf{v}}) = \{\mathbf{u} \in \mathbb{C}^N : \sum_{i=1}^N u_i = 0\}$. Then for f an L_c^p -solution of (1.1), $1 \leq p < \infty$,

(1.2)
$$\operatorname{Lip}_{p}(f) = \liminf_{n \to \infty} \frac{\ln(2^{-n} \sum_{|J|=n} ||T_{J} \tilde{\mathbf{v}}||^{p})}{p \ln(2^{-n})}.$$

We remark that Jia [Ji, Theorem 6.2] proved that the above formula by replacing $||T_J\tilde{\mathbf{v}}||$ with $||T_J/H||$ where H denoted the hyperplane in (ii). Our special perference on $||T_J\tilde{\mathbf{v}}||$ is that it allows us to calculate the sum in many cases (see Section 4 and 5). Even though there are some overlaps with Jia's result, we like to give a full proof of Theorem B because of completeness and the consistence of the development in the in the sequel.

To reduce the formula in Theorem B, we only consider the 4-coefficient dilation equation for simplicity. We show that if in addition $c_0 + c_3 = 1$, then

$$\operatorname{Lip}_{p}(f) = \frac{\ln((|c_{0}|^{p} + |1 - c_{0}|^{p})/2)}{-p \ln 2},$$

(Proposition 4.3) and if $c_0 + c_3 = 1/2$, then

$$\operatorname{Lip}_{p}(f) = \min \left\{ 1, \ \frac{\ln((|c_{0}|^{p} + |\frac{1}{2} - c_{0}|^{p})/2)}{-p \ln 2} \right\}.$$

(Proposition 4.5). Note that the second case contains Daubechies scaling function D_4 . The formula was actually obtained in [DL3] using a different method and assuming

further $1/2 < c_0 < 3/4$. For the general case we show that if p is an even integer, then

(1.3)
$$\sum_{|J|=n} ||T_J \tilde{\mathbf{v}}||^p = \mathbf{a} W_p^n \mathbf{b}$$

for an auxillary $(p+1) \times (p+1)$ matrix W_p depends only on the coefficients of the dilation equation and for some vectors \mathbf{a} and \mathbf{b} (Proposition 5.1). In particular for p=2, the matrix W_2 is equivalent to the transition matrix used in [CD], [LW] and [V] for the existence of L^2 -scaling function. By using (1.3) it is easy to show that the necessary and sufficient condition in Theorem A reduces to $\rho(W_p) < 2$ and (1.2) becomes

$$\operatorname{Lip}_p(f) = \frac{\ln(\rho(W_p)/2)}{-p\ln 2}$$

where $\rho(W_p)$ is the spectral radius of W_p (Theorem 5.3).

The paper is organized as follows. In Section 2 we include some preliminary results concerning the eigen-properties of the matrices T_0 , T_1 and $T_0 + T_1$ that we need. We give a complete proof of Theorem B in Section 3. In Section 4, we will apply Theorem B to obtain explicit expressions for the two special cases described above. Finally in Section 5 we construct the matrix W_p in (1.3) and use the spectral radius of W_p to determine $\operatorname{Lip}_p(f)$ when p is an even integer. We also make some remarks concerning extensions of the construction and discuss some unsolved questions.

2. Preliminaries. Throughout this paper, unless otherwise specified, we assume that $1 \leq p < \infty$, $c_n \in \mathbb{R}$, $c_0, c_N \neq 0$ and $\sum c_{2n} = \sum c_{2n+1} = 1$. For any $k \geq 1$, let $J = (j_1, \ldots, j_k)$, $j_i = 0$ or 1, be the multi-index and |J| the length of J. Let $I_J = I_{(j_1, \ldots, j_k)}$ be the dyadic interval $[0.j_1 \cdots j_k, 0.j_1 \cdots j_k + 2^{-k})$. The matrix T_J represents the product $T_{j_1} \cdots T_{j_k}$. If \mathbf{v} is a 2-eigenvector of $(T_0 + T_1)$, it is clear that

(2.1)
$$\frac{1}{2^k} \sum_{|J|=k} T_J \mathbf{v} = \frac{1}{2^k} (T_0 + T_1)^k \mathbf{v} = \mathbf{v}.$$

For any $g \in L^p(\mathbb{R})$ with support in [0, N], let $\mathbf{g}: [0, 1] \to \mathbb{R}^N$

$$\mathbf{g}(x) = [g(x), g(x+1), \dots, g(x+(N-1))]^t, \quad x \in [0, 1)$$

be the vector-valued function representing g and let

$$\mathbf{Tg}(x) = \begin{cases} T_0 \mathbf{g}(2x) & \text{if } x \in [0, \frac{1}{2}), \\ T_1 \mathbf{g}(2x - 1) & \text{if } x \in [\frac{1}{2}, 1). \end{cases}$$

It is easy to show that f is a solution of (1.1) if and only if $\mathbf{f} = \mathbf{T}\mathbf{f}$ [DL1]. With no confusion, we use $\|\cdot\|$ to denote the L^p -norm of g as well as the vector-valued function \mathbf{g} . Also for a vector $\mathbf{u} \in \mathbb{R}^n$, $\|\mathbf{u}\|$ will denote the ℓ_N^p -norm in \mathbb{R}^N .

Let g_I be the average $|I|^{-1} \int_I g(x) dx$ of g on an interval I.

PROPOSITION 2.1. Let f be an L_c^p -solution of (1.1) and $\mathbf{v} = [f_{[0,1)}, \ldots, f_{[N-1,N)}]^t$ be the vector defined by the average of f on the N subintervals. Then

- (i) v is a 2-eigenvector of $(T_0 + T_1)$.
- (ii) Let $f_0(x) = v$, $x \in [0, 1)$, and let $f_{n+1} = Tf_n$, n = 0, 1, ..., then

$$\mathbf{f}_n(x) = \sum_{|J|=n} (T_J \mathbf{v}) \chi_{I_J}(x), \qquad x \in [0, 1),$$

and $\|\mathbf{f}_{n+1} - \mathbf{f}_n\|^p = 2^{-n} \sum_{|J|=n} \|T_J \tilde{\mathbf{v}}\|^p$.

(iii) $\|\mathbf{f} - \mathbf{f}_n\|^p \leq \frac{c}{2^n} \sum_{|J|=n}^{\infty} \|T_J \tilde{\mathbf{v}}\|^p$ for some c > 0 and $\mathbf{f}_n \to \mathbf{f}$ in $L^p([0, 1], \mathbb{R}^N)$.

Proof. The proof of these statements can be found in [LW, Proposition 2.3, Lemma 2.4, 2.5, and Theorem 2.6]. In particular to prove the last identity in (ii), we observe that

$$\|\mathbf{f}_{n+1} - \mathbf{f}_n\|^p = \frac{1}{2^{n+1}} \sum_{|J|=n} (\|T_J(T_0 - I)\mathbf{v}\|^p + \|T_J(T_1 - I)\mathbf{v}\|^p)$$
$$= \frac{1}{2^n} \sum_{|J|=n} \|T_J\tilde{\mathbf{v}}\|^p.$$

Let

$$\alpha = \liminf_{n \to \infty} \frac{\ln(2^{-n} \sum_{|J|=n} ||T_J \tilde{\mathbf{v}}||^p)}{\ln(2^{-n})}.$$

Then α is the rate of convergence of $2^{-n} \sum_{|J|=n} ||T_J \tilde{\mathbf{v}}||^p$ to 0 in the sense that the sum is of order $o(2^{-\beta n})$ for any $\beta < \alpha$. Let $H(\tilde{\mathbf{v}})$ be the subspace (with complex scalar) spanned by $\{T_J \tilde{\mathbf{v}} : J \text{ is a multi-index }\}$.

LEMMA 2.2. Under the same conditions and notations as in Proposition 2.1, for any $\mathbf{u} \in H(\tilde{\mathbf{v}})$,

$$\liminf_{n\to\infty} \frac{\ln(2^{-n}\sum_{|J|=n}||T_J\mathbf{u}||^p)}{\ln(2^{-n})} \ge \alpha.$$

Furthermore equality holds if $H(\mathbf{u}) = H(\tilde{\mathbf{v}})$.

Proof. Since $H(\tilde{\mathbf{v}})$ is finite dimensional, it suffices to consider $\mathbf{u} = T_{J'}\tilde{\mathbf{v}}$ for some J'. Let |J'| = k, then

$$\frac{1}{2^n} \sum_{|J|=n} ||T_J \mathbf{u}||^p = \frac{1}{2^n} \sum_{|J|=n} ||T_J T_{J'} \tilde{\mathbf{v}}||^p \le 2^k \frac{1}{2^{n+k}} \sum_{|J|=n+k} ||T_J \tilde{\mathbf{v}}||^p.$$

It follows that

$$\frac{\ln(2^{-n}\sum_{|J|=n}||T_J\mathbf{u}||^p)}{\ln(2^{-n})} \ge \frac{\ln(2^k)}{\ln(2^{-n})} + \frac{\ln(2^{-(n+k)}\sum_{|J|=n+k}||T_J\tilde{\mathbf{v}}||^p)}{\ln(2^{-(n+k)})},$$

which implies the stated inequality. For the last statement we need only change the roles of \mathbf{u} and $\tilde{\mathbf{v}}$ and make use of the inequality we just proved.

Let
$$M = [c_{2i-j}]_{1 \le i,j \le N-1}$$
, i.e.,

$$M = \begin{pmatrix} c_1 & c_0 & 0 & \dots & 0 \\ c_3 & c_2 & c_1 & \dots & 0 \\ c_5 & c_4 & c_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & c_{N-1} \end{pmatrix}$$

be the common submatrix of T_0 and T_1 . If $\sum c_{2n} = \sum c_{2n+1} = 1$, then 1 is an eigenvalue of M and $[1,1,\ldots,1]$ is the corresponding left 1-eigenvector. Let $H = \{\mathbf{u} \in \mathbb{C}^N : \sum_{i=1}^N u_i = 0\}$.

LEMMA 2.3. There exist \mathbf{v}_0 , $\mathbf{v}_1 \notin H$ (i.e., $\sum (\mathbf{v}_0)_i = \sum (\mathbf{v}_1)_i \neq 0$) such that $(T_0 - I)^m \mathbf{v}_0 = (T_1 - I)^m \mathbf{v}_1 = 0$ for some m > 0, and

$$(2.2) T_0 \mathbf{v}_1 = T_1 \mathbf{v}_0.$$

Remark. When m=1, \mathbf{v}_0 and \mathbf{v}_1 are 1-eigenvectors of T_0 and T_1 respectively. Proof. Let $E_{\lambda} = \{\mathbf{u} \in \mathbb{C}^{N-1} : (M-\lambda I)^m \mathbf{u} = 0 \text{ for some } m > 0\}$. Observe that for $\lambda \neq 1$ and for $\mathbf{u} \in E_{\lambda}$,

$$0 = [1, 1, \dots, 1](M - \lambda I)^m \mathbf{u} = (1 - \lambda)^m \sum_{i=1}^{N-1} u_i$$

for some m>0, so that $\sum u_i=0$. In view of $\mathbb{C}^{N-1}=E_1\oplus\sum_{\lambda\neq 1}E_\lambda$, there exists $\mathbf{a} \in E_1$ such that $\sum a_i \neq 0$. If 1 is a simple eigenvalue of M, dim $E_1 = 1$ and hence the above \mathbf{a} is a 1-eigenvector of M. Let

(2.3)
$$\mathbf{v}_0 := [0, a_1, \dots, a_{N-1}]^t, \quad \mathbf{v}_1 := [a_1, \dots, a_{N-1}, 0]^t.$$

Then $\mathbf{v_0}$ and $\mathbf{v_1}$ are 1-eigenvectors of T_0 and T_1 respectively, and $\mathbf{v_0}$, $\mathbf{v_1} \notin H$. Moreover, by the definitions of T_0 and T_1 , we have

(2.4)
$$(T_0 \mathbf{v}_1)_i = \sum_{i=1}^n c_{2i-j-1} a_j = \sum_{i=1}^n c_{2i-j} a_{j+1} = (T_1 \mathbf{v}_0)_i.$$

so that $T_0\mathbf{v}_1 = T_1\mathbf{v}_0$. If 1 is not a simple eigenvalue of M, we let m be the smallest positive integer so that $(M-I)^m \mathbf{a} = 0$. Define $\mathbf{a}^{(1)} = \mathbf{a}$, \cdots , $\mathbf{a}^{(m)} = (M-I)^{m-1} \mathbf{a}$, and let

(2.5)
$$\mathbf{v}_0^{(i)} = [0, \mathbf{a}^{(i)}]^t \text{ and } \mathbf{v}_1^{(i)} = [\mathbf{a}^{(i)}, 0]^t, \quad 1 \le i \le m.$$

Then $\mathbf{v}_{i}^{(1)} \notin H$ and $\mathbf{v}_{i}^{(m)}$ are eigenvectors of T_{j} , j = 0, 1 and

(2.6)
$$T_j \mathbf{v}_j^{(i)} = \mathbf{v}_j^{(i)} + \mathbf{v}_j^{(i+1)}, \quad 1 \le i \le m-1, \ j = 0, 1.$$

If we let $\mathbf{v}_0 = \mathbf{v}_0^{(1)}$ and $\mathbf{v}_1 = \mathbf{v}_1^{(1)}$, then a similar calculation like (2.4) implies that $T_0\mathbf{v}_1 = T_1\mathbf{v}_0$ again.

- COROLLARY 2.4. Let \mathbf{v}_0 , \mathbf{v}_1 be chosen as in the proof of Lemma 2.3, Then

 (i) $T_0\mathbf{v}_1^{(i)} = T_1\mathbf{v}_0^{(i)}$ for $1 \le i \le m$.

 (ii) $T_1T_0^{k-1}\mathbf{v}_0 = T_0T_1^{k-1}\mathbf{v}_1$ for $k \ge 1$.

 (iii) $(T_0^n\mathbf{v}_0)_1 = (T_1^n\mathbf{v}_1)_N = 0$ and $(T_0^n\mathbf{v}_0)_i = (T_1^n\mathbf{v}_1)_{i-1}$ for $2 \le i \le N$.

Proof. (i) and (ii) follows directly from the same calculation as in the proof of the above lemma. The first identity in (iii) is a consequence of $(\mathbf{v}_0)_1 = (\mathbf{v}_1)_N = 0$ as in (2.3). For the second identity, if \mathbf{v}_0 and \mathbf{v}_1 are 1-eigenvectors of T_0 and T_1 respectively, (2.2) implies that

$$(T_0^n \mathbf{v}_0)_i = (\mathbf{v}_0)_i = (\mathbf{v}_1)_{i-1} = (T_1^n \mathbf{v}_1)_{i-1}.$$

For the general case we need only apply

$$T_j^n \mathbf{v}_j^{(1)} = \begin{cases} \sum_{i=0}^n \binom{n}{i} \mathbf{v}_j^{(i+1)} & \text{if } n < m \\ \sum_{i=0}^{m-1} \binom{n}{i} \mathbf{v}_j^{(i+1)} & \text{if } n \ge m \end{cases}$$

which can be checked directly by using (2.6).

LEMMA 2.5. Let v be a 2-eigenvector of $(T_0 + T_1)$ and $\tilde{\mathbf{v}} = (T_0 - I)\mathbf{v}$. Then $H(\tilde{\mathbf{v}})$ is a subspace of H. Moreover, if (i) 1 is a simple eigenvalue of T_0 and T_1 ; or (ii) $H(\tilde{\mathbf{v}}) = H$, then for $\mathbf{v}_0, \, \mathbf{v}_1 \notin H$ as defined in Lemma 2.3, there exists a constant c such that

$$\mathbf{v} = c\mathbf{v}_0 + \mathbf{h}_0 = c\mathbf{v}_1 + \mathbf{h}_1$$

for some \mathbf{h}_0 , $\mathbf{h}_1 \in H(\tilde{\mathbf{v}})$.

Proof. Note that $[1, 1, ..., 1]^t$ is a left 1-eigenvector of T_0 , so that $(T_0 - I)\mathbf{u} \in H$ for every $\mathbf{u} \in \mathbb{C}^n$. In particular, $\tilde{\mathbf{v}} = (T_0 - I)\mathbf{v}$ must be in H. Also it is easy to show that H is invariant under T_0 and T_1 , hence $H(\tilde{\mathbf{v}})$ is a subspace of H. Let \mathbf{v}_0 and \mathbf{v}_1 be as in Lemma 2.3, then $a = \sum (\mathbf{v}_0)_i = \sum (\mathbf{v}_1)_i \neq 0$. Let $c = \sum_{i=1}^N v_i/a$, where v_i 's are the coordinates of \mathbf{v} and let

$$\mathbf{h}_0 = \mathbf{v} - c\mathbf{v}_0$$
 and $\mathbf{h}_1 = \mathbf{v} - c\mathbf{v}_1$.

By the choice of c, we have \mathbf{h}_0 , $\mathbf{h}_1 \in H$ which implies case (ii) because $H = H(\tilde{\mathbf{v}})$. In case (i), we observe that if 1 is a simple eigenvalue of T_0 , then $T_0 - I$ restricted on H is bijective; it is hence also bijective on the $(T_0 - I)$ -invariant subspace $H(\tilde{\mathbf{v}})$. Consequently,

$$\tilde{\mathbf{v}} = (T_0 - I)\mathbf{v} = (T_0 - I)(c\mathbf{v}_0 + \mathbf{h}_0) = (T_0 - I)\mathbf{h}_0$$

so that \mathbf{h}_0 must be in $H(\tilde{\mathbf{v}})$. The same proof holds for \mathbf{h}_1 .

3. Proof of Theorem B. Let f be an L_c^p -solution of (1.1) and let $\mathbf{v} = [f_{[0,1)}, \ldots, f_{[N-1,N)}]^t$ be the vector defined by the average of f over the N-subintervals (see Proposition 2.1), then \mathbf{v} is a 2-eigenvector of $(T_0 + T_1)$. Let

$$\mathbf{f}_n(x) = \sum_{|J|=n} (T_J \mathbf{v}) \chi_{I_J}(x)$$

and let f_n be the corresponding real valued function of \mathbf{f}_n defined on [0, N]. LEMMA 3.1. For $n \ge 1$ and $\ell \ge 0$,

$$\int_0^{1-2^{-n}} \|\mathbf{f}_{n+\ell}(x+2^{-n}) - \mathbf{f}_{n+\ell}(x)\|^p dx$$

$$= \frac{1}{2^{n+\ell}} \sum_{|J'|=\ell} \left(\sum_{i=1}^n \sum_{|J|=n-i} \|T_J(T_1 T_0^{i-1} - T_0 T_1^{i-1}) T_{J'} \mathbf{v}\|^p \right).$$

Proof. We divide the interval $[0, 1-2^{-n})$ into 2^n-1 equal subintervals. For each subinterval, we further divide it into 2^ℓ equal parts. In this way we have $2^\ell(2^n-1)$ equal subintervals with length $2^{-(n+\ell)}$. For each such dyadic interval, we can write down its binary representation with length $2^{n+\ell}$, say $I_{(j_1,\ldots,j_n,j'_1,\ldots,j'_\ell)}$. Since it is contained in $[0, 1-2^{-n})$, at least one of the j_1,\ldots,j_n must equal 0. Suppose $x \in I_{(j_1,\ldots,j_n,j'_1,\ldots,j'_\ell)}$ with j_{n-i+1} as the last zero in $\{j_1,\ldots,j_n\}$, i.e., $x \in I_{(j_1,\ldots,j_{n-i},0,1,\ldots,1,j'_1,\ldots,j'_\ell)}$, then $x+2^{-n} \in I_{(j_1,\ldots,j_{n-i},1,0,\ldots,0,j'_1,\ldots,j'_\ell)}$. It follows that

$$\mathbf{f}_{n+\ell}(x+2^{-n}) - \mathbf{f}_{n+\ell}(x)$$

$$= T_{j_1} \cdots T_{j_{n-i}} T_1 T_0^{i-1} (T_{j'_1} \cdots T_{j'_\ell} \mathbf{v}) - T_{j_1} \cdots T_{j_{n-i}} T_0 T_1^{i-1} (T_{j'_1} \cdots T_{j'_\ell} \mathbf{v})$$

$$= T_{j_1} \cdots T_{j_{n-i}} (T_1 T_0^{i-1} - T_0 T_1^{i-1}) T_{j'_1} \cdots T_{j'_\ell} \mathbf{v}.$$

Since $\mathbf{f}_{n+\ell}(x+2^{-n}) - \mathbf{f}_{n+\ell}(x)$ is a constant function on each dyadic interval of size $2^{-(n+\ell)}$, an integration over the interval $[0, 1-2^{-n})$ yields the lemma immediately.

We first give a lower bound estimate of $\|\Delta_{2^{-n}} f\|$.

PROPOSITION 3.2. For n > 1,

$$\|\Delta_{2^{-n}}f\|^p \ge \frac{2^{p-1}}{2^{n-1}} \sum_{|J|=n-1} \|T_J\tilde{\mathbf{v}}\|^p.$$

Proof. Fix $n \ge 1$ and for any $\ell \ge 0$,

$$\begin{split} \|\Delta_{2^{-n}} f_{n+\ell}\|^p &= \int_{-2^{-n}}^N |f_{n+\ell}(x+2^{-n}) - f_{n+\ell}(x)|^p \, dx \\ &\geq \int_0^{1-2^{-n}} \|\mathbf{f}_{n+\ell}(x+2^{-n}) - \mathbf{f}_{n+\ell}(x)\|^p \, dx \\ &= \frac{1}{2^{n+\ell}} \sum_{|J'|=\ell} \left(\sum_{i=1}^n \sum_{|J|=n-i} \|T_J(T_1 T_0^{i-1} - T_0 T_1^{i-1}) T_{J'} \mathbf{v}\|^p \right) \\ &\geq \frac{1}{2^{n+\ell}} \sum_{|J'|=\ell} \sum_{|J|=n-1} \|T_J(T_1 - T_0) T_{J'} \mathbf{v}\|^p \\ &\geq \frac{1}{2^n} \sum_{|J|=n-1} \|T_J(T_1 - T_0) \left(\frac{1}{2^\ell} \sum_{|J'|=\ell} T_{J'} \mathbf{v} \right) \|^p \\ &= \frac{1}{2^n} \sum_{|J|=n-1} \|T_J(T_1 - T_0) \mathbf{v}\|^p \quad \text{(by (2.1))} \\ &= 2^{p-1} \frac{1}{2^{n-1}} \sum_{|J|=n-1} \|T_J \tilde{\mathbf{v}}\|^p \quad \text{(use } (T_1 - T_0) \mathbf{v} = -2\tilde{\mathbf{v}}). \end{split}$$

The assertion now follows by letting $\ell \to \infty$.

For the upper bound of $||\Delta_h f||$, we need an estimation of the integral of $|\Delta_h f_n(x)|$ near the integers k = 0, ..., N.

LEMMA 3.3. Under the same assumptions as in Lemma 2.5, for n > 0 and for $0 < h < 2^{-n}$.

$$\int_{E_{-}} |\Delta_{h} f_{n}(x)|^{p} dx \leq 2^{p} h(||T_{0}^{n} \mathbf{h}_{0}||^{p} + ||T_{1}^{n} \mathbf{h}_{1}||^{p})$$

where $E_n = \bigcup_{k=0}^{N} [k - 2^{-n}, k)$.

Proof. Since f_n is a constant function on the dyadic intervals of size 2^{-n} , we have

$$\int_{E_n} |\Delta_h f_n(x)|^p dx = \sum_{k=0}^N \int_{k-2^{-n}}^k |f_n(x+h) - f_n(x)|^p dx$$

$$= \sum_{k=0}^N \int_{k-h}^k |f_n(x+h) - f_n(x)|^p dx$$

$$= h\Big(|(T_0^n \mathbf{v})_1|^p + \sum_{i=2}^N |(T_0^n \mathbf{v})_i - (T_1^n \mathbf{v})_{i-1}|^p + |-(T_1^n \mathbf{v})_N|^p\Big).$$

Recall that $\mathbf{v} = c\mathbf{v}_0 + \mathbf{h}_0 = c\mathbf{v}_1 + \mathbf{h}_1$ as in Lemma 2.5. Therefore, by Corollary 2.4(iii),

$$(T_0^n \mathbf{v})_1 = c(T_0^n \mathbf{v}_0)_1 + (T_0^n \mathbf{h}_0)_1 = (T_0^n \mathbf{h}_0)_1$$

and similarly $(T_1^n \mathbf{v})_N = (T_1^n \mathbf{h}_1)_N$. Also for $2 \le i \le N$, by Corollary 2.4(iii) again,

$$(T_0^n \mathbf{v})_i - (T_1^n \mathbf{v})_{i-1} = c(T_0^n \mathbf{v}_0)_i + (T_0^n \mathbf{h}_0)_i - c(T_1^n \mathbf{v}_1)_{i-1} - (T_1^n \mathbf{h}_1)_{i-1}$$
$$= (T_0^n \mathbf{h}_0)_i - (T_1^n \mathbf{h}_1)_{i-1}.$$

We can continue the above estimation:

$$\int_{E_n} |\Delta_h f_n(x)|^p dx = h \Big(|(T_0^n \mathbf{h}_0)_1|^p + \sum_{i=2}^N |(T_0^n \mathbf{h}_0)_i - (T_1^n \mathbf{h}_1)_{i-1}|^p + |(T_1^n \mathbf{h}_1)_N|^p \Big)
\leq 2^p h \Big([||T_0^n \mathbf{h}_0||^p + ||T_1^n \mathbf{h}_1||^p \Big)$$

and complete the proof. \Box

PROPOSITION 3.4. Under the same assumptions as in Lemma 2.5, we have for $0 < h < 2^{-n}$,

$$\|\Delta_h f_n\|^p \le \frac{2^{p+1}}{2^n} \Big(\sum_{|J|=n} \|T_J \mathbf{h}_0\|^p + \sum_{|J|=n} \|T_J \mathbf{h}_1\|^p \Big).$$

Proof. Let $E_n = \bigcup_{k=0}^N [k-2^{-n}, k)$ and $\tilde{E}_n = [-2^{-n}, N) \setminus E_n = \bigcup_{k=0}^{N-1} [k, k+1-2^{-n})$. Since f_n is supported by [0, N], we have

$$\|\Delta_h f_n\|^p = \int_{-2^{-n}}^N |\Delta_h f_n(x)|^p dx$$

= $\int_{E_n} |\Delta_h f_n(x)|^p dx + \int_{\tilde{E}_n} |\Delta_h f_n(x)|^p dx$
:= $I_1 + I_2$.

Lemma 3.3 implies that

$$I_1 \leq 2^p h(||T_0^n \mathbf{h}_0||^p + ||T_1^n \mathbf{h}_1||^p).$$

On the other hand, if we write I_2 in the vector form, we have

$$I_2 = \int_0^{1-2^{-n}} \|\mathbf{f}_n(x+h) - \mathbf{f}_n(x)\|^p dx$$

= $h \sum_{k=1}^n \sum_{|J|=n-k} \|T_J(T_1 T_0^{k-1} - T_0 T_1^{k-1}) \mathbf{v}\|^p$.

From Corollary 2.4(ii) we conclude that

$$(T_1 T_0^{k-1} - T_0 T_1^{k-1}) \mathbf{v} = T_1 T_0^{k-1} (c \mathbf{v}_0 + \mathbf{h}_0) - T_0 T_1^{k-1} (c \mathbf{v}_1 + \mathbf{h}_1)$$

= $T_1 T_0^{k-1} \mathbf{h}_0 - T_0 T_1^{k-1} \mathbf{h}_1$,

and therefore

$$I_{2} \leq 2^{p} h \Big(\sum_{k=1}^{n} \sum_{|J|=n-k} ||T_{J}T_{1}T_{0}^{k-1}\mathbf{h}_{0}||^{p} + \sum_{k=1}^{n} \sum_{|J|=n-k} ||T_{J}T_{0}T_{1}^{k-1}\mathbf{h}_{1}||^{p} \Big)$$

$$\leq 2^{p} h \Big(\sum_{|J|=n} ||T_{J}\mathbf{h}_{0}||^{p} + \sum_{|J|=n} ||T_{J}\mathbf{h}_{1}||^{p} \Big).$$

The lemma then follows from the two estimates of I_1 and I_2 .

We can now state and prove our main theorem of this section (i.e. Theorem B in Section 1).

THEOREM 3.5. Suppose that either (i) 1 is a simple eigenvalue of T_0 and T_1 or (ii) $H(\tilde{\mathbf{v}}) = \{ \mathbf{u} \in \mathbb{C}^N : \sum_{i=1}^N u_i = 0 \}$. If f is a L_c^p -solution of (1.1), then

$$\operatorname{Lip}_p(f) = \liminf_{n \to \infty} \frac{\ln(2^{-n} \sum_{|J|=n} \|T_J \tilde{\mathbf{v}}\|^p)}{p \ln(2^{-n})}.$$

Proof. As a direct consequence of Proposition 3.2, we have

$$\operatorname{Lip}_{p}(f) \leq \liminf_{n \to \infty} \frac{\ln \|\Delta_{2^{-n}} f\|}{\ln(2^{-n})} \leq \liminf_{n \to \infty} \frac{\ln(2^{-n} \sum_{|J|=n} \|T_{J} \tilde{\mathbf{v}}\|^{p})}{p \ln(2^{-n})}.$$

To prove the reverse inequality we first observe that $\|\Delta_h f\| \le 2\|f - f_n\| + \|\Delta_h f_n\|$. Proposition 2.1 (iii) and Proposition 3.4 imply that

$$\|\Delta_h f\|^p \le C \left(2^{-n} \sum_{|J|=n} \|T_J \tilde{\mathbf{v}}\|^p + 2^{-n} \sum_{|J|=n} \|T_J \mathbf{h}_0\|^p + 2^{-n} \sum_{|J|=n} \|T_J \mathbf{h}_1\|^p \right)$$

for some constant C independent of n. Since $\tilde{\mathbf{v}}$, \mathbf{h}_0 , \mathbf{h}_1 are all in $H(\tilde{\mathbf{v}})$, we can apply Lemma 2.2 to have the reverse inequality. \square

4. Lip_p(f) for some special cases. For the 2-coefficient dilation equation f(x) = f(2x) + f(2x-1), the scaling function is $\chi_{[0,1)}$ and it is easy to calculate that Lip_p(f) = 1/p from the definition.

PROPOSITION 4.1. If f is an L_c^p -solution of $f(x) = c_0 f(2x) + c_1 f(2x - 1) + c_2 f(2x - 2)$ with $c_0 + c_2 = 1$, $c_1 = 1$, and $c_0, c_2 \neq 0$, then

$$\operatorname{Lip}_{p}(f) = \frac{\ln((|c_{0}|^{p} + |1 - c_{0}|^{p})/2)}{-p \ln 2}.$$

Proof. In this case,

$$T_0 = \begin{pmatrix} c_0 & 0 \\ 1 - c_0 & 1 \end{pmatrix}$$
 and $T_1 = \begin{pmatrix} 1 & c_0 \\ 0 & 1 - c_0 \end{pmatrix}$,

and $\mathbf{v} = [c_0, c_0 - 1]^t$ is a 2-eigenvector of $(T_0 + T_1)$. Then

$$\tilde{\mathbf{v}} = (T_0 - I)\mathbf{v} = \begin{pmatrix} c_0(c_0 - 1) \\ -c_0(c_0 - 1) \end{pmatrix} \neq 0.$$

Note that $\tilde{\mathbf{v}}$ is an c_0 -eigenvector of T_0 and $(1-c_0)$ -eigenvector of T_1 . A straight-forward calculation yields

$$\frac{1}{2^n} \sum_{|J|=n} ||T_J \tilde{\mathbf{v}}||^p = \frac{1}{2^n} \left(\sum_{k=0}^n \binom{n}{k} (|c_0|^p)^k (|1-c_0|^p)^{n-k} \right) ||\tilde{\mathbf{v}}||^p$$
$$= \left(\frac{|c_0|^p + |1-c_0|^p}{2} \right)^n ||\tilde{\mathbf{v}}||^p.$$

This implies that

$$\operatorname{Lip}_{p}(f) = \frac{\ln((|c_{0}|^{p} + |1 - c_{0}|^{p})/2)}{-p \ln 2}.$$

We now turn to the 4-coefficient dilation equation

(4.1)
$$f(x) = c_0 f(2x) + c_1 f(2x-1) + c_2 f(2x-2) + c_3 f(2x-3)$$

with $c_0 + c_2 = c_1 + c_3 = 1$ and $c_0, c_3 \neq 0$. We first observe that

$$(4.2) T_0 = \begin{pmatrix} c_0 & 0 & 0 \\ 1 - c_0 & 1 - c_3 & c_0 \\ 0 & c_3 & 1 - c_0 \end{pmatrix}, T_1 = \begin{pmatrix} 1 - c_3 & c_0 & 0 \\ c_3 & 1 - c_0 & 1 - c_3 \\ 0 & 0 & c_3 \end{pmatrix}.$$

The eigenvalues of $(T_0 + T_1)$ are 2, 1, and $(1 - c_0 - c_3)$, and the 2-eigenvector \mathbf{v} is

(4.3)
$$\mathbf{v} = \begin{pmatrix} c_0(1+c_0-c_3) \\ (1+c_0-c_3)(1-c_0+c_3) \\ c_3(1-c_0+c_3) \end{pmatrix}.$$

Therefore

(4.4)
$$\tilde{\mathbf{v}} = (T_0 - I)\mathbf{v} = \begin{pmatrix} c_0(c_0 - 1)(1 + c_0 - c_3) \\ -c_0(c_0 - 1)(1 + c_0 - c_3) + c_3(c_3 - 1)(1 - c_0 + c_3) \\ -c_3(c_3 - 1)(1 - c_0 + c_3) \end{pmatrix}.$$

Note that in Proposition 4.1, the computation can be made easier if $\tilde{\mathbf{v}}$ is an eigenvector of both T_0 and T_1 . Here we have

LEMMA 4.2. Let T_0 and T_1 be as in (4.2) and let \mathbf{v} be the 2-eigenvector of (T_0+T_1) as in (4.3) and let $\tilde{\mathbf{v}}=(T_0-I)\mathbf{v}$. Then $\tilde{\mathbf{v}}$ is an eigenvector of both T_0 and T_1 (not necessary to the same eigenvalue) if and only if $c_0+c_3=1$.

Proof. Suppose $c_0 + c_3 = 1$, then $c_0 = c_1$, $c_2 = c_3$, and (4.2) reduces to

$$T_0 = \begin{pmatrix} c_0 & 0 & 0 \\ 1 - c_0 & c_0 & c_0 \\ 0 & 1 - c_0 & 1 - c_0 \end{pmatrix}, \quad T_1 = \begin{pmatrix} c_0 & c_0 & 0 \\ 1 - c_0 & 1 - c_0 & c_0 \\ 0 & 0 & 1 - c_0 \end{pmatrix},$$

and $\tilde{\mathbf{v}} = [-2c_0^2c_3, 2c_0^2c_3 - 2c_0c_3^2, 2c_0c_3^2]^t \neq 0$. By a direct calculation, $\tilde{\mathbf{v}}$ is a c_0 -eigenvector of T_0 and $(1-c_0)$ -eigenvector of T_1 .

Conversely, suppose $\tilde{\mathbf{v}}$ is an eigenvector of both T_0 and T_1 . Let $\mathbf{u}_0 = [0, 1, -1]^t$ and $\mathbf{u}_1 = [1, -1, 0]^t$, then $\tilde{\mathbf{v}} = a\mathbf{u}_0 + b\mathbf{u}_1$ where a and b is determined by (4.4). By using \mathbf{u}_0 and \mathbf{u}_1 as a basis of the subspace $H = {\mathbf{u} \in \mathbb{C}^3 : \sum u_i = 0}$, we can rewrite T_0, T_1 (restricted on H) and $\tilde{\mathbf{v}}$ as follows:

$$(4.5) T_0 = \begin{pmatrix} 1 - c_0 - c_3 & c_3 \\ 0 & c_0 \end{pmatrix}, T_1 = \begin{pmatrix} c_3 & 0 \\ c_0 & 1 - c_0 - c_3 \end{pmatrix}, \text{and} \tilde{\mathbf{v}} = \begin{pmatrix} a \\ b \end{pmatrix}.$$

Note that T_0 has c_0 and $1 - c_0 - c_3$ as eigenvalues while T_1 has c_3 and $1 - c_0 - c_3$ as eigenvalues. We claim that $\tilde{\mathbf{v}}$ is an c_0 -eigenvector of T_0 . For otherwise, $\tilde{\mathbf{v}}$ is an $(1-c_0-c_3)$ -eigenvector of T_0 , then b must be zero and $\tilde{\mathbf{v}} = [a, 0]^t$. But this contradicts to the assumption that $\tilde{\mathbf{v}}$ is an eigenvector of T_1 . Similarly, $\tilde{\mathbf{v}}$ must be a c_3 -eigenvector of T_1 . Hence,

$$(T_0 + T_1)\tilde{\mathbf{v}} = (c_0 + c_3)\tilde{\mathbf{v}}.$$

There are only three choices of the eigenvalues of $T_0 + T_1$: 2,1 or $1 - c_0 - c_3$. By a direct check we conclude that $c_0 + c_3 = 1$ is the only allowable case.

In view of Lemma 4.2 we can use the same technique as in Proposition 4.1 to prove the next proposition

PROPOSITION 4.3. If f is an L_c^p -solution of (4.1) with the additional assumption that $c_0 + c_3 = 1$, then

(4.6)
$$\operatorname{Lip}_{p}(f) = \frac{\ln((|c_{0}|^{p} + |1 - c_{0}|^{p}))/2}{-p \ln 2}.$$

In Figure 1, we draw the graphs of some scaling functions satisfying the assumption in the above proposition and their L^p -Lipschitz exponents. Note that if $\operatorname{Lip}_p(f)=1$ for all $1\leq p<\infty$, then f is differentiable almost everywhere and the derivative is in L^p for all $1\leq p<\infty$. This is the case for $c_0=0.5$ and is obvious from the graph of the corresponding scaling function. For the graph of $c_0=1.125$, we see that $\operatorname{Lip}_p(f)$ is undefined for p>6. Indeed $f\notin L^p(\mathbb{R})$, for p>6, making use of the criterion in Theorem A.

We conclude this section by giving a formula of $\operatorname{Lip}_p(f)$ with the coefficients satisfying $c_0+c_3=\frac{1}{2}$ instead of $c_0+c_3=1$. It includes Daubechies scaling function D_4 which corresponds to $c_0=(1+\sqrt{3})/4$, $c_3=(1-\sqrt{3})/4$. This formula has been obtained in [DL3] using a different method and assuming in addition that $\frac{1}{2}< c_0<\frac{3}{4}$. Here, we need an estimation on the product of two non-commutative matrices.

LEMMA 4.4. Let $\beta_0, \beta_1 \in \mathbb{R}$. Let

$$P_0 = \begin{pmatrix} 1 & 0 \\ 0 & \beta_0 \end{pmatrix}$$
 and $P_1 = \begin{pmatrix} 1 & 0 \\ \beta_0 & \beta_1 \end{pmatrix}$.

For any multi-index $J = (j_1, j_2, \dots, j_n)$, we let $P_J = P_{j_1} \cdots P_{j_n}$. Then

$$P_J = \begin{pmatrix} 1 & 0 \\ \lambda_J & \mu_J \end{pmatrix}$$

where $\lambda_J = \beta_0(j_1 + j_2\beta_{j_1} + \cdots + j_n(\beta_{j_{n-1}} \cdots \beta_{j_1}))$ and $\mu_J = \beta_{j_n}\beta_{j_{n-1}} \cdots \beta_{j_1}$. Let $\gamma = (|\beta_0|^p + |\beta_1|^p)/2$. Then

$$2^{-n} \sum_{|J|=n} |\mu_J|^p = \gamma^n$$
 and $2^{-n} \sum_{|J|=n} |\lambda_J|^p \le C n^p \max\{1, \gamma^n\}$

for some constant C > 0 independent of n.

Proof. The explicit form of the product P_J can easily be shown by induction. For the second part of the lemma, the first identity follows from

$$2^{-n} \sum_{|J|=n} |\mu_J|^p = 2^{-n} \sum_{j_1, \dots, j_n=0, 1} |\beta_{j_n} \cdots \beta_{j_1}|^p = \gamma^n.$$

For the second identity we observe that

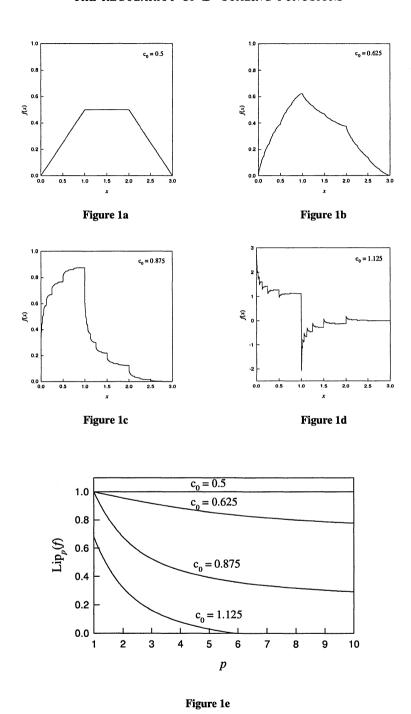
$$\left(\sum_{|J|=n} |\lambda_{J}|^{p}\right)^{\frac{1}{p}} = |\beta_{0}| \left(\sum_{j_{1},\dots,j_{n}=0,1} \left| j_{1} + \sum_{i=2}^{n} j_{i} (\beta_{j_{i-1}} \cdots \beta_{j_{1}}) \right|^{p}\right)^{\frac{1}{p}}$$

$$\leq |\beta_{0}| \left(2^{(n-1)/p} + \sum_{i=2}^{n} \left(\sum_{j_{1},\dots,j_{n}=0,1} |j_{i} (\beta_{j_{i-1}} \cdots \beta_{j_{1}})|^{p}\right)^{\frac{1}{p}}\right)$$
(by Minkowski inequality)
$$= |\beta_{0}| \left(2^{(n-1)/p} + \sum_{i=2}^{n} \left(|\beta_{0}|^{p} + |\beta_{1}|^{p}\right)^{(i-1)/p}\right)$$

$$\leq |\beta_{0}| 2^{(n-1)/p} \sum_{i=1}^{n} (\gamma^{1/p})^{i-1}$$

$$\leq |\beta_{0}| n 2^{(n-1)/p} \max\{1, (\gamma^{1/p})^{n}\}.$$

The last identity now follows.



Proposition 4.5. If f is the L^p_c -solution of (4.1) with the additional assumption

that $c_0 + c_3 = \frac{1}{2}$, then

(4.7)
$$\operatorname{Lip}_{p}(f) = \min \left\{ 1, \frac{\ln((|c_{0}|^{p} + |\frac{1}{2} - c_{0}|^{p})/2)}{-p \ln 2} \right\}.$$

Proof. In this case, (4.2) reduces to

$$T_0 = \begin{pmatrix} c_0 & 0 & 0 \\ 1 - c_0 & \frac{1}{2} + c_0 & c_0 \\ 0 & \frac{1}{2} - c_0 & 1 - c_0 \end{pmatrix} \quad \text{and} \quad T_1 = \begin{pmatrix} \frac{1}{2} + c_0 & c_0 & 0 \\ \frac{1}{2} - c_0 & 1 - c_0 & \frac{1}{2} + c_0 \\ 0 & 0 & \frac{1}{2} - c_0 \end{pmatrix}.$$

Note that $\mathbf{h} = [1, -2, 1]^t$ is a c_0 -eigenvector of T_0 and also a $(\frac{1}{2} - c_0)$ -eigenvector of T_1 . It is clear that

$$2^{-n} \sum_{|J|=n} ||T_J \mathbf{h}||^p = 2^{-n} \left(|c_0|^p + |\frac{1}{2} - c_0|^p \right)^n ||\mathbf{h}||^p.$$

Since $\mathbf{h} \in H(\tilde{\mathbf{v}})$, by Lemma 2.2, we have

$$\operatorname{Lip}_{p}(f) \leq \frac{\ln((|c_{0}|^{p} + |\frac{1}{2} - c_{0}|^{p})/2)}{-p \ln 2}.$$

Next observe that $\mathbf{u} = [0, 1, -1]^t$ is a $\frac{1}{2}$ -eigenvector of T_0 and $T_1\mathbf{u} = \frac{1}{2}\mathbf{u} + c_0\mathbf{h}$. Therefore, by using \mathbf{u} and \mathbf{h} as a basis of the subspace $H(\tilde{\mathbf{v}})$, we can rewrite T_0 , T_1 , restricted on $H(\mathbf{u} = H(\tilde{\mathbf{v}}))$ in this case, and $\tilde{\mathbf{v}}$, as

$$T_0 = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & c_0 \end{pmatrix}, \quad T_1 = \begin{pmatrix} \frac{1}{2} & 0 \\ c_0 & \frac{1}{2} - c_0 \end{pmatrix}, \quad \text{and} \quad \tilde{\mathbf{v}} = \begin{pmatrix} a \\ b \end{pmatrix},$$

where $a = -\frac{1}{4}$ and $b = \frac{2}{3}c_0(c_0 - 1)(\frac{1}{2} + 2c_0)$. Let $\beta_0 = 2c_0$ and $\beta_1 = 1 - \beta_0$. For $J = (j_1, j_2, \dots, j_n)$, we have $T_J = \frac{1}{2^n}P_J$, so that

$$||T_J\tilde{\mathbf{v}}||^p = |a2^{-n}|^p + |2^{-n}(a\lambda_J + b\mu_J)|^p,$$

where λ_J and μ_J are defined as in Lemma 4.4. This implies $||T_J\tilde{\mathbf{v}}||^p \geq |a2^{-n}|^p$ and $\mathrm{Lip}_p(f) \leq 1$ by Theorem 3.5. Hence

(4.8)
$$\operatorname{Lip}_{p}(f) \leq \min \left\{ 1, \frac{\ln((|c_{0}|^{p} + |\frac{1}{2} - c_{0}|^{p})/2)}{-p \ln 2} \right\}.$$

On the other hand,

$$||T_J\tilde{\mathbf{v}}||^p \le |a2^{-n}|^p + 2^p|a2^{-n}\lambda_J|^p + 2^p|b2^{-n}\mu_J|^p.$$

By Lemma 4.4, we have

$$2^{-n} \sum_{|J|=n} ||T_J \tilde{\mathbf{v}}||^p \le C n^p 2^{-pn} \max\{1, ((|\beta_0|^p + |\beta_1|^p)/2)^n\}$$
$$= C n^p \max\left\{2^{-pn}, ((|\beta_0/2|^p + |\beta_1/2|^p)/2)^n\right\}.$$

Consequently we have the reverse inequality of (4.8) and completes the proof. In figures 2a—e we again sketch some L_c^p -scaling functions from Proposition 4.5 $(c_0 + c_3 = \frac{1}{2})$ and their L^p -Lipschitz exponents $\operatorname{Lip}_p(f)$ of p. The case for $c_0 = 0.25$ corresponding to $\chi_{[0,1]} * \chi_{[0,1]}$, it is differentiable and hence $\operatorname{Lip}_p(f) = 1$ for all p. The case corresponding to $c_0 = 0.683...$ is the Daubechies scaling function D_4 . From the

picture of $\operatorname{Lip}_p(f)$, D_4 has L^p -derivative for $1 \leq p < 2$. It is known that for p = 2, D_4 is differentiable almost everywhere but the derivative is not in L^2 . Also it is known that the Hölder exponent of D_4 is $2 - \ln(1 + \sqrt{3}) / \ln 2$, which is the same number as the formula in the proposition when $p \to \infty$.

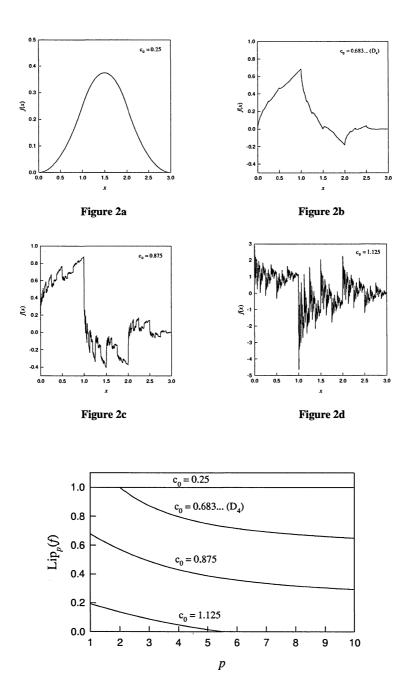


Figure 2e

5. $\operatorname{Lip}_p(f)$ when p is a positive even integer. The computation of $\operatorname{Lip}_p(f)$ in Section 4 depends on the existence of an eigenvector of both T_0 and T_1 (which may be associated with different eigenvalues). This technique cannot be used for the general case. In this section we show that if p is a positive even integer, then $\operatorname{Lip}_p(f)$ is related to the spectral radius of a matrix W_p whose entries are induced from the coefficients of the dilation equation. For simplicity, we only give the construction of W_p for the 4-coefficient dilation equation. It is not hard to extend this to the case with more coefficients.

In view of Theorem 3.5, we will first develop a simple expression for the sum $2^{-n} \sum_{|J|=n} ||T_J \tilde{\mathbf{v}}||^p$ for p a positive even integer. Let $[0, 1, -1]^t$ and $[1, -1, 0]^t$ be a basis of $H = {\mathbf{u} \in \mathbb{C}^3 : \sum u_i = 0}$. Then T_0 and T_1 can be written as in (4.5). Let $\mathbf{e}_0 = [1, 0]$, $\mathbf{e}_1 = [0, 1]$. For a fixed $\mathbf{u} = [\alpha, \beta]^t \in H(\tilde{\mathbf{v}})$ (to be determined later), we define the vector \mathbf{a}_n with the i-th entry by

$$(\mathbf{a}_n)_i = \sum_{|J|=n} (\mathbf{e}_0 T_J \mathbf{u})^{p-i} (\mathbf{e}_1 T_J \mathbf{u})^i, \qquad i = 0, \dots, p.$$

If p is an even integer, then

(5.1)
$$\sum_{|J|=n} ||T_J \mathbf{u}||^p = \sum_{|J|=n} (|\mathbf{e}_0 T_J \mathbf{u}|^p + |\mathbf{e}_1 T_J \mathbf{u}|^p)$$
$$= (\mathbf{a}_n)_0 + (\mathbf{a}_n)_p = |(\mathbf{a}_n)_0| + |(\mathbf{a}_n)_p|.$$

Note that $\mathbf{a}_0 = [\alpha^p, \alpha^{p-1}\beta, \dots, \alpha\beta^{p-1}, \beta^p]^t$. If we let $d = 1 - c_0 - c_3$, we have, in view of (4.5),

$$\begin{split} \mathbf{e}_0 T_0 &= d \mathbf{e}_0 + c_3 \mathbf{e}_1, \qquad \mathbf{e}_1 T_0 = c_0 \mathbf{e}_1, \\ \mathbf{e}_0 T_1 &= c_3 \mathbf{e}_0, \qquad \qquad \mathbf{e}_1 T_1 = c_0 \mathbf{e}_0 + d \mathbf{e}_1, \end{split}$$

and hence

$$\begin{split} (\mathbf{a}_{n+1})_{i} &= \sum_{|J|=n+1} (\mathbf{e}_{0}T_{J}\mathbf{u})^{p-i} (\mathbf{e}_{1}T_{J}\mathbf{u})^{i} \\ &= \sum_{|J|=n} (\mathbf{e}_{0}T_{0}T_{J}\mathbf{u})^{p-i} (\mathbf{e}_{1}T_{0}T_{J}\mathbf{u})^{i} + \sum_{|J|=n} (\mathbf{e}_{0}T_{1}T_{J}\mathbf{u})^{p-i} (\mathbf{e}_{1}T_{1}T_{J}\mathbf{u})^{i} \\ &= \sum_{|J|=n} \left((d\mathbf{e}_{0} + c_{3}\mathbf{e}_{1})T_{J}\mathbf{u} \right)^{p-i} (c_{0}\mathbf{e}_{1}T_{J}\mathbf{u})^{i} \\ &+ \sum_{|J|=n} \left((c_{3}\mathbf{e}_{0})T_{J}\mathbf{u} \right)^{p-i} (c_{0}\mathbf{e}_{0} + d\mathbf{e}_{1}T_{J}\mathbf{u})^{i} \\ &= \sum_{|J|=n} \left(\sum_{\ell=0}^{p-i} \binom{p-i}{\ell} d^{p-i-\ell} (\mathbf{e}_{0}T_{J}\mathbf{u})^{p-i-\ell} c_{3}^{\ell} (\mathbf{e}_{1}T_{J}\mathbf{u})^{\ell} \right) \left(c_{0}^{i} (\mathbf{e}_{1}T_{J}\mathbf{u})^{i} \right) \\ &+ \sum_{|J|=n} \left(c_{3}^{p-i} (\mathbf{e}_{0}T_{J}\mathbf{u})^{p-i} \right) \left(\sum_{\ell=0}^{i} \binom{i}{\ell} c_{0}^{i-\ell} (\mathbf{e}_{0}T_{J}\mathbf{u})^{i-\ell} d^{\ell} (\mathbf{e}_{1}T_{J}\mathbf{u})^{\ell} \right) \\ &= \sum_{\ell=0}^{p-i} \binom{p-i}{\ell} c_{0}^{i} c_{3}^{\ell} d^{p-i-\ell} (\mathbf{a}_{n})_{i+\ell} + \sum_{\ell=0}^{i} \binom{i}{\ell} c_{0}^{i-\ell} c_{3}^{p-i} d^{\ell} (\mathbf{a}_{n})_{\ell}. \end{split}$$

Summarizing the above, we have

PROPOSITION 5.1. For any integer $p \ge 1$, let W_p be the $(p+1) \times (p+1)$ matrix defined by

$$(W_p)_{ij} = \begin{cases} \binom{p-i}{j-i}c_0^i c_3^{j-i} d^{p-j} & \text{for } 0 \le i < j \le p \\ c_0^i d^{p-i} + c_3^{p-i} d^i & \text{for } i = j \\ \binom{i}{j}c_0^{i-j}c_3^{p-i} d^j & \text{for } 0 \le j < i \le p \end{cases}$$

where $d = 1 - c_0 - c_3$. Then

$$\mathbf{a}_{n+1} = W_p \mathbf{a}_n = W_p^{n+1} \mathbf{a}_0$$

where $\mathbf{a}_0 = [\alpha^p, \alpha^{p-1}\beta, \ldots, \alpha\beta^{p-1}, \beta^p]^t$. In particular if p is an even integer, then

$$\sum_{|J|=n} ||T_J \mathbf{u}||^p = [1, 0, 0, \cdots, 0, 1] W_p^n \mathbf{a}_0.$$

The matrix W_p can be written as $W_p = W_p^{(L)} + W_p^{(U)}$, where $W_p^{(L)}$ and $W_p^{(U)}$ are the lower and upper triangular part of W_p , in a very symmetric manner. For example,

$$\begin{split} W_2^{(L)} &= \begin{pmatrix} \binom{0}{0}c_3^2 & 0 & 0 \\ \binom{1}{0}c_0c_3 & \binom{1}{1}c_3d & 0 \\ \binom{2}{0}c_0^2 & \binom{2}{1}c_0d & \binom{2}{2}d^2 \end{pmatrix}, \quad W_2^{(U)} &= \begin{pmatrix} \binom{2}{0}d^2 & \binom{2}{1}c_3d & \binom{2}{2}c_3^2 \\ 0 & \binom{1}{0}c_0d & \binom{1}{1}c_0c_3 \\ 0 & 0 & \binom{0}{0}c_0^2 \end{pmatrix}; \\ W_4^{(L)} &= \begin{pmatrix} \binom{0}{0}c_3^4 & 0 & 0 & 0 & 0 \\ \binom{1}{0}c_0c_3^3 & \binom{1}{1}c_3^3d & 0 & 0 & 0 \\ \binom{2}{0}c_0^2c_3^2 & \binom{2}{1}c_0c_3^2d & \binom{2}{2}c_3^2d^2 & 0 & 0 \\ \binom{3}{0}c_0^3c_3 & \binom{3}{1}c_0^2c_3d & \binom{3}{2}c_0c_3d^2 & \binom{3}{3}c_3d^3 & 0 \\ \binom{4}{0}c_0^4 & \binom{4}{1}c_0^3d & \binom{4}{2}c_0^2d^2 & \binom{4}{3}c_0d^3 & \binom{4}{4}d^4 \\ 0 & \binom{3}{0}c_0d^3 & \binom{3}{1}c_0c_3d^2 & \binom{3}{2}c_0c_3^2d & \binom{3}{3}c_0c_3^3 \\ 0 & 0 & \binom{3}{0}c_0d^3 & \binom{3}{1}c_0c_3d^2 & \binom{3}{2}c_0c_3^2d & \binom{3}{3}c_0c_3^3 \\ 0 & 0 & 0 & \binom{2}{0}c_0^2d^2 & \binom{2}{1}c_0^2c_3d & \binom{2}{2}c_0^2c_2^2 \\ 0 & 0 & 0 & \binom{0}{0}c_0^3d & \binom{1}{1}c_0^3c_3 \\ 0 & 0 & 0 & \binom{0}{0}c_0^3d & \binom{1}{1}c_0^3c_3 \\ 0 & 0 & 0 & \binom{0}{0}c_0^3d & \binom{1}{1}c_0^3c_3 \\ 0 & 0 & 0 & \binom{0}{0}c_0^3d & \binom{1}{1}c_0^3c_3 \\ 0 & 0 & 0 & \binom{0}{0}c_0^3c_0^3d & \binom{1}{1}c_0^3c_3 \\ 0 & 0 & 0 & \binom{0}{0}c_0^3c_0^3d & \binom{1}{1}c_0^3c_3 \\ 0 & 0 & 0 & \binom{0}{0}c_0^3c_0^3d & \binom{1}{1}c_0^3c_3 \\ 0 & 0 & 0 & \binom{0}{0}c_0^3c_0^3d & \binom{1}{1}c_0^3c_3 \\ 0 & 0 & 0 & \binom{0}{0}c_0^3c_0^3d & \binom{1}{1}c_0^3c_3 \\ 0 & 0 & 0 & \binom{0}{0}c_0^3c_0^3d & \binom{1}{1}c_0^3c_3 \\ 0 & 0 & 0 & \binom{0}{0}c_0^3c_0^3d & \binom{0}{1}c_0^3c_0^3d & \binom{0}{1}c_0^3c_0^3d \\ 0 & 0 & 0 & 0 & \binom{0}{0}c_0^3c_0^3d & \binom{0}{1}c_0^3c_0^3d \\ 0 & 0 & 0 & 0 & \binom{0}{0}c_0^3c_0^3d & \binom{0}{1}c_0^3c_0^3d \\ 0 & 0 & 0 & 0 & \binom{0}{0}c_0^3c_0^3d & \binom{0}{1}c_0^3c_0^3d \\ 0 & 0 & 0 & 0 & \binom{0}{0}c_0^3c_0^3d & \binom{0}{1}c_0^3c_0^3d \\ 0 & 0 & 0 & 0 & \binom{0}{0}c_0^3c_0^3d & \binom{0}{1}c_0^3c_0^3d \\ 0 & 0 & 0 & 0 & \binom{0}{0}c_0^3c_0^3d \\ 0 & 0 & 0 & 0 & \binom{0}{0}c_0^3c_0^3d \\ 0 & 0 & 0 & 0 & \binom{0}{0}c_0^3d \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Recall from basic linear algebra that if $\rho(A)$ is the spectral radius of an $N \times N$ matrix A, then $\rho(A) = \max\{|\lambda| : \lambda \text{ is an eigenvalue of } A\}$ and

(5.2)
$$\lim_{n \to \infty} ||A^n||^{1/n} = \rho(A).$$

Let λ be any eigenvalue of A, and $E_{\lambda} = \{\mathbf{u} \in \mathbb{C}^{N} : (A - \lambda I)^{m}\mathbf{u} = 0 \text{ for some } m > 0\}$, then $\mathbb{C}^{N} = E_{\lambda} \oplus Z$ for some A-invariant subspace Z of \mathbb{C}^{N} . We say that \mathbf{u} has a component in E_{λ} if $\mathbf{u} = \mathbf{u}_{\lambda} + \mathbf{z}$ with $\mathbf{u}_{\lambda} \neq 0$. It is clear that if $\mathbf{u} \in \mathbb{C}^{N}$ has a component in E_{λ} , then there is a constant C > 0 such that $||A^{n}\mathbf{u}|| \geq C|\lambda|^{n}$ for all n > 0.

LEMMA 5.2. Let λ be the eigenvalue of W_p such that $|\lambda| = \rho(W_p)$ and let E_{λ} be defined as above. Suppose $\dim H(\tilde{\mathbf{v}}) = 2$. Then there exists $\mathbf{u} = \alpha \mathbf{b}_0 + \beta \mathbf{b}_1 \in H(\tilde{\mathbf{v}})$, where $\mathbf{b}_0 = [0, 1, -1]^t$, $\mathbf{b}_1 = [1, -1, 0]^t$, such that $H(\mathbf{u}) = H(\tilde{\mathbf{v}})$ and the

corresponding $\mathbf{a}_0 = [\alpha^p, \alpha^{p-1}\beta, \dots, \alpha\beta^{p-1}, \beta^p]^t$ has a component of E_{λ} . For such \mathbf{u} , there is a constant C > 0 such that

$$C \rho(W_p)^n \le \sum_{|J|=n} ||T_J \mathbf{u}||^p \quad \text{for all } n > 0.$$

Proof. We choose p+1 vectors $\mathbf{u}_i = \alpha_i \mathbf{b}_0 + \beta_i \mathbf{b}_1$, $i = 0, \dots, p$, such that $H(\mathbf{u}_i) = H(\tilde{\mathbf{v}})$ and

$$\alpha_i \beta_j - \alpha_j \beta_i \neq 0$$
, for $i \neq j$.

Then the corresponding vectors

$$\gamma_i = [\alpha_i^p, \alpha_i^{p-1}\beta_i, \dots, \alpha_i\beta_i^{p-1}, \beta_i^p]^t, \quad 0 \le i \le p$$

form a basis of \mathbb{C}^{p+1} because the matrix with the vectors γ_i 's as rows is a Vandermonde matrix

$$A = \begin{pmatrix} \alpha_0^p & \alpha_0^{p-1} \beta_0 & \cdots & \alpha_0 \beta_0^{p-1} & \beta_0^p \\ \alpha_1^p & \alpha_1^{p-1} \beta_1 & \cdots & \alpha_1 \beta_1^{p-1} & \beta_1^p \\ \vdots & \vdots & & \vdots & \vdots \\ \alpha_p^p & \alpha_p^{p-1} \beta_p & \cdots & \alpha_p \beta_p^{p-1} & \beta_p^p \end{pmatrix}$$

and $\det A = \prod_{0 \le j,k \le p} (\alpha_j \beta_k - \alpha_k \beta_j) \ne 0$. Hence, one of the γ_i 's has a component of E_{λ} . Let **u** be the corresponding **u**_i and the first part of the lemma follows. To prove the second part, we observe that for any J with |J| = n and $0 \le j \le p$,

$$|\mathbf{e}_0 T_J \mathbf{u}|^{p-j} |\mathbf{e}_1 T_J \mathbf{u}|^j \le \max\{|\mathbf{e}_0 T_J \mathbf{u}|^p, |\mathbf{e}_1 T_J \mathbf{u}|^p\}$$

$$\le |\mathbf{e}_0 T_J \mathbf{u}|^p + |\mathbf{e}_1 T_J \mathbf{u}|^p.$$

Hence

$$|(\mathbf{a}_{n})_{j}| = \sum_{|J|=n} |\mathbf{e}_{0}T_{J}\mathbf{u}|^{p-j} |\mathbf{e}_{1}T_{J}\mathbf{u}|^{j}$$

$$\leq \sum_{|J|=n} |\mathbf{e}_{0}T_{J}\mathbf{u}|^{p} + \sum_{|J|=n} |\mathbf{e}_{1}T_{J}\mathbf{u}|^{p} = |(\mathbf{a}_{n})_{0}| + |(\mathbf{a}_{n})_{p}|$$

$$= \sum_{|J|=n} ||T_{J}\mathbf{u}||^{p} \qquad \text{(by (5.1))}$$

It follows that $\|\mathbf{a}_n\|_1 = \sum_{j=0}^p |(\mathbf{a}_n)_j| \le p \sum_{|J|=n} \|T_J \mathbf{u}\|^p$. Since \mathbf{a}_0 has a component of E_{λ} , there exists a constant C > 0 such that

$$C \rho(W_p)^n \le ||W_p^n \mathbf{a}_0||_1 = ||\mathbf{a}_n||_1 \le p \sum_{|J|=n} ||T_J \mathbf{u}||^p.$$

For the 4-coefficient dilation equation in (4.1), it is easy to check that dim $H(\tilde{\mathbf{v}}) = 0$ if and only if $(c_0, c_3) \in \{(0,0), (1,0), (0,1), (1,1)\}$, and the solutions are characteristic functions ([LW, Lemma 3.3]). Hence $\operatorname{Lip}_p(f) = 1/p$. Also dim $H(\tilde{\mathbf{v}}) = 1$ if and only if $c_0 + c_3 = 1$ (Lemma 4.2), and in Proposition 4.3 we have given a formula of $\operatorname{Lip}_p(f)$ for this case. It remains to consider the case $H(\tilde{\mathbf{v}}) = 2$, which will complete all the cases for all 4-coefficient scaling functions.

THEOREM 5.3. Consider the 4-coefficient dilation equation in (4.1) with the assumption that dim $H(\tilde{\mathbf{v}}) = 2$. For p a positive even integer, the equation has a (unique)

 L_c^p -solution f if and only if $\rho(W_p)/2 < 1$, and in this case

$$\operatorname{Lip}_p(f) = \frac{\ln(\rho(W_p)/2)}{-p\ln 2}.$$

Proof. Note that for any $\mathbf{u} \in H(\tilde{\mathbf{v}})$ and for any $\epsilon > 0$, we have for large n

$$\sum_{|J|=n} ||T_{J}\mathbf{u}||^{p} = |(\mathbf{a}_{n})_{0}| + |(\mathbf{a}_{n})_{p}| \qquad \text{(by (5.1))}$$

$$\leq ||\mathbf{a}_{n}||_{1} = ||W_{p}^{n}\mathbf{a}_{0}||_{1} \qquad \text{(by Proposition 5.1)}$$

$$\leq ||W_{p}^{n}|| ||\mathbf{a}_{0}||_{1}$$

$$\leq ||\mathbf{a}_{0}||_{1}(\rho(W_{p}) + \epsilon)^{n}. \qquad \text{(by (5.2))}$$

If we choose $\mathbf{u} \in H(\tilde{\mathbf{v}})$ as in Lemma 5.2, combining with Theorem A in Section 1, we have the first conclusion. The second assertion follows from Lemma 2.2, the estimation of $\sum_{|J|=n} ||T_J \mathbf{u}||^p$ from above and Lemma 5.2.

Figure 3 shows the domain of (c_0, c_3) for the existence of L_c^p -solutions for even integers using the above criterion $\rho(W_p)/2 < 1$. The curves are $\rho(W_p)/2 = 1$ corresponds to p = 2, 4, 6, 10, 20, and 40. Note that when $p \to \infty$ the limit is the triangular region which is the approximate region plotted in [H] for the existence of continuous 4-coefficient scaling functions using the joint spectral radius. However, we are not able to prove this assertion yet, i.e., $\lim_{p\to\infty} \operatorname{Lip}_p(f)$ is the Hölder exponent. Also we do not have a criterion for the existence of an L_c^∞ -solution.

Figure 4 is the graph of $\operatorname{Lip}_4(f)$ plotted against the (c_0, c_3) -plane. It shows the overall picture of $\operatorname{Lip}_4(f)$ for the 4-coefficient case. It looks similar to the graph of $\operatorname{Lip}_2(f)$ plotted in [LMW].

We remark that if $c_0 > 0$, $c_3 > 0$, and $1 - c_0 - c_3 > 0$, then T_0 and T_1 in (4.5) are non-negative matrices. Also the vector \mathbf{u} in Lemma 5.2 can be chosen to be a positive vector. Hence (5.1) still holds if p is a positive odd integer. Consequently, we have

PROPOSITION 5.4. Consider the 4-coefficient dilation equation (4.1) with $c_0 > 0$, $c_3 > 0$, and $1 - c_0 - c_3 > 0$. Suppose dim $H(\tilde{\mathbf{v}}) = 2$, then for p a positive integer,

(5.3)
$$\operatorname{Lip}_{p}(f) = \frac{\ln(\rho(W_{p})/2)}{-p \ln 2}.$$

Without such positivity assumption on the coefficients, the expression in (5.3) does not necessarily give $\operatorname{Lip}_p(f)$ for p odd integers. For example Figure 5a is the graph of $-\ln(\rho(W_p)/2)/(p\ln 2)$, $p=1,\cdots,10$, of the scaling function corresponding to $c_0=0.5$ and $c_3=-0.4$. The points bounce up and down but $\operatorname{Lip}_p(f)$ should be convex in that region. Figure 5b corresponds to Daubechies scaling function D_4 ($c_3<0$). On this graph, the points are obtained by $-\ln(\rho(W_p)/2)/(p\ln 2)$ while the curve is $\operatorname{Lip}_p(f)$ given by (4.7). It shows that for even integer p, they coincide. For odd integer p, the values obtained by (5.3) are different to $\operatorname{Lip}_p(f)$ but surprisely close (see Table 1). Also when $p\to\infty$, in our numerical and graphical experiments, the values obtained from $-\ln(\rho(W_p)/2)/(p\ln 2)$, p odd integers, seems to converge to $\operatorname{Lip}_p(f)$ rather rapidly.

Finally we remark that for the dilation equation with N+1 (N>3) coefficients, if $\dim H(\tilde{\mathbf{v}})=1$ then $\tilde{\mathbf{v}}$ is an eigenvector of both T_0 and T_1 , say $T_0\tilde{\mathbf{v}}=a\tilde{\mathbf{v}}$ and $T_1\tilde{\mathbf{v}}=b\tilde{\mathbf{v}}$.

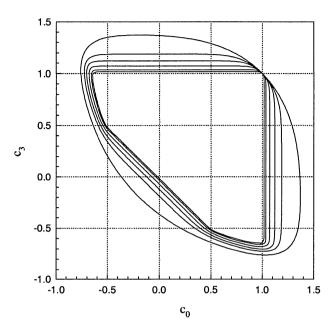
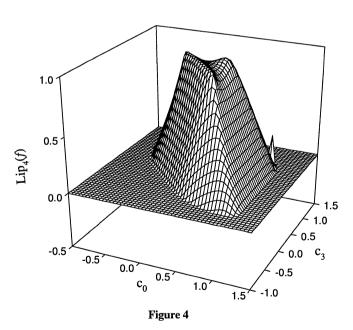
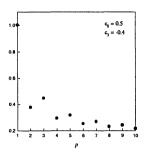


Figure 3



Then the same technique as in the proof of Proposition 4.1 yields

$$\operatorname{Lip}_p(f) = \frac{\ln((|a|^p + |b|^p)/2)}{-p \ln 2}$$



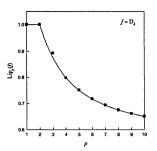


Figure 5a

Figure 5b

		value obtained
\boldsymbol{p}	$\operatorname{Lip}_{m p}(f)$	by (5.3)
3	0.874185416	0.892690635
5	0.749617426	0.750414497
7	0.692852392	0.692893269
9	0.661125656	0.661127939

Table 1

for $1 \leq p < \infty$. For the case dim $H(\tilde{\mathbf{v}}) \geq 2$, we can use a similar method to that in Proposition 5.1 to obtain a $(p+1)^{N-2} \times (p+1)^{N-2}$ square matrix W_p , and Theorem 5.3 and Proposition 5.4 will still hold for dim $H(\tilde{\mathbf{v}}) \geq 2$.

REFERENCES

- [CD] A. COHEN AND I. DAUBECHIES, A stability criterion for biorthogonal wavelet bases and their related subband coding scheme, Duke Math. J., 68 (1992), pp. 313-335.
- [CH] D. COLELLA AND C. HEIL, Characterizations of scaling functions: Continuous solutions, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 496-518.
- [D] I. DAUBECHIES, in Ten lectures on wavelets, CBMS Reg. Conf. Ser. in Appl. Math. 61, SIAM, 1992.
- [DGL] N. DYN, J.A. GREGORY, AND D. LEVIN, Analysis of uniform binary subdivision schemes for curve design, Constr. Approx., 7 (1991), pp. 127-147.
- [DL1] I. DAUBECHIES AND J. C. LAGARIAS, Two-scale difference equation: I. Global regularity of solutions, SIAM J. Math. Anal., 22 (1991), pp. 1388-1410.
- [DL2] _____, Two-scale difference equation: II. Local regularity, infinite products and fractals, SIAM J. Math. Anal., 23 (1992), pp. 1031-1079.
- [DL3] ———, On the thermodynamic formalism for multifractal, preprint.
 - [E] T. EIROLA, Sobolev characterization of solutions of dilation equations, SIAM J. Math. Anal., 23 (1992), pp. 1015-1030.
 - [H] C. Heil, Method of solving dilation equations, Prob. and Stoch. Methods in Analysis with Applications, NATO ASI Series C: Math. Phys. Sci., 372 (1992), pp. 15-45.
 - [He] L. HERVE, Construction et régularité des fonctions d'échelle, SIAM J. Math. Anal., 26 (1995), pp. 1361-1383.
 - [J] S. JAFFARD, Multifractal formalism for functions Part I, results valid for all functions; Part II, self-similar functions, Laboratorire de Math. App. (preprint).

- [Ji] R. Jia, Subdivision schemes in L^p spaces, Adv. Comp. Math., 3 (1995), pp. 309-341.
- [LMW] K. S. LAU, M. F. MA, AND J. WANG, On some sharp regularity estimations of L²-scaling functions, SIAM J. Math. Anal., 27 (1996), pp. 835-864.
 - [LW] K. S. LAU AND J. WANG, Characterization of L^p-solution for the two scale dilation equations, SIAM J. Math. Anal., 26 (1995), pp. 1018-1046.
 - [MP] C. A. MICCHELLI AND H. PRAUTZSCH, Uniform refinement of curves, Lin. Alg. Appl., 114/115 (1989), pp. 841-870.
 - [V1] L. VILLEMOES, Energy moments in time and frequency for two-scale difference equation solutions and wavelets, SIAM J. Math. Anal., 23 (1992), pp. 1519-1543.
 - [V2] L. VILLEMOES, Wavelet analysis of refinement equations, SIAM J. Math. Anal., 25 (1994), pp. 1433-1460.