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A CHARACTERIZATION OF RATIONAL SINGULARITIES* 

V. B. MEHTAt AND V. SRINIVAS* 

1. Introduction. Recall that if (-R, m) is a local ring which is essentially of finite 
type over a field k of characteristic 0, then R is said to be of F-injective type (in the 
sense of Hochster-Roberts [HR]) if, loosely speaking, for 'almost all reductions of R 
modulo primes p\ the Frobenius morphism acts injectively on the local cohomology 
modules of the reduction. If (i?, m) is normal and Cohen-Macaulay, and the top 
local cohomology of 'almost all' such reductions have no proper F-stable submodules, 
we say that R has F-rational type (in the sense of Huneke-Smith [HS] and Fedder- 
Watanabe [FW]). We will explain later in a more precise way as to what is meant by 
'almost all reductions modulo primes p'; this discussion is however a little technical, 
and so we avoid it here. 

In her thesis, Smith proved that if (R, m) has F-rational type, then R has a 
rational singularity. Recall that this means that if X —> Spec i? is a resolution of 
singularities, then W^X.Ox) = 0 for i > 0, and H0(X, Ox) — R- She conjectured 
that the converse is true; this yields an intrinsic, algebraic characterization of rational 
singularities which does not involve construction of a resolution of singularities. 

We present below a proof of the conjecture: 
THEOREM 1.1. Let (i?, m) be a local ring essentially of finite type over a field 

k of characteristic 0, such that R has a rational singularity. Then R has F-rational 
type. 

We should state right away that this result has already been obtained earlier by 
N. Hara [HaW], though our work was done independently, and we were not aware of 
Hara's work while working out our ideas. 

In order to obtain the above result, we will consider below another pair of notions, 
related to the notions of F-injective type and F-rational type. Let R be a normal local 
ring, essentially of finite type over a field of characteristic 0. Let X -» Speci? be a 
resolution of singularities, such that the inverse image of the singular locus is a divisor 
with normal crossings. Let Z be the fibre of X over the maximal ideal of R. Since 
R is essentially of finite type over A;, one can make sense of the following statement: 
for 'almost all reductions of X modulo a prime p\ if X is such a reduction, and 
Z C X is the corresponding reduction_of Z, then the Frobenius morphism is injective 
on the local cohomology groups H^(X,OY)' If this is the case, we say that (it!, m) 

has resolved F-injective type. Similarly, if HUX^OY) = 0 for i < d = dimX, and 

H^(X, OY) has no proper i?-submodule stable under the Frobenius (where R is the 
corresponding 'reduction modulo p' of i?), we say that (JR, m) has resolved F-rational 
type (see §2 for a more detailed discussion of this notion). 

As will be seen below (lemma 7.1), for a rational singularity, it is easy to check 
that these notions agree with the notions of F-injective type and F-rational type, since 
H^(X, OY) is then identified with the top local cohomology of the corresponding local 
ring. 
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Hence, Theorem 1.1 is a special case of the following general result. 
THEOREM 1.2. Let (i?, m) be any normal local ring, essentially of finite type over 

a field of characteristic 0.  Then R is of resolved F-rational type. 
In fact, the proof yields the statement that if (i?, m) is any reduced local ring of 

dimension d, essentially of finite type over a field of characteristic 0, then for 'almost 
all' reductions R as above, the submodule 0 C H^X, 0^) is tightly closed, in the 
sense of Hochster-Huneke. Note that, if R is not equidimensional, the lower resolved 
local cohomology modules H^(X,0-x) for i < d need not all vanish. However, this 
will be true if R is equidimensional. 

The proof given will also yield, as a by-product, another proof of the Grauert- 
Riemenschneider Vanishing Theorem on vanishing of higher direct images of the 
canonical bundle under a birational proper morphism from a smooth variety. An 
equivalent formulation is that on a smooth projective variety X in characteristic 0, 
H1'(X,C~N) = 0 for all i < d — dimX, and all large TV, if C is a semi-ample and 
big line bundle1. To our minds, this seems to suggest that the notion of resolved F- 
injective type is an analogue of this vanishing theorem, but for the d-th cohomology. 

The technique of proofs is to make use of certain complexes of differentials with 
logarithmic poles along normal crossing divisors. On the one hand, this relates to 
topology over C, and on the other hand, in characteristic p, can be analysed following 
Deligne and Illusie [DI]. Our treatment is influenced by the exposition of these ideas 
in the book [EV], but we do not need any results on branched coverings, and make 
no explicit mention of Q-divisors, or residues of logarithmic connections, though they 
are present in spirit. 

2. Reductions modulo almost all primes. Let (R, m) be a local ring essen- 
tially of finite type over a field k of characteristic 0. We first make more precise the 
notion that some property is valid for 'reductions of it! modulo almost all primes p\ To 
be specific, we first consider the property that R is of F-injective type (compare with 
the definition of F-pure type given in [S], which is in turn a convenient reformulation 
of the notion originally introduced by Hochster and Roberts [HR]). 

Since R is essentially of finite type over A:, we may (after enlarging k if necessary) 
assume that R/m is a finite algebraic extension of A;. Then we can find a finitely 
generated Z-subalgebra A C k, a finitely generated flat A-algebra i?^, together with 
a prime ideal / C RA, with RA/I finite and flat over A, such that (with respect to 
the natural inclusion of A into k) the localization (RA ®A k)iRA®Ak is just R. Then 
for any maximal ideal n of A, if i? = RA <8U A/n, then R/IR is semilocal; if n is any 
prime of R lying over IR, then we may consider the local ring (i^n, ni^n) as obtained 
by 'reduction modulo p' from R, if A/n has characteristic p. Now R is said to be of 
F-injective type if for all maximal ideals n in some non-empty Zariski open subset of 
Spec A, the Frobenius morphism F on R (given by a ^ ap) acts injectively on the 
local cohomology modules H^R) for all z, for any n as above. 

In a similar way, if R is normal and Cohen-Macaulay of dimension d, we say that 
R is of F-rational type (see [HS], [FW]) if for all n in some non-empty Zariski open 
subset of Spec A, the it^niodule H£(R) has no proper RJTsubmodule stable under 
Frobenius, for any n as above. 

Using standard properties of local cohomology, it is easy to see that the notions 
of F-injective type and F-rational type are independent of the choice of the rings A, 

12.e., some tensor power of C is generated by global sections, which birationally embed X in a 
projective space. 
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RA and the ideal /. 
Let (i?, m) be a reduced local ring essentially of finite type over a field k of 

characteristic 0. Then we can make sense of a resolution of singularities of Speci?, 
i.e., a proper morphism TT : X —> Speci? which is an isomorphism over the regular 
locus of Spec i?, such that X -> Spec k is smooth. In general, such an X will be a 
disjoint union of smooth proper A;-varieties, possibly of different dimensions. However, 
if R is normal, then X is irreducible. By results of Hironaka, we can in fact find a 
projective resolution of singularities TT : X —> Speci? (i.e., a resolution as above 
with TT projective). Henceforth we will always assume that R is reduced; thus such a 
resolution of singularities will exist. 

Then, given any resolution of singularities TT : X —> Speci?, we can find the 
Z-algebra A, the flat A-algebra i?^, etc. such that in addition, there is a smooth 
A-scheme XA ->• Spec A, and there is a proper morphism TTA ' XA ->■ Speci?^ of 
A-schemes, which induces TT : X -» Speci? after the base change Speci? —>• Speci?^. 
All this may not be possible with the original rings A and i?^, but can be done after 
replacing them by suitable extensions. 

Let ZA C XA be the subscheme defined by the ideal sheaf generated by I C A. 
Forjtny maximal ideal n of Spec A, and any maximal ideal n of i? as before, let 
TT : X -» Speci?n be the resulting morphism. Then Z = Z Xspeci?A Speci?n is the 
fibre of W over the closed point n. 

We say that (i?, m) is of resolved F-injective type if i? is normal, and for all 
maximal ideals n in a nonempty Zariski open set of Spec A, and all n as above, the 
Frobenius morphism on the scheme X is injective on the local cohomology groups 
H^(X,0-x). We say that (i?, m) is of resolved F-rational type if for a non-empty 

open set of such n, and any corresponding n, we have that H^(X, O^-) = 0 for i < 

d — dimi?, and Hy(X, O^) has no proper i?n-submodule stable under the Frobenius 

map. It is easy to see that if H^(X, Ox) has no proper i?n-submodule stable under the 
Frobenius map, then in particular the Frobenius map is injective (else the submodule 
generated by the kernel of Forbenius would be such a proper submodule). So, in fact 
the notion of resolved F-injective type is in a sense redundant, for normal local rings, 
as a consequence of Theorem 1.2. 

If / : Xf -> X is a birational projective (or even proper) morphism, where X' is 
also smooth, then one has that f*Ox' = Ox, and Rlf*Ox' = 0 for i > 0 (this is 'well 
known', but we discuss below a proof of this from our perspective). If Z' C X' is 
the inverse image of Z, then we may similarly form the schemes X', Z' over a Zariski 
open subset of Spec A, such that we have a morphism / : X' —> X, and Z' is the 
inverse image of Z. Now for n in a perhaps smaller open subset of Spec A, there are 
natural isomorphisms (compatible with the Frobenius endomorphism) H^(X, O^) — 

H^(X',0-XT) for all i, since (by semicontinuity) R^f^O^r = 0 for all j > 0, and 

f+OxT — OY- Since by results of Hironaka, any two resolutions of singularities of 
Speci? are dominated by a third, we see that the notion of resolved F-injective type 
and resolved F-rational type do not depend on the particular resolution of singularities 
chosen in characteristic 0. 

The local cohomology H^X, O^) will depend only on the local ring i?n in char- 
acteristic p, provided one has an analogue of Hironaka's results on resolution of sin- 
gularities in characteristic p, in a sufficiently strong form. Thus, if we assume such 
results, the notion of resolved local cohomology for a local ring in characteristic p will 
be well-defined. However, this is at present only conjectural. 
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Therefore, in the sequel, when we refer to resolved local cohomology, we will mean 
the local cohomology of the 'reduction modulo p' of a specific resolution X —> Spec R 
of a local ring in characteristic 0, such that the inverse image of the singular locus 
is a divisor with normal crossings (c./. the discussion after Theorem 1.1). However, 
we stress again that the notion of a normal local ring R of characteristic 0 being 
of resolved F-injective type or F-rational type is independent of the resolution of 
singularities X —► Spec it! (see Corollary 6.6 and Proposition 7.3 below). 

We note also that if R denotes the completion of R, and X — X xs -^ R , 

Z = Z the fibre of X -> Speci? the fibre over the maximal ideal, then we also 
have 'excision' isomorphisms H^XjO^) = H1-A(X ,0^) for all i. These are also 
compatible with the Frobenius action. 

Finally, we note that we may 'globalize' the situation above, as follows. There 
is a projective k-variety V and a closed point x G V such that R = 0Xtv. We may 
also resolve the singularities TT : W —> V, and let Z C W be the inverse image of a;; 
we may choose such a resolution such that E = 7T~1(VSing) is a divisor in W with 
(global) normal crossings. Then X = W Xy SpecC^y. If R is normal, we may (and 
will) further assume that V, W are irreducible, and V is normal. 

Now we may similarly 'spread out' TT : W —> V to a projective scheme VA over 
the ring A, and a projective morphism TTA ' WA —> VA, with WA —> Spec A a smooth 
projective morphism, such that there is a subscheme T C VA, finite over Spec A, 
and inverse image ZA C WA, such that T XA k — {x). Now for any closed point 
s G Spec^4, and any t G T lying over s, we have a diagram of A:(s)-schemes W5 ->> Vs, 
the corresponding local ring Qt,va in some characteristic p > 0, and fibre scheme Zt 
over t. We also have X — Ws Xya SpecC^?y3, and Z is identified with Zt. There are 
also natural 'excision' isomorphisms (compatible with Frobenius) 11%

Z (Ws,(9jys) = 
H^(X,Ox)' Thus, the properties of a normal local ring (i?, m) being of resolved 
F-injective type, and resolved F-rational type, may be formulated instead using the 
'global' schemes WA, VA and T C VA (which may be taken to be irreducible and 
normal, since R is normal). 

Further, we may make a base change T -> Spec A, replacing WA ->- VA by 
WT -> VT, SO that WT -> VT is still projective, and WT —> T smooth and pro- 
jective. Now there is a natural section cr : T —> VT of VT —> T, corresponding to 
the original inclusion T C VA- We may assume, if necessary after localizing A to 
Ah for some /i, that T -¥ Spec A is etale and faithfully flat. Then one sees that 
for any t G T with image 5 G Spec A, the morphism Wt —> Vt is obtained from 
Ws -> Vs by the base extension SpecA;(£) ->• SpecA;(s), and that Ot,v3 -> Oo-(t),v« is 
an etale extension, inducing an isomorphism on completions. This implies that the 
natural maps Hl

Zt(Ws,Ow3) -> Hl
z (Wcit)» ^w^^) are isomorphisms, compatible 

with Frobenius. Hence we see that the properties of injectivity of Frobenius, and 
the non-existence of F-stable proper submodules, is equivalent for Ws ->• Vs and 
Wa{t) -tV^t). 

Thus, in the above context, we may also assume without loss of generality that 
T —> Spec A is an isomorphism. 

3. A reformulation of resolved F-injectivity. Let (i2,m) be a reduced local 
ring essentially of finite type over a field k of characteristic 0, which is purely of 
dimension d. Let WA —»• VA be constructed as in the previous section, where now 
each fiber of VA ->■ T — Spec A may be assumed to be reduced and purely of dimension 
d, and WA —> T is smooth of relative dimension d. 
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Let s e Spec A = T be a closed point, 7rs : Ws -» Vs the corresponding morphism, 
and Zs the fibre of 7rs over s. In order to study the injectivity of the Frobenius 
morphism on Hl

z (Ws,Owa), we will make use of the following Duality Theorem, 
which we recall below (see [Hal], III, Theorem 3.3 and [Ha2], III, Sect. 11; in fact this 
combines the Formal Duality Theorem as stated in [Hal] with the formal function 
theorem of [Ha2]). 

THEOREM 3.1. LetY be a non-singular projective variety (possibly not connected) 
of pure dimension d over a field k, TT : Y —> Y a projective morphism of k-varieties, 
y G Y a closed point, Z = 'K~1(y).  Let O y denote the complete local ring of y on 

Y, and yA = Y XySpecC^y. Let f : YA -» Y be the projection. 
Then for any locally free sheaf £ on Y, the dual k-vector space of Hl

z(Y,£) is 
naturally isomorphic to Hd~l(YA, f*(ujY 0or £*)), where £* = Horn oY (£, Oy) is 
the dual locally free sheaf, and uy is the dualizing sheaf (i.e., the sheaf of d-forms 

^y/k)' 
In our context, taking £ = Owsi we g^ that the fc(s)-dual of Hl

Zs(Ws,Ow3) is 

Hd-i(WA^ psUJWs)^ where pyA = wsxvs Specds,vs, and fs : W!> -> Ws is the natural 
map. Next, if F : Ws -> Ws is the absolute Frobenius morphism, then taking T — 
F*Ows, we get that the &(s)-linear dual of Hl

Zs(Ws,F*Ows) is naturally identified 
with Hd-^W^PiF+uw,)). The Frobenius map on H^Ws.Ow.) may be viewed 
as the A:(8)-linear map on local cohomology associated to the morphism of locally free 
Ows modules Ows -> F*Ows> By the naturality of the duality isomorphisms above, 
the fc(s)-linear dual to the Frobenius map HZ3(Ws,Ows) -> HZ3(Ws,F*Ows) is a 
map 

This map is induced by the map of locally free sheaves 

^ : Horn oWs {F*Ows,^wa) -> Horn oWs {Ows, ^ws) = ^ws 

dual to the Frobenius morphism Ow3 -> F*Ows- But Grothendieck Duality for the 
Frobenius morphism (which is a finite flat morphism) identifies HomoWs(F^Ows, 
Uws) with F*u)wai such that the above sheaf map if; is identified with the Cartier 
operator on the sheaf of d-forms on Ws (see [Ha2], III, Ex. 6.10, and also [MS]). 

The duality pairing between the Frobenius and Cartier operators is expressed by 
the formula 

(a, F(/?)) = (C(a),/?)*>, 

for all a e H^iW^J^iF.Ow^ ®oWs uws)) and /} G ff^(W„OwJ. We recall 
also that the Frobenius mapping is p-linear, while the Cartier operator C is p~l-linear. 
Thus F{f) = /p for any rational function /, while C(fpuj) = fC(uj) for any rational 
function / and rational differential d-iovm LJ. 

Hence, the desired injectivity of the Frobenius map on the local cohomology fc(s)- 
vector spaces HZs (WSlOw3) is equivalent to the surjectivity of the 'completed' Cartier 
operator 

/;(C) : H'-^W?,/s*(iWa)) -»■ #"-*«, ffrw.). 

But 

Hj(WS
A, ftww,) S (Ri(TT.W. ). ®o„v, d,,v., 
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W(Ws
Aj;F^W3) S (W(7rs)*F*u;Ws)s ®o3,Vs ds,vs, 

by the Formal Function Theorem ([Ha2], III, Sect. 11). Since Rj(7rs)*uJws and 
RP('irs)*F*uws — F*Rj(7rs)*LJws are coherent Ovs-modules, the stalks of these direct 
image sheaves at 5 G Vs are finite Os,vs modules, and the Cartier operator C induces 
an Os,vs -linear map between them. By Nakayama's lemma, the induced map /*(C) 
on completions is surjective if and only if the original map on stalks is surjective. 

To simplify notation, we will not distinguish below between the Cartier operator 
C and its completion /5(C). 

Since s G Vs was essentially an arbitrary point, we may reformulate our problem 
in the following terms: to show that for a Zariski open subset of closed points s G 
T — Spec A, the induced maps of sheaves 

C : BPffrs^F+uw, -> Rj{'Ks)^wa 

are surjective, for all j > 0. 
We note that by semicontinuity and the Grauert-Riemenschneider Vanishing The- 

orem, in fact ^(TTS)*^^ = 0 (and hence also J?J'(7rs)*F*a;M^ = F*Rj('Ks)*uws = 0), 
for all j > 0 for all s in a non-empty Zariski open subset of T. So the new result is 
the surjectivity of the Cartier operator on the (0-th) direct image sheaves. However, 
we will give a 'parallel' proof for the surjectivity and vanishing below; as stated in 
the introduction, this yields another proof of the Grauert-Riemenschneider Vanishing 
Theorem. 

4. Logarithmic de Rham complexes. Our next step is to prove certain results 
on logarithmic de Rham complexes, which we will apply to the above situation. We 
first recall some facts and notation regarding differentials with logarithmic poles. If Y 
is a non-singular fc-variety, where A; is a field, A C Y a reduced divisor with normal 
crossings, then Oy/^log^.) will denote the sheaf of Kahler a-forms with logarithmic 
poles along A. If x G Y is a closed point, then there exists a regular system of 
parameters xi,...,xn in 0XiY (with n = dimF) such that the ideal of A in C^y 
is generated by 111=1 xu then the stalk at x of fi,y,k(logA) is the free C^y-module 

with basis ^f1,. •., ^fs dxr+i,..., dxn (regarded as a submodule of the module of 
meromorphic differentials at x). The sheaf fiy/^logA) is the a-th exterior power 

(over Oy) of fly/^(log ^4); it is locally free of rank ("). Finally, if B is any divisor on 
y, then Ql^r,k(\ogA)(B) denotes fijy^(log A) (g)cv OY(B). For any divisor B which is 
a linear combination of components of A, a local calculation shows that the exterior 
derivative gives a well-defined complex of sheaves 

0 -» OY(B) -> Q\r/k(logA){B) ->••.-► n$/k(]ogA)(B) -»• 0. 

We write Cly/k (^0S ^0 C^) for ^is complex; we refer to any complex of this type as a 
logarithmic de Rham complex. 

Similarly, one can define a complex of coherent analytic sheaves 

nyan(\ogAan)(Ban), 

if k = C, and yan, Aan, Ban are the analytic objects associated to Y, A, B respec- 
tively. We refer to these too as logarithmic de Rham complexes. However, to simplify 
notation, we will usually omit the subscript an, since it will be clear from the context 
when one is working in the analytic topology. 
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LEMMA 4.1. Let Y be a non-singular variety over a field k, and let Di, D2 be 
effective Cartier divisors on Y such that Di is non-singular, and Di + D2 is reduced 
with global normal crossings. Let D be a (not necessarily effective) divisor on Y such 
that for some integer m, D — mDi is supported on D2. Then the natural inclusion 
map of complexes of sheaves on Y 

Q.y/k{\og{D1 + D2)){D - D{) -> ^y/k{\og{D1 + D2)){D) 

is a quasi-isomorphism, if either (i) k has characteristic 0, and m ^ 0, or (ii) k has 
characteristic p > 0; and m is not a multiple of p. If k = C, a similar result (to (i)) 
holds for the corresponding map of complexes of analytic sheaves. 

Proof Let ^7* denote the cokernel complex of the inclusion 

H^Qogp! + I>2))(£> - D1) -»• n^Oogp! + D2))(D). 

The terms J70, are coherent Oy-modules supported on the non-singular divisor Di C 
Y. The residue map along Di yields an exact sequence for each a > 0 

0 -* ^/fc(logD2)(£>) -► na
Y/k(\og(D1 +D2))(D) -> 

na
D-

1
/k(logD2\Dl)®OY(D)^0. 

Further, there is an exact sequence for each a > 0 

0 -> n^fc(log(£>i + D2))(D - Di) -»■ na
Y/k(logD2)(D) -> 

na
Dl/k(log(D2\Dl)<8>OY(D)^0. 

In other words, if we let 

Ba = na
Dl/k(logD2\Dl)®OY(D), 

then we have B0 — J70, and we have exact sequences for a > 0 

0 -> Ba -> ^ -)► ^a~1 -^ 0. 

Now locally on Y, we can choose coordinates xi,..., x^ (d = dim F) such that Di is 
defined by xi = 0, and D2 by X2 • • • xr = 0, say. Then a local section of !Fa lifts to a 
section of fiy/^log^i -f D2))(^) which has the form 

a=-mdxlAuj+-m 
x1 

where LJ, r] are local regular forms (of degrees a — 1 and a respectively) which are local 
sections of Qy,k(\ogD2)(D-mDi). Then the image of a in i?a_1 is just u |JD1 (8)^j"m; 

if UJ.= 0, then a maps to the section 7/ l^ (g)a;j~m of Ba d Ta. 
In particular, suppose a = x^r) is a lift of a local section of Ba (where 77 is a 

regular function, in case a — 0). Then 

da = (-m)xfm A 77 + x^mdT]. 
X\ 

Hence the residue along Di of da, z.e., the image under J:aJrl -» 5a, is just 
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In other words, the composite 

Ba ^ jra _d^ jra+l^fia 

is multiplication by (—m). This is an isomorphism, if m is not a multiple of the 
characteristic of k. This easily implies that T* is acylic: keid : .P1 -> !Fa+1 has 
trivial intersection with Ba C !Fa, so that it maps injectively under !Fa -t Ba~1. This 
implies the kernel vanishes, if a = 0. For a > 0, note that imaged : .P1-1 -± F0, maps 
onto Ba, since in fact d(Ba~l) maps isomorphically onto ZJ0-1. Since J7* is a complex, 
we see that in fact it is exact at J70, for each a > 0. 

It is clear that essentially the same proof goes through in the analytic case as 
well. □ 

COROLLARY 4.2. For any n > 0, the natural inclusion map of complexes of 
sheaves on Y 

Qy/k(\og(D1 + D2))(-D2) -> ny/ib(log(£>i + D2))(nD1 - D2) 

is a quasi-isomorphism, if either (i) k has characteristic 0, or (ii) k has characteristic 
p > 0, and n < p. If k = C, a similar result holds for the corresponding map of 
complexes of analytic sheaves. 

LEMMA 4.3. In the preceeding lemma, let k = C. Assume the divisor D = 
mDi — D', where each component of D2 occurs with a strictly positive coefficient in 
D'. Then on Yanj the underlying complex manifold, the cohomology sheaves of 

nyaB(iog(z?i + i?2))(i>) 

vanish when restricted to D2. 
Proof. By the preceeding lemma, we see that the inclusion 

n^(log^ + D2)){-D') ^ n'Yan(log(D1 + D2)){D) 

is a quasi-isomorphism, by induction on m. Similarly, D' = D2 -h D" where D" is 
effective and supported within D2 (some, or even all, the components of D2 may occur 
with 0 coefficient in D"). Then again from the previous lemma, the inclusion 

nyan(log(D1 + D2))(-D') ^ n^OogfA + D2))(-D2) 

is a quasi-isomorphism. 
So we are reduced to proving the lemma when D = —D2. In this case, we have a 

short exact sequence of complexes 

0 -+ nyan(\ogD2)(-D2) -> n^n(log(2?i +D2))(-D2) 

-> ft(Dl)an(logD2 \Dl)(-D2 bJhl] -^ 0. 

However, it is well known (and a variant of the holomorphic Poincare lemma, eas- 
ily proved by local calculations) that the first term is a resolution of jtCy-^, where 
j : Yan—D2 M- Fan, while the third complex is quasi-isomorphic to j\CD1-(D2nDi)[~!]• 
In both cases, the only non-zero cohomology sheaf of the complex vanishes when re- 
stricted to D2. Hence the same is true for cohomology sheaves of the middle complex. 
D _ 

COROLLARY 4.4. Let n : Y —> Y be a birational morphism between complete 
varieties over C, with Y non-singular, and let S C Y be a subvariety such that if 
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D2 = 7T~1(S) (with its reduced structure), then Y — D2 -> Y — S is an ismomorphism. 
Let Di be a non-singular divisor on Y such that Di + D2 is a reduced divisor on Y 
with normal crossings (then Di,D2 have no common component). 

Then for any divisor D = mDi — D' as above, the natural maps on hypercoho- 
mology 

TT* : H* (F,7r„ {Q*Y/c(log(D1+D2))(D)}) -> HP (Y,n'Y/c(log(D1 + D2))(D)) 

are surjective, for all i > 0. 
Proof. By Serre's GAGA, it suffices to prove a similar assertion for the corre- 

sponding analytic hypercohomology groups, since these are naturally isomorphic to 
the algebraic ones. We let 

C' = nt
Yan(log(D1+D2))(D). 

Let j : Yan - D2 «-> Yan. Prom lemma 4.3, the map 

jij*{C')^C' 

is a quasi-isomorphism. On the other hand, if j : Yan — S M> Yan, then the canonical 
map 

ff^anJJV*(0) "> mYanJtfiC*)) 

is an isomorphism, since Y - S = Y — D2. 
Now consider the commutative diagram 

^t tTT* 

Since the left vertical arrow and the top horizontal arrows are isomorphisms, the right 
vertical arrow TT* is split, and hence surjective, as claimed. D 

REMARK. By our earlier analysis of the cohomology sheaves of the complexes 
involved, the isomorphism 

ff (Fj.rMow w j.rco) 
is in fact just an expression in terms of de Rham cohomology of the isomorphism 
£P(F - 7r(L>i),S - 7r(Di);Z) ^ H*(Y - Dx, D^- D^Z) on singular cohomology, 
which is valid because (Y — Di,D2 — Di) ->> (Y — 7r(Di),S — 7r(Di)) is a relative 
homeomorphism. 

5. Surjectivity of the Cartier operator. We now return again to our situa- 
tion (arising from the reduced, purely d-dimensional local ring) as in §3. 

We may reformulate our desired vanishing/surjectivity statement again, as fol- 
lows. Let DA be an effective divisor which is the pull-back to WA of an ample Cartier 
divisor on VA, such that if CA is the corresponding invertible sheaf on VA, with restric- 
tion Cs to Vs, then R^TT^UWS ®jCfn is generated by global sections and has vanishing 
cohomology in positive degrees, for all j > 0, for all s £ T, for all n > 1. This implies 
that Hj(W8,u;wa(

Ds)) = H0(Vs,(Rjir*uwa) ® Cs) for all j > 0. It thus suffices to 
prove that for a non-empty Zariski open set of s G T, we have 
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(i)   HJ{W8,uWa(D8)) = Oforj>0,imd 
(ii)   the natural map of locally free sheaves C 0 1 : (F*uwa) ® Owa {Ds) —> uw3 0 

Ow3 {Ds) induces a surjection on global sections. 
We may assume further (after localizing A) that (i) each irreducible component of 

DA is smooth and projective over T = Spec A, with connected fibres (ii) if EA denotes 
the exceptional set of TTA : WA -> VA («.e., the inverse image in WA of the singular 
locus of VA -> T), then each irreducible component of EA is smooth and projective 
over T with connected fibres (in) for each s G T, the divisor Es + Ds in TV's has simple 
normal crossings. This follows from the corresponding assertions for the generic fiber 
W, which can be deduced from the Bertini theorem for base-point free linear systems 
([Ha2], III, Cor. 10.9) applied to the pull-back to W of a very ample linear system on 
V,. and to the restriction of this linear system to intersections of components of E. 

In the following theorem, we will relax slightly the condition that TT : W -» V is 
a resolution of singularities. We assume instead that 

(i)   W is non-singular, and TT : W -¥ V is birational and proper 
(ii)   there is a subvariety 5 C V such that E = 7r~1(5)red C W is a divisor wth 

normal crossings, and 7r_1(y — 5) —> V — 5 is an isomorphism 
(iii)   there is an effective Cartier divisor D on W, pulled back from V, such that D-f 

E is a reduced divisor with normal crossings, and Ri7r*LJw{nD) is generated 
by global sections and has vanishing higher cohomology, for each n > 1, j > 0. 

Then as before we may 'spread out' all of the above data over T = Spec A. 
We prove below the Grauert-Riemenschneider vanishing theorem, that Bfir+uw — 

0 for i > 0, for morphisms TT as above. As will be shown later, this easily implies the 
general case i.e., for an arbitrary birational proper morphism from a smooth variety 
(see Theorem 7.4). 

THEOREM 5.1. With the above hypotheses (i)-(iii), there is a dense Zariski open 
subset of closed points s G T such that 

(i)    (Grauert-Riemenschneider) R1
'K*UJWS — 0 for all i > 0; and 

(ii)   the Cartier operator 

C : F*7r*uJws —> 7r*^ws 

is surjective. 
Proof. In this proof, let k denote the quotient field of A. First note that we can 

find n > 0 such that if W,V,D,E are the generic fibres of WA -> T, VA -> T, etc., 
and TT : W -> V is the induced map, then 

fP(V,ir+Slw/kM0 + E))(nD - E)) = 0 V i > 0, Va > 0. 

Indeed, 

7r*n^/fc(log(Z? + E))(nl? - £) = (^^(log^ + £))(-£)) ®ov/^n, 

where C is the invertible sheaf on V such that 7r*£ = Ow{D). Since £ is ample on 
V, the desired vanishing result is a consequence of Serre Vanishing. 

This implies (from the first spectral sequence for hypercohomology) that 

W(V,Tr&m
w/k{\og{p + E)){nD -E))=0Vi>d, 

and the natural map 

H0(V, ir*nd
w/k(\og(D + E)){nD - E)) ->• Hd(T/,7r,n^/fc(log(£» + E)){nD - E)) 
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is surjective. 
Now by embedding k into C and making the faithfully flat base change to C, 

corollary 4.4 implies that 
(i)   ff (W,nm

w/k{\og{D + E))(nD -E))=0 for i > d 

(ii)   H0(W, nd
w/k(\og(D + E))(nD - E)) -> Md(W, ^w/k(log(D + E))(nD - E)) 

is surjective. 
By semicontinuity, it follows that both points are valid for Ws and 

towjkwQo&Ps + Es))(nDs - Ea) 

for all s in some non-empty Zariski open subset of T. From corollary 4.2, it follows 
that similar claims hold for Ws and 

^wa/k{s)^g{Ds + Es){(p - l)Ds - Es), 

if in addition k{s) has characteristic p > n. From results of Deligne-Illusie [DI], 
combined with lemma 4.2, the natural maps induced by the Cartier operator on d- 
forms 

nr (W.,F. {n'Wa/k{s)(iog(Ds + S,))((P - i)i>. - £*)}) 
-> ^-"(^.n^/^Oog^. + SS))(-ES)) 

are (naturally split) surjections, since in fact the complex 

F* {nwa/k{s)^g(Ds + ^))((p - 1)2?, - Es)} 

decomposes into the direct sum of its cohomology objects (shifted), in the derived 
category. 

But ^ly,/AM(logCD, + Ea))(-E8) is just uws(
Ds)- We conclude that 

(i)   Hi-d(Ws,uws(Ds)) = Oiori>d, and 
(ii)   the composite 

H
0
(WS,(F*UJWS)(DS))-> 

md (WS1F* {nm
Ws/k{s)(\og(Ds + Es))(ip-^Ds - E,)}) -+ H\WS,UJWS{DS)) 

is surjective. 
The first point is just the Grauert-Riemenschneider Vanishing theorem (in the special 
case), while the second point is the desired surjectivity of the Cartier operator. D 

6. Resolved F-rational type. We continue with the study of the morphism 
WA -* VA of T = Spec A-schemes, arising from a reduced purely d-dimensional local 
ring, as in §3. 

We now further study the action of the Cartier operator on fi^ ,fc/ > and its twists 
by suitable divisors; this leads to a proof that normal singularities in characteristic 0 
have resolved F-rational type. The main point of the argument is a slight modification 
of that of the previous section, where we now make a different choice of a divisor 
supported on D + E. 

Let X be the ideal sheaf of the singular locus of VA, and let J = /
K~

1
X • OWA t>e 

the ideal sheaf on WA defined by X. 
LEMMA 6.1. 
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(i) Let f : Y —> X be a proper morphism between Noetherian schemes, T a 
coherent sheaf on Y, 1 C Ox a coherent ideal sheaf on X, and J — f~1X-OY 
the inverse image ideal sheaf on Y. Then there exists no > 0 such that for 
all n>no, we have an (Artin-Rees formula' 

U(JnT)=ln-n«MJn»T). 

(ii)   In our situation above, there exists n > 0 such that 

^{Jn^WA/A) Cl(7rMwA/A)' 

Proof Of course (ii) follows immediately from (i), which in turn is (presumably) 
'well-known to experts'; we give the short proof below. 

Since X is Noetherian, it is quasi-compact, and so (i) is local on the base (take the 
'global' no to be the maximum of a finite number of 'local' ones). So we may assume 
without loss of generality that X is affine. Now we have the following situation: 
Y -> Spec A is proper, J7 is coherent on Y, I C A is an ideal, and we want to prove 
an Artin-Rees formula 

ij0(r,/n^) = r-noH0{Y,rof). 

Let Z = Proj (©n>o/n) be the blow up of /, g : Z -> X = Spec A the structure 
map. Let W — Proj 0n>o /nCV be the blow up of the inverse image of / on Y, and 
h : W —> Y the structure map (see [Ha2], II, §7). Then there is an obvious morphism 
A: : W —> Z giving a commutative diagram 

w -^ Z 
4 19 
Y -A X = Spec A 

Further, if 0z(l) and 0VK(1) are the tautological ample invertible sheaves given by 
0z(l) = Wz, and Ow(l) = h-^IOy^w = IOw, then evidently k*Oz{l) = 
Ow(l). 

There is a correspondence between coherent OVF-modules and certain quasi- 
coherent graded sheaves of modules over 0n>o-fn£V- Let F be the C^-rciodule 
corresponding to the 'Rees sheaf ©n^o^71^7- Then there are natural maps In!F -> 

fo* [Fin)), which are isomorphisms for all large n. 

Prom the diagram, it is immediate that since / and h are proper, the composite 
W -)• X is proper, and so k is proper (see [Ha2], II, Cor. 4.8 (e), for example). Then 
&* J7 is a coherent sheaf on Z, by Grothendieck's theorem on coherence of direct images 
(if / is projective, then so is ft, and then this is [Ha2], III, Theorem 5.2). Hence the 

graded module 0n>or [Z, (k^J7) (n) j is finitely generated over the graded (Rees) 

ring 0n>o^n (see for example [Ha2], II, Ex. 5.9). But 

r(z, (k.r) («)) - r(w,r(n)) = r(Y,h. (Hn))), 

since k*Oz(l) = Ow(l). Hence 

©„>or(y;/..(^(n))) 
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is a finitely generated graded 0n>o/n module.   Since the map of graded ©n>o^n- 
modules 

en>or(y,/njr) _> en>or (Y,K (^(n))) 

is an isomorphism in all large degrees, we deduce that 

en>or(y,r^) 

is a finitely generated graded 0n>o/n-module. If this graded module is generated by 
elements of degree < no, then it is evident that for n > no, we have 

r(y,/n^) = 7n-nor(r,/no^). 

D 
COROLLARY 6.2.   In the above situation, for all s e Spec A in a dense Zariski 

open subset, 

where Xs C Ov3, Js C Ows we the ideal sheaves determined by X and J respectively. 
PROPOSITION 6.3.  There is a dense Zariski open set of closed points s G Spec A 

such that for each N > 0, the iterated Cartier operator map 

CN+1 . pN+1 (ib"]^^) _> ^^ 

is surjective.    (Here FN+1 is the N + 1-fold iterate of the Frobenius mapping. The 
symbol F^4*1 is put in to make the sheaf mapping Ovs -linear; recall that this is 

r   TVi 
governed by the identity C(fpu) = fC(uj).  Finally, 1^ J is the ideal sheaf locally 

\T r   N ] N 
generated by p  -th powers of local sections of X; clearly X[p J C Xp  .) 

Proof of the proposition. We will show the existence of a dense open set of s G T 
such that 

C : F* (Xn^Ws) -* ^*^ws 

is surjective. For such an s, of course 

C : FtTT+LJWa -* ft+^Ws 

is surjective as well, since Xir*u)ws is a subsheaf of 7c*u)wa' We then claim that the 
iterated Cartier operator 

is automatically surjective. Indeed, since C(fpoj) = fC(uj), it follows that 

CN{F?+1(7l*''lnt.Ljw.)) = F* (lCN{F?ww,)) = F^l^ww.). 

Applying C once more, we obtain the claimed surjectivity. 
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Hence, we are reduced to proving that 

C : F* (T7r*LJwa) -* 7r*^wa 

is surjective, for all closed points s in a dense open subset of T. This is a stronger 
version of our earlier surjectivity, with an additional factor on the left of the ideal 
sheaf X. 

We first choose an effective divisor D^ supported on EA such that 

OWA(-D'A)CJ. 

This can be done since the subscheme determined by J has EA as its reduced sub- 
scheme (by definition, EA is the reduced inverse image of the singular locus of VA)- 

Next, choose the effective divisor DA on WA (as before) to be the pull-back of an am- 
ple Cartier divisor on VA , such that if CA is the corresponding ample invertible sheaf 
on VA, with restriction £s to V8, then (R:'7r*(Jwa)®£8 as well as (R?7r*LJwa(~-t^))®>C5 

are generated by global sections and have vanishing cohomology in positive degrees, 
for all j > 0, for all s G T. 

Now choose n > 0 such that if D' is the divisor determined by Df
A on the generic 

fibre W, then 

H^R^M^/kilogiD + E))(nD - D')) = 0 Vt>0, Va > 0. 

As in the earlier situation, this can be done because of Serre Vanishing: indeed, 

&** {^/fc(log(2? + E))(nD - D1)} & ^Rj7rM^/k(log(D + ^))(-^,)) ®ov C®n, 

where C is the ample invertible sheaf on V determined by CA • 
This implies, as before, that 

HP(V,n+tfw/k(\og{p + E)){nD - D')) = 0 V i > d, 

and the natural map 

^0(y,7r*^A(log(^ -I- E))(nD - D')) -+ Wd{V^^a
w/k{\og{D + E))[nD - D')) 

is surjective. Making the base change to C, corollary 4.4 implies that 
(i)   W{W, n*w/k(\og(D + E)){nD - D')) = 0 for i > d 

(ii)   H0(W, il^/k(log(D + E)(nD - I?')) -> Wd(W, n*w/k(log(D + E))(nD - D')) 
is surjective. 

By semicontinuity, it again follows that both points are valid for Ws and 

V<w3,k{s){\og(Ds + Es)){nDs - D's) 

for all s in some non-empty Zariski open subset of T. Now lemma 4.1 implies that 
similar claims hold for Ws and 

tfWttKt)QQg(p. + Es){(p - 1)23. - D's), 

if k{s) has characteristic p > n. 
From lemma 4.1, we see further that if each component in D^ occurs with a 

coefficient < p, then the d-th cohomology sheaf of 

^ws/k{s)^g(Ds + ESMP - l)D. - D's) 

is Qyy /us\(Ds). Hence, using the results of Deligne and Illusie, we get that for s in 
a Zariski dense open subset of T, 
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(i)   W^iWs.uwADs^^OioviXl, and 
(ii)   the composite 

H0(Ws,(F^Wa(-D's))(Ds))^ 

Md(Ws,F*{tfw,/k(s)MDs + ES))((P - Ws - D's)}) -+ H0(Ws,uw,(ns)) 

is surjective. 
The second point implies that the sheaf map, determined by the Cartier operator, 

C : F* (n+uw, {-D's)) "> ^^w3 

is surjective. Corollary 6.2, together with our choice of D', implies that 

C : F* (X • ir*uwa) 
—^ ^*^w3 

is surjective, as desired. D 
We now deduce some consequences.   We first need a simple lemma.   We use 

the following (more or less standard) terminology — if Y is a purely d-dimensional 
variety over a perfect field fc, then a point x G Y (not necessarily closed) will be called 
non-singular if fi^    ,k is free of rank d. 

LEMMA 6.4. 
(i)   Let U = Spec B be a non-singular (irreducible) affine variety over a perfect 

field k of characteristic p.   Then T(U,UJU) has no proper B-submodule stable 
under the Cartier operator C. 

(ii)   Let Y be a variety of pure dimension d over a perfect field k of characteristic 
p, and x E Y a non-singular point (not necessarily closed). Then the dualizing 
module uoXyY has no proper Ox^Y-submodules stable under C. 

(in)   In (ii), suppose x G Y is a point (possibly singular), f G OX,Y such that 

C*Z,Y[1//] is regular. Let S = 0Xjy[l//]. Then S is regular, and the dualizing 
module us = uoXiY ®S has no proper S-submodules stable under the completed 
Cartier operator (also denoted C). 

Proof. We first consider (i), i.e., the case of the non-singular variety U = SpecB. 
A J5-submodule of r(U,uu) corresponds to a coherent subsheaf of uu- So it suffices 
to prove that uu has no coherent subsheaf stable under C. By considering stalks, we 
are reduced to the assertion in (ii).  Taking completions, (ii) follows from (iii) with 

/ = !• 
In (iii), it is clear that 5 is regular, since O^yfl//] is regular, and OX,Y has 

regular formal fibres (it is essentially of finite type over a field, hence excellent). Thus 
ws = ^OX,Y ® & IS a projective 5-module of rank 1. To show that LJS has no proper 
5-submodule stable under C, it suffices to do it for all localizations of S at prime 
ideals (for example, because such a proper submodule would correspond to a coherent 
subsheaf of LJS on Spec 5, which means, by considering stalks, that there is a proper 
submodule after localization — or else, instead of using sheaf language, one can work 
with associated primes of the quotient module, to get the same conclusion). 

Let p G Spec5 C SpecC^y, and q G SpecC^y its image. Then 

^p = (0X,Y)P 

is a localisation of 

(C,x,y)q^0x,y, 
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and 

is a localization of 

(UOX,Y)<I®OX,Y- 

To simplify notation, let O denote 0XIY, and O its completion. By our choice of 
5, the rings Op and Oq are regular. Now UJQ^ = H^ ,k, where fi^ ,k denotes the 

module of Kahler differentials, which is a free module of rank o?, and fl^ ,k is its d-th 
exterior power; here d = dim Y. 

Since Oq is the local ring of a smooth (possibly non-closed) point of Y: (9q is a 
free O^-module of rank pd. Further, one can find a p-basis xi,...,Xd G Oq, so that 
the monomials a^1 "-x1^, with 0 < ij < p — 1, form a basis for Oq over O^. Then 
QQ is free of rank 1 with a basis element cu = dxi A • • • A dxd- The Cartier operator 
is then given by the formula 

C [{ Yl aii,-,iaXl     "Xd\UJ)= Vp-l^p-lU- 
\ [o<ii,...,id<p-l J      / 

Since Op is obtained from (9q by tensoring with O and localizing, we see that Op 

is etale over (9q, and xi,...,Xd is also a p-basis for Op] further, ug is also a free 
module of rank 1 with basis UJ, and the completed Cartier operator is given by the 
same formula as above, where now the a^,...^ are elements of Op. 

It is now easy to show that ug has no proper Op-submodules stable under C — 
the computation is very similar to the case of a power series ring over a perfect field. 
By induction, we see that the monomials a^1 • • • x1^ with 0 < ii,...,id < pn — 1 form 
a basis for Op over its subring of j9n-th powers O? . Given a non-zero element 

V€ud 

we can then uniquely write 

ri=\     E     ah,..,u* 
i O^iij.-.jid^p71— 1 

■•i . ■ . ^   i fc. 

with flii,...,^ G Op. If each of the 0,^,...,^ is a non-unit, then r] = a • LJ with a lying in 
the pn-th. power of the maximal ideal pOp. Hence, by the Krull intersection theorem, 
we see that for large enough n, the above expression for r] has a unit coefficient 
aii,...,id for some (ii,...,id). Multiplying T] by x^ ~1~n •••a:^ ~1~2d, we obtain a 
similar element rj' such that the coefficient of (xi • • • Xd)^-1 is the pn-th power of a 
unit w. Then clearly Cn(7/) = uu, which generates CJ^   as an Op-module. Thus, the 

smallest Op-submodule of ug   containing 77, and stable under C, is ug   itself. D 
THEOREM 6.5. Let WA -> VA be a morphism ofT — SpecA-schemes, arising as 

above from a normal d-dimensional local ring (JR, m) over a field k of characteristic 
0 (thus Vs is normal for all s G T). Let s G T be a closed point so that the conclusion 
of Proposition 6.3 holds for s. 
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(a) Let U C Vs be an affine open subset, with coordinate ring 0(U). Then 
T(

/
K~

1
(U),UJW3) has no proper 0{U)-submodules which are stable under the 

Cartier operator C. 
(b) Let x € Vs be any point. Then the 0X}ys-module (Tr*uJw3)x has no proper 

0Xivs-submodules stable under C. 
(c) In the situation of (b), the 0xy3-module 

{n*ujwa)x - (n*vwa)x ® Ox,v3 

has no proper Oxys-submodule stable under C. 
Proof. If U C Vs — {Vs)Sing is contained in the non-singular locus of Vs, then (a) 

reduces to (i) of the preceeding lemma.  More generally, if I C 0(U) is the ideal of 
the singular locus of Vs fl J7, then by (i) of the preceeding lemma, we have that for 
any / G /, 

rXTr-^c/wj 0 o(u)[i/f} = uomim 
has no proper (9([/)[l//]-submodule stable under C. Since Vs is normal, 0(U) is 
an integral domain, and LJO(U) 

1S a torsion-free 0([7)-module, and for any non-zero 
/ G 0(U), the map uo(U) ~^ vo(u)[l/f] is injective . Hence if 

McrCTT-1^),^,) 

is a non-zero 0(?7)-submodule stable under C, then for every non-zero / E /, we have 
M[l/f] 7^ 0, and so must have 

M[l//] = IXTT-
1
^ WJ[1//] = uomim. 

Hence for some r > 0, we have that 

r-iXTT-^c/wjcM. 
Increasing r if necessary, we may assume r = pN. Now applying C^"1"1, we get that 

by Proposition 6.3, and using that U is affine (to get an assertion about modules and 
an ideal, instead of sheaves). This means that M is not a proper submodule. 

The proofs of (b) and (c) are very similar, using (ii) and (hi) of the preceeding 
lemma, and the surjectivity of the iterated Cartier operator 

CN+1 : F?+l (lbNh*wWs) -> ir.uw. 

on stalks at x, and on the completions of the stalks at x. The normality of Vs implies 
that Oxya is a domain, whose dualizing module is torsion-free. □ 

REMARK. In fact, instead of normality, one can make do with the weaker hy- 
pothesis of analytic irreducibility in the above result. 

We now prove Theorem 1.2 in the following form. 
COROLLARY 6.6. For s as given by Proposition 6.3, the resolved local cohomology 

Hza(WsiOwa) has no proper Osy3-submodules stable under the Frobenius mapping. 
Proof. Under the pairing of Formal Duality Theorem 3.1, the orthogonal of a 

proper F-stable Os,vs-submodule of the resolved local cohomology H^ (Ws,Ow3) is 

a C-stable proper Os,v3-submodule of (7r*a;wJA. But we have seen in theorem 6.5(c) 
that there are no such proper submodules. D 
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7. Some further remarks. In this section, we make some further remarks on 
the results obtained. First, we prove Theorem 1.1, characterizing rational singular- 
ities, and also consider the graded case. Next, we discuss some characterizations of 
the tight closure of 0 in H^R), where (i?,in) is obtained by "reduction modulo 
p » 0" from a reduced local ring (i?, m) which is essentially of finite type over a 
field of characteristic 0. Finally, we indicate how the results obtained in this paper 
have an application to invariant theory in positive characteristic; this was partly the 
motivation of the first author in considering these questions. 

We first prove a lemma, which allows us to deduce Theorem 1.1 from our earlier 
results, and also has an application to graded rings. 

Let (i?, m) be a local ring essentially of finite type over a field k of characteristic 
0, and TT : X -> SvecR a proper morphism, such that (i) for a dense open subset V 
of Spec R, 7r~1(Pr) ->• V is an isomorphism, and (ii) X has rational singularities. For 
example, if R has a rational singularity, we may take TT to be the identity map. Let 
Z = 7r~1(m) be the fibre over the closed point of Speci?. Let X, Z be obtained from 
X, Z by 'reductions modulo a prime' n G Speol (as explained in §2). 

LEMMA 7.1. Under the above conditions, for a dense set ofnE Spec A, the local 
cohomology modules Hy(X, 0^) coincide with the resolved local cohomology modules. 
In particular, if R has a rational singularity, then the resolved local cohomology coin- 
cides with the local cohomology for 'almost all reductions modulo p) of R. 

Proof By results of Hironaka, we can find a resolution of singularities ifr : Y —)> 
Speci? which dominates X, by taking / : Y -> X to be a resolution of singularities, 
and ij) = TT o /. Let T = f~1(Z) = ^^(m). Since X has rational singularities, 
/*e>y - Ox, and jR'/*Oy = 0 for i > 0.  

After 'spreading out' over Spec A as in Section 2, one may then form / : Y —> X 
and T over n as well. By semicontinuity, over a dense open subset of Spec A, we will 

have 7*ey = 0J(> and wJ+Oy = 0 for i > 0- 
There is a Leray spectral sequence with supports (a particular case of Grothen- 

dieck's spectral sequence for the derived functors of a composition) 

E%>9 = flf (X, R*f.Oy)=>Hl+9(Y, Oy). 

This degenerates at E2, since E^9 = 0 for q > 0. We deduce that the natural maps 

HL(X,OX) ^ Htfy,Oy) 

are isomorphisms. D 
Proof of Theorem 1.1. We note that if (i?, m) has a rational singularity, then The- 

orem 1.1 is a consequence of lemma 7.1 combined with Theorem 5.1 and Corollary 6.6. 
□ 

PROPOSITION 7.2. Let R — @n>oRn be a (Noetherian) normal graded ring of 
dimension d, with RQ = k, afield of characteristic 0, such that if R+ is the 'irrelevant' 
maximal ideal, then Spec i? — {R+} has rational singularities. Then for 'almost all 
reductions modulo primes p', the i-th resolved local cohomology of R (with respect to 
the reduction R+ of R+) is naturally isomorphic to 

Hkw   
graded submodule generated by elements of degrees > 0 

Proof  This goes back to the paper [W] of Watanabe, where a construction of 
Grothendieck is studied, which is the analogue for a general graded ring i? of the 
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blow-up of the vertex of the affine cone over a projective variety. Let Y = Proj R. Let 
U = Speci? — {i?+}, where JR+ is the maximal ideal of positively graded elements. 

Consider the graded ring 

i?h = en>oi?t 

ii7l — £Bm>n-ftm) 

where the multiplication is induced by that in R. Let X = Proji^. There is a 
natural inclusion R —>• R^ as the subring of elements of degree 0, inducing a morphism 
TT : X -► Speci?. 

As shown by Watanabe in [W], under the above hypotheses, TT : X -»• Specif 
is projective and birational, TT is an isomorphism over U, and X has only rational 
singularities. Hence from lemma 7.1, we may use 'reductions modulo primes p' of X 
to compute the resolved local cohomology of reductions of R. 

There is also a graded homomorphism R -* R^ induced by the natural inclusions 
Rn *->• JR^, inducing a morphism / : X ->> Proji? = Y\ Further, there is a graded 
ring homomorphism R^ -> R given by the obvious projections R^ -± Rn\ thus the 
morphism / has a section s : Y —> X, and we let Z = s(y). If U^ — X — Z, then 
TT induces an isomorphism U^ —> U, and 7r(Z) = {R+} consists of the closed point 
corresponding to the 'irrelevant' maximal ideal R+. 

Since R is normal, its local cohomology vanishes in degrees < 2. For i > 2, the 
local cohomology H^R) is identified with W^iU.Ou), i.e., with H1'1 (17^,0^). 
There is a long exact sequence 

-»■ H^X^x)-^ ITiU^Om)->••• 

Now / is affine, as is / l^. Further, 

f.Ox - ©n^oCrCn),    (/ luO.Otfn = ©„ezOy(n), 

where Cy(n) is the sheaf on Y = Proji? associated to the graded .R-module R(n) 
(obtained by shifting the grading; note that in general, (9y(n) need not be invertible, 
and we need not have 0y(n) ® 0y(m) = Cy(m + n).) Hence for each j > 0, 

Hi(X,Ox) = (Bn>oHi(Y,OY(n)), 

W(U\Om) = (BnezHi(Y,OY(n)), 

and the natural map 

Hl{X,Ox)->Hi(U\Om) 

is the obvious graded inclusion. 
This implies that 

Hi
R+(R)Si®neZHi-1(Y,OY{n)), 

and in fact this is a graded isomorphism. From the above long exact sequence, we 
then identify 
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graded submodule generated by elements of degrees > 0' 

Finally, we remark that if we 'spread out' R to a flat graded A-algebra RA, then we 
may similarly 'spread out' R^ to a flat graded ^-algebra RrA, construct XA = Proj RrA, 
etc. A calculation very similar to the above one then yields the desired expression for 
resolved local cohomology of the reduction modulo a maximal ideal n G Spec A. D 

Next, we discuss two characterizations of the tight closure of the submodule (0) 
of the d-th local cohomology, for 'almost all reductions modulo p' of a reduced local 
ring in characteristic 0. Let (i?, m) be a reduced local ring of dimension d which 
is essentially of finite type over a field k of characteristic 0. Let RA be obtained 
by 'spreading out' R over a finitely generated Z-subalgebra A C k, as before, and 
for maximal ideals n 6 Spec A, let (R, n) be one of the finitely many corresponding 
local rings over A/n. Assume further that there is a resolution of singularities X —> 
Speci?, with fibre Z over m, which has also been 'spread out' to XA —> Specif, 
ZA -» Spec A, etc. with corresponding resolutions W : X -> Speci?, and Z = TT

-1
^). 

Let Uft be the dualizing module, i.e., the i?-module, unique up to isomorphism, 
such that H£(M) is Matlis dual to Hom^(M,a^) for any finite S-module M. We 
may equivalently define UJ^ to be the 0-th cohomology of any dualizing complex of R. 
We have then a well-defined submodule H0

(X,(JJJ^) C CJ^-. One sees easily that this 
submodule is independent of the resolution of singularities chosen (this does not need 
a version of Hironaka's results in characteristic p; one can instead reason as in [Ha2], 
II, Theorem 8.19). 

PROPOSITION 7.3. There is a dense Zariski open subset of maximal ideals n G 
Spec A such that for any (R, n) as above, we have 

tight closure of (0) in H£(R) — 

= perpendicular of H0
{X,UJY) with respect to the Matlis duality pairing 

between UJR and H^{R). 

Proof From the thesis of K. Smith, one knows that the tight closure of (0) in 
H£(R) is the largest i?-submodule which is stable under the Frobenius mapping, and 
which maps to a proper submodule of the local cohomology modulo any d-dimensional 
minimal prime of R (Smith's thesis considers the case when R is a normal domain, 
but simple modifications of her reasoning yield this extension). 

Since the natural map H~(R) -* H^(X, 0^) is a surjection of i?-modules com- 
patible with the action of Frobenius, the kernel of this mapping is clearly contained 
in the tight closure of (0) (the condition on the minimal primes is obviously satisfied, 
since the d-th resolved local cohomology of any d-dimensional quotient of R is always 
non-zero, for example by Formal Duality). So the first equality in the proposition 
is equivalent to the claim that (0) is tightly closed in the resolved local cohomology 

First consider the case when R is normal. The tight closure of (0) is a strictly 
smaller submodule of Hy(X, CNf)- Then corollary 6.6 implies that it must in fact be 
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(0). In general, one first reduces to the case when R is purely of dimension d; then 
one applies (6.4)(hi), as in the proof of (6.5(c). We leave the details to the interested 
reader. 

The equivalence of the two descriptions given of the tight closure follows using 
formal duality 3.1, and its compatibilty with Matlis duality (the intrepid reader can 
deduce this compatibility from [Ha3], VII, Prop. 3.5, pg. 386). D 

We now discuss the proof of the Grauert-Riemenschneider theorem in the general 
case. We have already seen that if TT : W —>■ V is a birational proper morphism in 
characteristic 0, then Bfn+uJw — 0 for i > 0, provided (i) V is projective, and (ii) there 
exists S C V with 7r~1(5) a divisor with normal crossings, and W — 7r~1(S) -> V — S 
is an isomorphism. The general result is an easy deduction from this, given the results 
of Hironaka. 

THEOREM 7.4. Let f : X —> Y be a birational proper morphism of varieties 
over a field k of characteristic 0, such that X is non-singular. Then Rlf*ijJx = 0 for 
i > 0. 

Proof The result is local on Y. Hence we may assume without loss of generality 
that Y is projective (first replace the given Y by an affine neighbourhood U of a 
chosen point, then choose a projective compactification of the neighbourhood, then 
replace X by a resolution of singularities of some compactification of Z-1 (£/)). Next, 
let S C Y be the locus outside which / is an isomorphism. Let T = f~1(S). By 
Hironaka's results, we can find an embedded resolution of singularities of T, i.e., a 
composition of blow-ups at smooth centres h : Z —> X such that h~l(T) is a divisor 
with normal crossings in Z. 

Now by the case of the Grauert-Riemenschneider already proved, we know that 
Rl{f o h)*ujz = 0 for i > 0. For any invertible sheaf C on Y, we have a Leray spectral 
sequence 

E%'q = H*(Y,{K'(foh)*iJz)®OY CN)^HV+(i(Z,uz®oz (fohyCN). 

By the Serre vanishing theorem on Y, this implies that for any ample invertible sheaf 
C on y, we have H^Z.uz <8> CN) = 0 for all i > 0, for all large N. By Serre 
duality on Z, this gives H^Z, (/ o hYC^) = 0 for all i < dimZ, for all large N. 
Since h is a composition of blow-ups at smooth centres, Rlh*Oz = 0 for i > 0, 
and h*Oz = Ox- Hence we deduce (from the Leray spectral sequence for h) that 
ir(X, /*£-*) s ir(Z, h*f*C-N) = 0 for all i < dimX = dim Z, for all large N. By 
Serre duality on X, this gives H1

(X,UJX ® f*£N) = 0 for i > 0 for all large iV, and 
hence (by the Leray spectral sequence for /) the vanishing of Rlf*ujx for i > 0. D 

REMARK. We also see easily that for any proper birational morphism f : X ~>Y 
of non-singular varieties, we have Rlf*Ox = 0 for i > 0. This is again local on 
Y, so we may assume Y is projective. If £ is ample on F, then it suffices to prove 
H^X, f*CN) = 0 for all i > 0 and all large N. By Serre duality on X and Grauert- 
Riemenschneider vanishing for /, we need to equivalently prove that Hl(Y, (f*uJx) ® 
C~N) = 0 for all i < dimY" = dimX, and all large iV. But f*u)x = WY as X, Y 
are non-singular (there are maps cjy -» f*uJx and f*LJx -> c^y, given by pulling back 
forms, and trace, which are inverse isomorphisms). Hence by Serre duality on Y, we 
reduce to showing that Hl(Y, CN) — 0 for i > 0 and large AT, which is true since C is 
ample. 

We end this section with the application to invariant theory mentioned earlier. 
Let G be a semi-simple almost simple simply connected algebraic group of one of the 
types A, J5, C, D and let Gz -+ SpecZ be the Chevalley group scheme over Z of 
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the same type. Let g be the Lie algebra of G, and Qz the corresponding Lie algebra 
scheme over Spec Z. We are interested in the Gz-representation 

Vz:=$n,   n>0. 

Denote the ring of polynomial functions on Vz by Rz, so that 

Rz = Symz(Fz
v) 

is the symmetric algebra on the dual module (here Av denotes Homz(^4, Z)).We will 
denote by a subscript Q or p the result of tensoring by Q or Z/pZ. We are interested 
in comparing the rings of invariants 

J^SZ/pZ,   1$',  4Q. 

We quote a result implicit in [Zu]. 
LEMMA 7.5. For p > 2, the natural inclusion 

Rzz 0 Z/pZ -► R^ 

is an isomorphism. 

Proof.  This is an immediate consequence of [Zu], where it is proved that RQ® 

and Rp p have the same Poincare series, if p > 2. D 

As i?QQ has rational singularities, Rpp also has rational singularities for large 

enough p. Further, Rp p is F-injective and F-unstable for all large p, by Theorem 1.1, 
i.e., the Frobenius acts injectively, and without non-zero fixed points, on the local 
cohomology modules of Rp p at any point. Hence Rp p is Gorenstein, F-injective and 

/-* 
F-unstable, for large p. It follows easily now that Rp p is F-regular, in the sense of 
Hochster and Huneke, for all large p. A partial result was first proved for G = SL (3) 
and all primes p > 3 in [MRa], using the methods of geometric invariant theory and 
Frobenius splitting. 
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