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THE DIFFERENTIAL EQUATION Au = STT - 87r/ie" ON A COMPACT 
RIEMANN SURFACE* 

WEIYUE DINGt, JURGEN JOST*, JIAYU LI§, AND GUOFANG WANG^ 

Abstract.  Let M be a compact Riemann surface, h(x) a positive smooth function on M. In 
this paper, we consider the functional 

J(u) = - [   IvtAp + STr/'   u-Sirlog [  heu. 
2 JM JM JM IM JM JM 

We give a sufficient condition under which J achieves its minimum. 

1. Introduction and main result. Let (M,ds2) be a compact Riemann sur- 
face, h(x) a smooth function on M. For simplicity, we assume in this paper that the 
volume of M equals 1. Twenty years ago, Kazdan and Warner ([KW]) asked, under 
what kind of conditions on h, the equation 

(1.1) Au = STT - 87rheu 

has a solution. An obvious necessary condition is that max/i > 0. 
If M is the standard sphere, the problem is called "Nirenberg problem". The 

geometric significance of this problem is that if g denotes a metric of constant cur- 
vature 47r on 52, then the metric eug has curvature equal to h. This problem has 
been studied by Moser ([Ml], [M2]), Kazdan-Warner ([KW]), Hong ([H]), Chen-Ding 
([GDI], [CD2]), Chang-Yang ([CY1], [CY2]), Chang-Liu ([CL]), and others. 

For a compact Riemann surface other than S2 or MIP2, the preceding interpre- 
tation is no longer possible as such a surface does not carry a background metric of 
constant positive curvature. However, the differential equation (1.1) also arises in the 
so-called Chern-Simons Higgs theory. This is a classical field theory that is defined 
on (24-1) dimensional Minkowski space and believed to be relevant in high temper- 
ature superconductivity and in other areas of theoretical physics. Hong-Kim-Pac 
[HKP] and Jackiw-Weinberger [JW] observed that for a special choice of the Higgs 
potential, a sixth order polynomial, stationary vortex solutions satisfy certain first 
order selfduality equations. On a compact torus, these equations have been studied 
by Caffarelli-Yang [CaY] and Tarantello [T]. In particular, Tarantello showed that 
one may find a certain type of solution that corresponds to a symmetric vacuum. In 
the case of only one vortex p of multiplicity 1 she found that asymptotically, as the 
coupling parameter in the theory tends to zero, one obtains a solution of 

e—G(x,p)+u(x) r 
Au(x) = 47r - 47r T ^—v,   / v,  , /   u = 0,        ueL\(M), 

where G{x,p) is the Green function defined below in equation (1.2). This result was 
shown with the help of the Moser-Trudinger inequality. For N vortices (counted with 
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multiplicity), 47r in the preceding equation has to be replaced by 47riV, and already for 
iV = 2, the situation becomes more difficult, as the factor STT represents the limiting 
case in the Moser-Trudinger inequality. We shall discuss this in detail in [DJLW]. 

Thus, the Kazdan-Warner problem becomes relevant for an area quite different 
from problems of prescribed Gauss curvature. Therefore, we shall address the problem 
of finding solutions (1.1) here on a general compact Riemann surface. We shall pursue 
a variational approach. Namely, we shall try to minimize the functional 

J(u) = I [  | V u|2 + STT / u - STT log /  heu. 2 JM JM JM 

We shall first show that the functional has a lower bound. This generalizes the 
Moser-Trudinger ([Ml]) inequality to the case where M is an arbitrary compact Rie- 
mann surface. 

THEOREM 1.1. Let (M,ds2) be a compact Riemann surface. For any u G Li(M) 
with JM u — 0 one has 

[ eu<CMe^llvu||2, 
JM 

where CM is a positive constant depending only on (M,ds2). 
To show that J is bounded from below, we consider 

Uu) = i /   I V u\2 + (STT - e) [  u- (STT - e) log /  heu, 
* JM JM JM 

where e > 0. It is not hard to verify that Je achieves its minimum at some ue. 
There are two possibilities: If a subsequence of the sequence of minimizers ue con- 

verges to some MQ for e —> 0, then UQ minimizes J. In order to show this convergence, 
it suffices to establish estimates for the ue in the Sobolev space Ll(M) that do not 
depend on e. If such estimates do not hold, then the sequence ue blows up, and after 
subtracting mean values, u€ converges to some Green function G(x:p) satisfying 

AG = STT - SirSp, (12) (AG = 87r (L2) \IMG-0 

In a normal coordinate system around p we assume that 

G(x,p) = -41ogr + A(p) + bxxx + 62^2 

(1.3) +cixl + 2c2X1X2 + C3xl+0(r3), 

where r(x) = dist(x,p). 
One should note that (1.2) is not conformally invariant, but depends on the metric 

ds2 on M. Therefore, also the constants in the expansion (1.3) will depend on that 
metric. If the metric is homogeneous as on the standard sphere or on a flat torus, 
bi = 62 = 0. For a more detailed discussion of the leading term A(p) - which does not 
depend on p in the homogeneous case - on flat tori see section 4. 

More precisely, in this step we show that, if the minimizing sequence ue of J€ 

blows up, 

(1.4) inf     J(u) > -STT - SyrlogTr - 47r(max(A(p) + 21og/i(p))). 
u€Ll(M) peM 
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In other words, if (1.4) does not hold, then no blow-up is possible, and we get 
convergence of the ue to a minimizer UQ of J. 

Inequality (1.4) and the results that have been obtained for the Nirenberg problem 
([GDI], [CY1], [CY2], [CL]) indicate that it will depend on the asymptotic expansion 
of h near a potential blow-up point whether a blow-up is possible. In this sense, we 
shall obtain the following result. 

THEOREM 1.2. Let (M, ds2) be a compact Riemann surface, let K(x) be its Gauss 
curvature. Leth(x) be a positive smooth function on M. Suppose that A{p) 4-2 log h{p) 
achieves its maximum at PQ. Let bi(po) and &2(po) be the constants in the expression 
(1.3), and write \/h(po) = {ki(po),k2(po)) in the normal coordinate system. If 

Ah(p0) + 2(b1{po)k1(po) + b2(po)k2(po)) 

> -(STT + (6?(po) + bjipo)) - 2K(po))h(p0) 

the minimum of the functional J can be obtained, and consequently the equation (1.1) 
has a smooth solution. 

REMARK 1.1.  The inequality in Theorem 1.2 is implied by the following one 

In the second step, we shall construct a blowing up sequence (f>€ with the property 
that 

J(0e) < -STT - STT log TT - 47r(max(^(p) + 21og/i(p))) 

for sufficiently small e > 0, assuming that h satisfies the hypotheses in Theorem 1.2. 
This contradicts (1.4), and Theorem 1.2 will follow. 

Our methods are closely related to those used by Schoen ([Sc]) in his solution of 
the Yamabe problem and by Escobar-Schoen ([E-S]) for finding conformal metrics with 
prescribed curvatures in higher dimensions. However, our analysis is more delicate. In 
their work, they need only to compare the minimum of the corresponding functional to 
the minimum on the standard sphere. That is because their problems are conformally 
invariant. In our case, we have to compute the limit functional value of a blowing 
up minimizing sequence very carefully, and it turns out that the limit is not unique, 
it depends on the geometry of the surface (Theorem 1.2). On the other hand, while 
in their work to establish the existence result they need only the constant term in 
the expansion of the Green function of the conformal Laplacian to be positive (the 
positive mass theorem), in our case we need to consider a higher order term in the 
expansion of the usual Green function. 
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2. The lower bound. In this section, we shall show that the functional J(u) is 
bounded from below, and consequently, we shall prove the Moser-Trudinger inequality. 

We shall consider the minimum of the functional J in the space Hi = { u € 
Ll(M)\fMhe« = l}. 
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PROPOSITION 2.1. Let M be a compact Riemann surface. Let h(x) be a positive 
smooth function on M. Then there exists a positive constant C depending only on M 
and h such that 

inf J(u) > -C. 

The following lemma will yield our proposition. 
LEMMA 2.2. There exists a positive constant C depending only on M and h, but 

not on e, such that 

Set 

inf JJu) > -C. 
ueH! - 

Ae =  inf Je{u). 
uEHi 

Using Aubin's inequality (see [A]) one obtains ue G Hi satisfying 

J€(ue) = Ae 

and 

(2.1) Aue = (STT - e) - (STT - e)heu^. 

If ue -> UQ in I>i(M) as e -> 0, the lemma follows. And Theorem 1.2 also follows. 
Therefore we shall assume in the sequel that u€ does not converge in Ll(M). However 
we have 

LEMMA 2.3. For any 1 < q < 2; || y ^ellg < Cq. 
Proof Let q' = -^ > 2. Then 

IIV^||g<sup{ | f \7ue'S7ip\\ipeLi(M)J p = 0,|M|L,/<M) = l}. 
J M J M 1 

By the Sobolev embedding theorem we have 

IMIL~(M) < c. 

It is clear that 

| /   VUc • Wl = I /   A^l < C. 
JM JM 

This proves the lemma. □ 
Let u€ = fMu€. We set Ae = maXaj^M^^), assume that ue(xc) = Xe and that 

xe -± p. We shall show 
LEMMA 2.4. A6 -* oo as e -» 0. 
Proof If A6 did not tend to oo, eU£ would be bounded above (At least there would 

exist a subsequence uek such that eU£k is bounded. For simplicity, in this paper we do 
not distinguish this point.). We set ve = ue — ue. By Lemma 2.3 we have \\ve\\p < Cp 

for any p > 1. Since | A ve\ < C, by the elliptic estimates we can see that v€ is 
bounded in Ck(M).  So, if ue is bounded, then ||we||i,«>(Af) < C, which contradicts 
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the assumption that u€ blows up. But if ue —> — oo, then ve converges to a smooth 
solution of the equation Av = STT, which is impossible. This proves the lemma. D 

We choose a local normal coordinate system around p. Let (A*)2 = ex% and 

<p€(x) =ue(xe-\- —) - Ac. 

We shall show 
LEMMA 2.5. (i) For any ft CC M \ {p}, we have fQheUe -> 0 as e ->• 0. And 

ue -> —oo as e ->• 0. (ii) For any Q CC R2, we have <Pe(x) ->• ^o(^) in C00(fi) as 
e -> 0, where ipo(x) = -21og(l + 7rh(p)\x\2). 

Proof. For any R > 0, we have 

1 h(xe 4- ^-) 
AV< = iW(8,-e)-(8.-e)-R?i—<-»«- 

= (jilts' "«)" (8» " <)*(*. + ^-K-1"' 

in BR(0) C i?2 for e > 0 sufEciently small. 
We consider the equation 

f Aip] = ^(STT - e) - (STT - e)h(xe + ^.Jc^W        x G £*(0), 

I ^laBH(o) =0 

Let (p2 = (pe — <p\. Then Aip2 — 0 in BR(0). The elliptic estimates together 
with Lp

2(BR(0)) C C(BR(0)) give SUPBR(0) |^| < C. So sup^o) ^2 < C. The Har- 
nack inequality yields that supBR(0) \ip2\ < C, because cp2(0) is bounded. Therefore 

2" 
suPBfl (0)l^| < C. 

By the elliptic estimates, we can show that (Pe(x) -» ipo(x) in C
00

(BR (0)).  As 
4 

/i(:re + ^r) ->- h(p) in (7(^(0)) we can see that cpo satisfies 

AoyoO*;) = -87r/i(p)eV0, 

W)(0) = 0, 

and 

/i(p)eV0 < 1, 
/. 

where AQ is the Laplace operator on R2. 
However Ding's lemma ([D], c.f. [CL2] Lemma 1.1) yields that 

f   h(p)e<po = 1. 
JR* 

Since fM heUe = 1 we can see that, for any Q CC M\{p}, we have JQ heU€ -> 0 as 
e -> 0. By Jensen's inequality we have ue -> — oo as 6 ->• 0. The uniqueness theorem 
in [CL2] implies that 

<po(x) = -21og(l + 7rh(p)\x\2). 
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This proves the lemma. D 
We also need the following lemma. 
LEMMA 2.6. We have ue - u€ -> G(x,p) weakly in Ll(M) (1 < q < 2) as e -¥ 0, 

where G is the Green function satisfying (1.2), p € M. Furthermore ue—ue —> G(x,p) 
in C00^) /or an?/ H CC M \ {p}. 

In order to show the lemma, we shall use a theorem proved by Brezis and Merle 
([BM], Theorem 1), formulated as Lemma 2.7 below. 

Let fi C M be a domain. Suppose that u is a solution of the equation 

Au = f(x) 
u\dQ = 0 

in fi with H/HL^Q) < °°> 
LEMMA 2.7. For any 0 < 5 < Air, we have 

Jn WJWmn) 

where Cs > 0 is independent of ||/||z,i(fi). 
Using Lemma 2.7 we can show 
LEMMA 2.8. Suppose that ft C M is a domain. If 

for some 0 < S < |, then 

IK-ue||Loo(Qo) <c(cto,n) 

for any f&o CC fi. 
Proof Assume that u] is a solution of the equation 

f  An] = -(S7r-e)heu% 
I tij|an=0. 

Set u^ =ue—ul—ue, then AIA^ = (STT — e) in fi. Harnack's inequality yields that 

\\u2
€\\LooiQl)<C(\\u2

€\\LiiQ)) 

< C(\\ue-u€\\Li(n) 4- H^IUMQ)) 

<C(\\s7ue\\Lq{M) + \\ul\\Lim) 

whenever QQ CC fii CC fi. 
By Lemma 2.7, one can see that e^l is bounded in LP(Q) for some p > 1, which 

yields that 

lkllLi(n)<C. 

We therefore have 
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Note that 

f  epu* = f  epu*epu2*epul< 

<C 

<c. 

By the standard elliptic estimates, we can obtain 

II«J||L-(OO) < c- 

This proves the lemma. □ 
Now we turn to the proof of Lemma 2.6. 
Proof of Lemma 2.6. By Lemma 2.5 we can see that (STT — e)heUe converges to 

SnSp in the sense of measures as e —> 0. 
Therefore ue - ue -> G(x,p) weakly in Ll(M) for any 1 < q < 2, where G is the 

Green function satisfying (1.2), because G is the only solution of (1.2) in Ll(M). 
Lemma 2.5 and Lemma 2.8 yield that for any ft CC M \ {p}, 

(2.2) ||tie-tie||L~(n) <C. 

The inequality (2.2) and the standard elliptic estimates yield that ue — ue -> 
G(x,p) in C00^) for any Q CC M \ {p}. This completes the proof of Lemma 2.6. D 

For any JR > 0, we set re = ^-. 

LEMMA 2.9. In M \ Br£(0), we have 

ue>G-K- 21og(1 + yfi2) - A(p) + 0e(l) 

where oe(l) -> 0 as e -> 0. 
Proof. It is clear that we have A(ue — G — Ce) < 0 for any constant C€. We choose 

Ce such that 

{G + C€)\dBr€  <Ue\dBr£. 

By Lemma 2.5 and (1.3) we get 

C7t = -Ae-21og(1 + y-R2)-A(P) + 0c(l). 

Then the lemma follows from the maximum principle. D 
Now we are ready to finish the proof of Lemma 2.2. 
Proof of Lemma 2.2. We let S > 0 small enough so that (1.3) holds in Bs(p). 

We denote by o€(l) (resp. OR(1)] 0<S(1)) the terms which tend to 0 as e -» 0 (resp. 
R -» oo; S -)• 0). 

We recall that re = — (R > 0). We assume that e is so small that 5 > re. We 
have 

[  \S7ue\
2= [ |V^|2+/ IVUe|2+/        |v^ 

./M JMXBsip) JBs(p)\BrAp) JBrAp) 
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It is clear that 

/ IV«e|2=/ \v(ue-Ue)\2 

JM\B5(P) JM\BS(P) 

= [ |vG|2 + oe(l) 

(2.3) =-/    G~ + oe(l) + o,(l) 
JdBs dn 

and 

/ |V^|2= /        |v^o|2 + o€(l) 
JBr€{p) JBR(0) 

(2.4) = 167rlog(l + 7rh(p)R2) - IGTT + o€(l) + OR(1), 

by Lemma 2.6 and Lemma 2.5. 
It remains to estimate JB rp\\Br rp\ I V ^d2- 
Since u€ satisfies (2.1), we have 

/ |v^|2 = -(87r-e)/ 
JBA(V)\B^(V) JB; /B,(p)\J5re(p) JBs(p)\Br€(P) 

+(87r-e) / heu'u€ 
JBs(p)\Bre(p) 

f du€       f due 

JdBs(p)   e dn     JdBrc{p)   e dn' 

Using Lemma 2.9, we have 

/ heu*u€ > -Ae / 
JBS(P)\B^(P) JB* 

+ / heu*G + o€{l) + os{\). 
JBx(v)\Br.Jv) 

heu 

fSsip^B^iP) JBs(p)\Br^p) 

lBs(p)\Br€(p) 

Using the equation (2.1) and the Green formula, one gets that 

due 

fBs(p)\Bt.£(p) JBs(p)\Bre(p) JdBs{p)   9n 
(STT - c) / heu*G = -STT / ue - [ 

JB5(p)\B^(p) JBs(p)\Br€(p) Jdl 

f dG      f due„ 
+ u*jr+ IT0 

JdBs(p)     on     JdBTt(p) dn 

-[ ue^ + (87r-e)[ G. 
JdBre(p)       dn JBs(p)\Br£(p) 

By Lemma 2.6 we have 

(STT - c) / heu<G =-STT [ ue + [ ^ue 
JBs(p)\Bre{p) JBs(p)\Br£(p) JdBs(p) On 

f du*c      f — 
JdBrAvS  dn JdBrJv)    ' dn ldBr€{p)  on JdBr€(p) 

+oe(l) + o*(l). 
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Using the equation (2.1) we also have 

-(STT - e)A£ / heu< = -(Sir - e)(Vol(Bs(P)) - Vol(Brc{p)))Xe 
JBx(D)\Br..(v) lBs(p)\Bre(p) 

JaBr.to)   dn JdBs(p)   dn JdB,(v)   dn Jdl 

We conclude that 
due 

(p)\Bre(p) JBs(p)\Bre(p) JdBs(p)     ' dn 
f IV^|2>-(167r-e) f ue+ [        u, 

JBS (p)\Bre (p) JBs (p)\Bre (p) JdBs (p) 

JdBr£(p)   6 dn     Jd 

+ f     d-ra-l JdBre(P) on Jd 

JaBr-.M dn Jd 

due .   f        dG_ 

ldBTl(p)       U"       JdBs(p) dn 

dut „     f dG 

i8Brt{p) "»        JdBri(p)   edn 

due 

idBrM un JdBs(p) dn 

-(STT - e)(Vol(Bs(p)) - VoliB^p))^ 

+oe(l)+os(l). 

Applying Lemma 2.5 and Lemma 2.9 one has 

-/ ^(u£-(G-Xc)) 
JdBrAp)    ^ 

8^h(p)R2   (   A(ns    ^,l + irh(p)R\ 

+o£(l)+ofl(l). 

Using Lemma 2.5 we have 

- f ue^ = -xj ^ - 167rlog(l + wh(p)R2) 

+Oe(l)+O|i(l) 

= 87r(l - VcliBr.ip)))}* - lforlog(l + ■Kh(p)R2) 
+ot(X) + OR{1). 

By the equation (2.1) one gets 

xj ^ = -(STT - e)(l - Vol(Bs(p)))X, 

-(STT - e)A€ / 
JM 

+(87r - €)Ae / heu* 
lM\Bs(p) 

>-(8K-e)(l-Vol(Bs(p)))Xe. 

Similarly 

tie f ^1 = "(STT - e)(l - Vol{Bs{p)))^ 
JdBs(p) On 

+(87r - e)uee"« { fte"'-* 
JM\BAv\ M\Bs(p) 

= -(STT - c)(l - Vol(Bs(p)))uc + ot(l) 
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and 

ldBs(p) 

We have 

f Miue = -87r(l-Vol(Bs(p)))ue- 
JdBxiv) on 

/ ue= {u€- ue) 
JBs(p)\Br£(p) JB5(p)\Br€(p) 

+(Vol(B6(p))-Vol(Br€(p)))u€. 

By Lemma 2.3 we have 

/ ue = (Vol(Bs(p)) - Vol(Br€(p)))ue + 06(1). 
JBs(p)\Brc(p) 

It is clear that 

XeVol(Br€(p))=oe(l). 

By Lemma 2.9 we also have 

-ueVol(Br€(p))=oe(l). 

We therefore have 

JB6( 

f dG 
+ G-- S7rA(p) - ISTTlogTT - 167rlogh{p) 

JdB*       on 

I V u€\
2 > eX€ - (167r - e)ue - 167rlog(l + 7rh(p)R2) 

s(p)\Br£(p) 

'dBs 

(2.5) +oe(l)+ 0/1(1) +06(1). 

It follows from (2.3), (2.4) and (2.5) that 

/   I V ue\2 > cA€ - (167r - e)lte 

—STTAQ?) — 167rlog7r — IGTT — 167rlog/i(p) 

+oe(l) + oie(l)+o,(l). 

So, 

Je(Ue)> -A€ - -1X6 - 47TA(p) - STrlogTT 

-STT - 87rlogh(p) + oe(l) + oR(l) + 05(1). 

Thus, we have 

Je(ue) > -i7rA(p) - 87rlog7r - STT - 87rlogh(p) + oe(l) + oR(l) + 0^(1). 

Hence 

(2.6) inf Ae > -STT - STT log TT - 47r(max(^(p) + 2logh(p))). 
e>0 p£M 
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The lemma follows. D 
Consequently, we have the following lemma which will be used in the proof of 

Theorem 1.2. 
LEMMA 2.10. Assume that the minimizing sequence u€ of Je does not converge 

inLl(M). Then 

\idJ{u) > -STT — 87rlog7r - 47r(max(A(p) + 21og/i(p))). 

Proof. Otherwise, there would exist u G Hi and 7 > 0 such that 

J(u) < -STT - STT log TT - 47r(max(,4(p) + 21og/i(p))) - 27. 
p£M 

So, 

JJu) < -STT - STT log TT — 47r(max(A(p) + 21og/i(p))) — 7, 
p€M 

when e is sufficiently small, which contradicts (2.6). □ 

3. Existence theorems. One can directly prove the following theorem using 
Lemma 2.10, because J(0) = —STT log fM h. 

THEOREM 3.1. Let M be a compact Riemann surface. Let h(x) be a positive 
smooth function on M. Suppose that 

log /   h > (1 + log TT) 4- - max(^(p) + 2 log h(p)). 
JM 2 PeM 

Then the equation (1.1) has a smooth solution. 
REMARK 3.1. If h is a positive constant, then the condition of Theorem 3.1 is 

satisfied precisely if 

max^4(p) < —2 — 21og7r. 

// M is the standard sphere with volume 1, the constant A in the local expression of 
G (see (1.3)) is —2 — 21og7r; and so the preceding inequality does not hold. We shall 
see in Section 4, that it holds for some, but not for all flat tori with volume 1. 

In the sequel, we shall use 
PROPOSITION 3.2. Let M be a compact Riemann surface. Let K(p) be the Gauss 

curvature of M at p. LetG(x,p) be the Green function on M satisfying (1.2). LetG 
be locally expressed by (1.3).  Then 

2 
ci + C3 + ^K(P) = 47r- 

Proof. We denote by (r, 6) the chosen normal coordinate system around p. We 
write ds2 = dr2 + g2(r18)d02. It is well-known that 

9(r,e) = r-^-r3 + 0(ri). 

By the divergence theorem, we have 

-8w(l - Vol(Br)). f *—* JdBr dn 
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So, 

r2n   4 i 
/    (— + 2cir cos2 6 + 2czr sin2 0)(r - -#(p)r3 + O(r4))d0 

Jo        r 6 

= -87r(l~7rr2+0(r3)). 

Comparing the coefficients of r2, we get 

2 
ci + C3 + -K(p) = A-K. 

This proves the proposition. D 
We now turn to finish the proof of our main theorem, Theorem 1.2. 
Proof of Theorem 1.2. We shall construct a blow up sequence (f)e with 

J((j)e) < -STT - SvrlogTr - 47r(max(A(p) + 2logh(p))) 
pEM 

for e sufficiently small. Note that J(u) = J(u + C) for any constant C. Combining 
the above fact and Lemma 2.10 one gets Theorem 1.2. Therefore, it only remains to 
construct the blow up sequence. 

Suppose that A(p) 4- 2\ogh(p) = maxxgM(-4(^) + 2\ogh(x)). Let r = dist(x,p). 
We set 

a;e = -21og(r2+e), 

G = -41ogr + A(p) + bircosO + 62^ sinO + P(r,0), 

where 61 and 62 are constants in (1.3). 

{ue + 61 r cos 0 + 62^ sin 8 4- log e,       r < a^, 
(G - riP(r, 0)) + Ce + log e, a^i < r < 2a^, 
G + C7c+log6, r>2ax/e. 

Here 77 € Cg^av^)) is a cutoff function, r] = 1 in J5av^(p), | V f?| < ^-, 

Ce = -21og(^^)-A(p) 

and a = a(e) will be fixed later on satisfying a -> 00 and a!2e-»0ase-»0. 
By a simple calculation one has 

/. 

a2 

I V 4>e\2 = 167rlog(a2 + 1) - 16^-^-— 
,vr "^   + 1 

-^K (p)a2e + ^K(p)e\og(a2 + 1) 

+7r(&? + 62)a2e + 0(e) + C»(a4e2). 



242 

It is clear that 

W. DING, J. JOST, J. LI, AND G. WANG 

/       \v<t>A2=[       lvG|2+/ 

-2/ JB 

JdB-.K      dn h 

B2a^\BaVT 
Vmr,0))\2 

+2 /      ??(^M)) 
Jdl '*BaV-€ 9n 

+0(a462). 

Using (1.3) one has locally 

G(r,6) = -41ogr + A(p) + bir cos d + b2r sin 9 

+cir2 cos2 0 4- 2c2r2 cos0 sin6 + c3r
2 sin2 0 + 0(r3) 

and 

So, 

dG      -4     , .     ,    .   fl 
-TT— = h 6i cos ^ -I- 02 sin y 
ar        r 

+2cir cos2 5 + 4c2r cos 0 sin 0 + 2c3r sin219 + 0(r2). 

- / G • — = ~167rlog(a2e) + S7rA(p) + 47r(ci + C3)a2e 
VT 

Similarly, 

Hence, 

+47r(ci + C3)Q:2elog(a2e) - 27rA(p)(ci + C3)a2e 

+ ^ir(p)a26log(a26) - ^X(p)^(p)a26 
D O 

-7r(62 + 62)a2e + 0(a4e2 log(a2e)). 

2 /        Tij3(r,0) • ^ = -STT^ + C3)a26 + 0(a4e2). 
«>/« 

9n 

= -167rlog(a2€) + 8irA(p) + 47r(ci + C3)Q!
2
€ 

+47r (ex + C3)a2elog(a2e) - 27ryl(p)(ci + C3)a2e 

+ ^tf(p)a2elog(a2e) - ^JFf(p)J4(p)a2e 
0 D 

-87r(ci + C3)a2e - 7r(6? + bl)a2e + 0(a4e2 log(a2e)). 

Since JM G = 0, we have 

-STT / G = STT f      G 
JM\BaV7 JBa^ 

= -167r2a2elog(a2e) + 167r2a2e 

+87r^(p)a2e + 0(a4€2 log(a2e)). 
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So, 

/  |v0e|
2 = 167rlog(^4^)-167rlog6 

JM a 

IGTT       rt    A, . 
-167r+^—-+87rA(p) 

a^ -f 1 
2 

+47r((ci + C3) + -K{p) - 47r)a2elog(a2e) 
o 

2 
-h47r(47r - (ci + C3) - -K(p))a2e 

u 

2 
H-27r^(p)(47r - (ci + C3) - -K(p))a2e 

+ ^—K{p)e\og{a2 + 1) + 0(a4e2 log(a2e)). 
0 

Applying Proposition 3.3, one has 

/  |V0e|
2 = 167rlog(^-ii)-167rloge 

J M ® 

6 

Calculating directly, one has 

-167r + -^-+87rA(p) 
or 4-1 

+ ^^(p)elog(a2 + 1) + 0(a462 log(a2e)). 

/       u€ = -27ra26log(a2 + l)c - 27relog(a2 + 1) 

+27ra2e + 0(a4e2log(a2e)). 

It is also obvious that 

/ ct>e = (l-Vol(BaV,))\oge- f      G 

+Ce(l-Vol(BaVi))- [ r,P{rJ) 

Thus, 

B2cXy/l\BCcy/Z 

= 27ra2elog(a2€) - 27ra2e - A(p)7ra2e 

+(1 - Vol(BaV,)) \oge + C€(l - Vcrf(Ba^)) + 0(a462). 

/" a2 + 1 
/   0e = loge - 27ra2elog( —) - 27relog(a2 + 1) 

JM az 

-A(p) - 21og(^tl)(l - Vol(BaV,)) 

+0(a4e2log(a2e)). 

We have 
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fay/i    r2ir ,92 r.„c2 a   ,   J.2,.2 C:T12 , rav* fbjr2cos2e + b2
2r

2smzejn J 
+ 2J0      Jo (r>+e)> *•* + <*) 

a2 1 
= ^(^j^;) - g^(p)7relog(a2 + 1) 

+^(b't+b2
2)elog(a2 + l) + 0(e). 

We choose (5 > 0 sufficiently small so that G has the expression (1.3) in Bs(p), 
then we have 

/ e+'=e [       eG+c* + e / e"4loer+^W+c« 
JM\Ba^ JM\BS JBs\BaVz 

+e [ eG+^(e-^^)-l) 

+€  f e-4\ogr+A(p)+C€/ebirco8O+b2rBin$+0(r,O) _ ^\ 

Calculating directly one gets 

■/. 
41ogr+J4(P)+C« 

e  / 6 B ^/ '    * = TT 
BAB^ ("2 + 1) 

+27r(a2+4l)4^(p)£lOS(av/i) + 0(€) 

and 

e   A e-41ogr+^(p)+C£/e6ircos^+62rsin^H-/?(r^) _ -|\ 

a4 

= ^(C^ + I)2^1 + C3)el0g(aV^) 

(6? + 62)6log(av^)-fO(e). 
TT      a 2      2 

2 (a2 + I)2 

We therefore have 

o<2 -4 

r(ci H-C3)elog(av/e) 

L, /^^(^ + 27r(^TiF^(p)elos(a^) 

a4 

(a2 +1)2 

'f^+V^ + 62)eM«^) + 0(6). 
Thus, 

a2 1 
-(ci + cs - -ii:(p))€log(av/e) 

a2 + 1v l      *     3 
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4    or 

-^-TTT^ + bi)e\og(aVe))+0(e). 2 aA + 1 

It is clear that 

[  he</,e=h(p) [ e+'+ [ {h - h{p))e^. 
JM JM JM 

Suppose that 

h(x) — h(p) = kir cos 9 + fer sin 9 

+ ksr2 cos2 (9 + 2k4r2 cos (9 sin(9 + fer2 sin2 9 + 0(r3) 

in Bs(p). 
By a simple computation, we obtain 

f      (h- h(p))e*< = |(fe3 + A:5)6log(a2 + 1) 

+ ^{k1b1+k2b2)e\og{a2 + l) + 0{e) 

and 

f {h- h(p))e*« = /" (ft - /i(p))e*« + /       (/i - /»(p))e*« 
JM\BaVZ JBsXB,,^ JM\BS 

= -|(As + fc8)(^I)2clog(a26) 

-f(Ai6i +fc2&2)(^T)2
elog(a2e) + 0(e). 

2 a^ +1 

So, 

/ (ft - ft(p))e^ = J(Aft(p))€log(a2 + 1) 
JM 4 

+ J(fci61+fc262)elog(a2 + l) 

-J(Aft(p))(^I)2
elog(a2

e) 

-f (A161 + A;262)(^-I)26log(a26) + 0(e). 

Therefore, 

/ fte*«= /,(p)ff-^-(i + -^i- - £^ + lIii:(p)ciog(a2 + 1) 
JM &  +1 a  +1 a2    6 

^2   ,   ^x^i^^/^   ,   -n _  J- __" /i2   ,   L2X la2 + l/fo . 7oN  ,    ,  o . ^     1    a2 

+ 4^~(6? + ^)€l08(a  + !) - 2^Tl(6? + ^)cl08(aV^ 

"^KL(Cl +C3 ~ s^tP))61^05^) + ^(AMp))elog(a2 + 1) 

-^(A/z(p))(-^1)26log(a26) + ^(hh + A;2&2)6log(a2 + 1) 

2 

-^(fci&i + ^X^T-rfelog^e) + 0(a4e2) + 0(e). 
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Adding the terms in the functional, we get 

J((j)e)= -Sir - SyrlogTr - 4irA(p) - 87rlogh(p) 

-167r2(l - -^K(p))e\og(a2 + 1) + 47r(ci + c3 - lK(p))e\og(a2e) 

-27r(6? + b2
2)e\og(a2 + 1) + 2ir(b2 + b2)e\og{a2e) 

(fci&i+^262)   ,    /  2  , IN , >,   (kibi+k2b2)        (  2 . -47r — elog(ar + 1) + 47r^ — ^elog(are) 
ft(p) h(p) 

-27r^Melog(a2 + l) + 2,^Melog(a2
e) 

elog(a2 + l) -£log(^) 

+0((elog(a2 + I))2) + 0((-elog(a2€))2) 

+0(-^) + 0(a4e2 log(a2€)) + 0(e). 

Choosing a so that a4e = 1   /^     ^ and applying Proposition 3.3, we get 

J((f)e)= -STT - STrlogTr - 47r^4(p) - 87r\ogh(p) 

+o(c(-logc)). 

This proves theorem 1.2. □ 

4. The Green function on a flat torus. For details on the Green function, 
we refer to [L], 

Let z = x + iy be a variable in C (the complex plane) and let r = u + zv, 
v > 0. Here for simplicity, we assume u = 0. Let g = e~27rv and qz = e2™2. Let 
S9 = T,v = C*l(qz), where Z is the set of integers, C* = C - {0} and q acts on C* 
by the usual multiplication. In other words, T,q is the torus generated by the lattice 
[1,T]. Define a metric on E^ by 

ds2 = -dx A dy. 
v 

The area of E9 with respect to ds2 is 1. The corresponding Green function is 

00 

G(z,0) = -4\og\qB^^2(l - qz) 11(1 - g»fc)(l - q-nqz)\, 
71=1 

where #2(2/) — 2/2 — 2/ + | is the second Bernouli polynomial. Recall the definition of 
the Green function in the introduction. 

Now the asymptotic expansion of the above Green function at the origin is 

-41ogH - 41og27r + ^ - 81og(JJ(l - e-2^")) + 0(N2) 
n=l 

= -41og(v1/2|z|) + 21og?; - 41og27r + -^ 
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-81og(n(l-e-2'™')) + 0(|z|2) 
n=l 

= —4 log r -f- 2 log i; - 4 log ZTT H—— 
o 

-81og(n(l-e-2^)) + 0(|r|2) 

where r = u1/2^]. The latter expansion is in normal coordinates. Therefore, 

oo 

A„ --21ogV - 41og27r + 2^ - 81og(n(l - e-2""")) 

Clearly, the asymptotic expansion of the Green function on Ev is independent of the 
base point 0. Av is increasing between [1, -j-oo). Furthermore Ai < —2 — 21og7r = AQ 

and liniv-^+oo Av = +oo. Hence there exists v* G (1, +oo) such that 
(i) Av < AQ, if 1 < v <v*: 

(ii) Av > AQ, if v* < v < oo. 
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