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PRINCIPAL BUNDLES ON ELLIPTIC FIBRATIONS * 

RON Y. DONAGlt 

Abstract. A central role in recent investigations of the duality of F-theory and heterotic strings 
is played by the moduli of principal bundles, with various structure groups G, over an elliptically 
fibered Calabi-Yau manifold (on the heterotic side), and specifically over an elliptic-K3-fibered Calabi- 
Yau, on the F-theory side. In this note we propose a simple algebro-geometric technique for studying 
the moduli spaces of principal G-bundles on an arbitrary variety X which is elliptically fibered over 
a base S: The moduli space itself is naturally fibered over a weighted projective base parametrizing 
spectral covers S of S, and the fibers are identified as translates of distinguished Pryms of these 
covers. In nice situations, the generic Prym fiber is isogenous to the product of a finite group and an 
abelian subvariety of Pic(S). 

1. Introduction. Moduli spaces of principal G-bundles on K3 surfaces, and 
on Calabi-Yaus of other dimensions, are basic ingredients of the compactification of 
heterotic strings, especially for structure groups ES x Z28 and 50(32). More recently, 
compactifications of F-theory [1] have suggested the special importance of moduli 
spaces of G-bundles on elliptically fibered Calabi-Yaus, with G a semisimple subgroup 
of E8 x ES. The purpose of this note is to propose a general technique for studying G- 
bundles on (not necessarily CY) elliptic fibrations X -> 5, with arbitrary semisimple 
structure group G. 

The idea is quite simple. To a principal G-bundle P over X we associate its 
spectral data. This consists of the cameral cover S —>• 5, a Galois cover with covering 
group the Weyl group W of G; of a collection of multisection maps v\ : S -± X, 
one for each character A £ A of the maximal torus T C G, subject to the condition 
of W-equivariance (the spectral covers are the various images of S in X); and of a 
T-bundle over 5, subject to a certain twisted form of W-equivariance. When the 
cameral cover is reasonably nice, it determines the distinguished Prym Prym(5/5), 
an extension of an abelian variety by a finite group. The G-bundles on X with a given 
cameral cover 5 (and any consistent collection of maps to X) can then be parametrized 
by the distinguished Prym. An open subset of the moduli of G-bundles can thus 
be fibered over the parameter space for nice cameral covers, the fibers being the 
distinguished Pryms. When the cameral cover is not-so-nice, the description becomes 
less precise; but the whole construction has a local character, so bad behavior can 
be traced to specific singular loci. We avoid much of the difficulty by considering 
regularized bundles, or bundles with some additional structure, specified by a reduction 
of the structure group, over each s 6 5, to an abelian subgroup which is the centralizer 
in G of a regular element. (We call such a subgroup a regular centralizer.) Nice bundles 
have a unique regularization, special ones may have large families of regularizations, 
and others will have none, but can become regularized after some blowing up in the 
base 5. 

The reason that regular centralizers are the right structure can be seen already 
from the behavior of G-bundles on a single elliptic curve E, and already for G = 5L(2). 
The structure group of "most" semistable G-bundles on E can be reduced to a maximal 
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torus T C G. For G = 5L(2), there is an essentially unique exception: the non-trivial 
extension of O by itself (or the same tensored with one of the four spin bundles). 
The structure group in this case can still be reduced to an abelian subgroup, though 
not to T: it can be reduced to the group of upper triangular matrices with 1 or 
—1 on the diagonal, i.e. to the centralizer of a non-zero nilpotent element in 51/(2). 
As an abstract group, this is Z2 times the additive group (C,+). Now the family 
of bundles which admit a reduction to a given torus T is parametrized by P1, or 
more naturally by E modulo its involution. There are only 8 isomorphism classes of 
bundles with reduction to a nilpotent regular centralizer: the above four extensions 
of L by L, where L is a spin bundle, as well as the four trivial extensions L 0 L. An 
important point is that all regular centralizers in G fit nicely into one family, C. For 
51/(2), the base of this family is P2 = (P1 x P1)/Z2: the tori are parametrized by the 
complement of the diagonal P1, while the exotics sit over P1. Over this P2 lives the 
space parametrizing 5L(2)-bundles on E together with a reduction of their structure 
group to some regular centralizer. This space looks like the threefold P1 x P1 x E 
divided by the obvious Z2, with the singularities blown up (yielding fibers of type IQ 

over P1) and the components of multiplicity 2 discarded. Over this threefold there is 
a "universal C-bundle", from which our G-bundles can be induced. We will see that 
this picture generalizes to any G, and is the basic ingredient behind the reconstruction 
of a G-bundle from its spectral data. 

Our construction is motivated by our previous work [2], and in a sense is contained 
in it. The objects studied in [2] may appear, at first sight, different than the ones that 
concern us here. There we were mostly interested in K-valued Higgs fields on 5, where 
K is a line (or vector) bundle on 5. As we review in section 4, the parametrization 
of these "if-valued" objects is reduced to that of abstract, or unvalued, objects, and 
those are precisely the ones that come up in connection with G-bundles on X -> 5. 
From this point of view, we may think of a G-bundle on X as a Higgs bundle on 5 
whose "values" are in the elliptic curves of the fibration. 

The main construction, or rather its reduction to the construction in [2], is in 
section 4. Some basics on G-bundles on a single elliptic curve are gathered in section 
2, while the behavior in families is discussed in section 3. There we also address the 
technical question of how to describe the family of all cameral covers. For this we 
need to understand the global properties of the moduli of G-bundles on a fixed elliptic 
curve, as well as the modular behavior seen when the curve is varied. The former were 
worked out by Looijenga [3] and Bernstein and Shvartsman [4], and the latter, for all 
simply connected groups except E8, by Wirthmuller [5]. 

It is a pleasure to thank Ed Witten, for asking the questions about moduli of G- 
bundles on elliptic fibrations which got me interested in the subject, and for drawing 
my attention to references [3], [4]. His joint work with Friedman and Morgan [6], just 
posted to hep-th, has some overlap with this note. Roughly speaking, the emphasis 
in [6] is on a description of the parameter space for spectral covers, while we focus on 
the fiber, which parametrizes bundles with a given cover. The theorem of Looijenga is 
recovered in full in [6], and there is also a discussion of Wirthmuller's work. Friedman, 
Morgan and Witten also obtain applications to the duality between F-theory and 
the heterotic string. They present several beautiful descriptions of the moduli space 
of G-bundles on an elliptic curve. While we use deformations (of semisimple and 
semistable bundles, in the beginning of section 2) only to obtain a rather rough local 
picture of this moduli space, they base their main construction on the deformations of a 
"minimally unstable" bundle. This gives them a global description, as well as the proof 
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of Looijenga's theorem. In our approach, we take the results of Looijenga, Bernstein- 
Shvartsman, and Wirthmuller as given, and use them to describe the parameter space 
of the covers. The main novelty of our approach is the direct construction of the 
bundle corresponding to given spectral data, via the regular centralizers. 

I am also grateful to Tony Pantev, for many discussions and for showing me 
an advance copy of another related work [7], to Eduard Looijenga who explained his 
works [3] to me and who told me about [5], and to Pierre Deligne for some very helpful 
comments on the manuscript. I have also benefitted greatly from conversations with 
J. Bernstein, R. Lazarsfeld, R. Livne, and V. Sadov on various aspects of the work 
described here. This work was partially supported by NSF grant DMS95-03249, a 
Lady Davis Fellowship from the Hebrew University, and grants from the University of 
Pennsylvania Research Foundation and the Harmon Buncombe Foundation. 

2. G-bundles on elliptic curves. Let G be a connected, simply-connected 
complex semisimple group, T its maximal torus, E an elliptic curve, i.e. a non singular 
curve of genus 1 with a marked point 0 € E. The moduli space Mj of degree-0 
semistable T-bundles on E is Hom(A,E), where A := Hom(T, C) is the lattice of 
characters of G, and E := Pic0E is the dual elliptic curve, which is naturally identified 
with E. This moduli space is an abelian variety, in fact it is (non-naturally) isomorphic 
to Er, where r is the rank of G. It comes with a natural action of the Weyl group 
W, as well as a natural polarization (cf.[3]) whose degree is the discriminant of A. 
Over E x M^ there is a universal T-bundle. In case T — C*, Mj is just the dual 
elliptic curve E, and the universal bundle is the Poincare bundle. Via the unnatural 
identification of the general Mj with Er

1 the universal bundle becomes the sum of 
r Poincare bundles pulled back from the r factors. In this abelian situation there 
is actually a moduli space of all (not necessarily semistable) T-bundles: just replace 
E = Pic0E throughout by Pic E. 

The moduli space M^j of semistable G-bundles on E is the quotient M^/W, 
where the Weyl group W acts through A. This moduli space parametrizes not isomor- 
phism classes but s-equivalence classes of semistable G-bundles. There is an open set 
where the two notions coincide, but over smaller strata there will be a finite number 
of isomorphism classes represented by each point in moduli. The set of isomorphism 
classes maps naturally to M^, and this map behaves nicely in families. (This clas- 
sifying map is, of course, part of the definition of a coarse moduli space.) This map 
can be given as follows: any semistable principal G-bundle P on E has a semistable 
reduction of its structure group to the Borel subgroup B C G, in other words, it is 
associated to some semistable jB-bundle PB- The quotient map B -> T then gives an 
associated T-bundle PT which, up to the action of W, is independent of the choice of 
Borel reduction. The existence of a Borel reduction can be seen, e.g., by finding a flat 
holomorphic connection on P ([8]) and noting that the holonomy is abelian, as image 
of 7ri(.E). (The entire discussion extends easily to non simply connected groups, as 
long as we restrict attention to those bundles which are liftable to the simply connected 
covering group.) 

We can develop a feel for this moduli space by considering the deformation theory 
of semisimple bundles, i.e. ones associated to T-bundles. Let PT be a principal T- 
bundle on E, and P the associated (semisimple) G-bundle. Deformations of P are 
unobstructed, parametrized by if0(adP)*. Now 

ad(P) = ad(PT)e(eaLa), 

where the sum is over the roots a G R of G, and La is the line bundle associated 
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to PT by the root a. For generic P each La is a non-trivial line bundle of degree 0 
on E, so iJ0(adP) = iI0(adPx)- This means that all deformations of such generic 
P come from deformations of PT. But for non-generic semisimple P, there can be 
other deformations. The possible types of non-generic semisimple P are indexed by 
subroot systems: An arbitrary PT is given by a homomorphism p : A —> E, which 
determines a sub root system R' := i?nker(p), generating a sublattice A' C ker(p) C A. 
The structure group of this PT then reduces to f := Hom(A/A/, O) C T. Let G' 
be the centralizer ZG(T), with Lie algebra g'. The a for which La is trivial are 
precisely the roots of g', so the deformations are now parametrized by the dual g'*, 
and the general deformation has structure group G'. Since G' is the automorphism 
group of P, it acts on the deformation space, and the isomorphism type is fixed 
along G'-orbits. The semisimple locus looks near PT like t, and modulo G' this 
becomes t/W (t is the Cartan subalgebra, W is the Weyl group of i?'), while the 
new transversal deformations look like the nilpotent cone in g'. Modulo G', this 
gives just a finite set of types, with a non-separated topology. In case G = SL(n) 
we recover Atiyah's description [9] of vector bundles on elliptic curves as sums of 
indecomposables. The possible root systems R' correspond in this case to faces of the 
Weyl chamber, or equivalently to parabolic subgroups containing B. For other groups 
there may be additional possibilites; e.g. for G2 there are, in addition to the parabolic 
types 0, i4}hort, A***, and G2, also the two possibilities Al°ng and A^ng x A5hort, which 
arise when the image of p : A -> E happens to consist of points of order two. But in 
any case, the nilpotent cone breaks into a finite number of orbits. The closed orbit 
is 0, corresponding to the semisimple bundles. At the opposite end, there is a unique 
dense orbit, corresponding to regular bundles. For such bundles P, if0(adJP) is again 
of the smallest possible dimension, namely r. It is the centralizer in g' of a regular 
nilpotent element. 

There is a natural, "universal", space UE parametrizing G-bundles on E together 
with a trivialization (frame) over 0 G E and a reduction to a regular centralizer. 
To describe it, we start with the quotient G/T which parametrizes pairs T1 C B' 
consisting of a maximal torus T' and a Borel subgroup containing it, or equivalently a 
torus with a choice of chamber. The Weyl group W acts on G/T. The quotient G/N 
(where iV := NG(T) is the normalizer of T in G) parametrizes tori T'. Equivalently, 
G/T and G/N can be described in terms of Cartan subalgebras t/ C g and Borels 
b' C g. In [D] we introduced the parameter spaces G/N and G/T, parametrizing all 
regular centralizers C C G, respectively pairs C C B. By definition, G/N is an open 
subset of the closure of G/N in Grass(r, g). (The closure itself contains some abelian 
subalgebras which are not regular centralizers and therefore need to be discarded.) 

Over G/N there is the vector bundle c -> G/N of rank r abelian subalgebras of 
g, and the corresponding abelian group scheme C —> G/N whose fibers are the regular 
centralizers in G. Let w be the projection G/N x E -> G/N. Then VD*C is an abelian 
group scheme over G/N x E. The cohomology sheaf R1

TU^ZU*C can be represented 
by an analytic or algebraic space u* : U'E ->• G/N whose fiber over C G G/N is 
H1 (JE, C(PE))I the moduli space of G-bundles on E. We will usually restrict attention 
to the subfamily u : UE —>• G/N parametrizing semistable G-bundles. Over UE there 
is a universal principal C-bundle (more precisely, a u*C-bundle) PfiE -» UE X E. 
Since u*C is a subgroup scheme of the trivial group scheme G over UE X 1£, we get an 
associated principal G-bundle PuE -^UE^E. The bundles P$E and PuE are uniquely 
characterized by the properties: 

* The restriction of Pfi to UE X {0} is the trivial C-bundle. 



218 RON Y. DONAGI 

* the restriction of PfiE to {x} x E (where x :— (C,p) E HE, C a regular centralizer, 
p the isomorphism class of a C-bundle over E) is a C-bundle on E in the class p, and 
the restriction of PuE is the associated G-bundle. 

We could rephrase this as saying that UE is a fine moduli space for the data it 
parametrizes: a G-bundle together with a trivialization over 0 G E and a semistable 
reduction to a regular centralizer. The basic reason for existence of the universal 
family is that the objects parametrized have no automorphisms: we killed them by 
fixing the trivialization. 

Over any one stratum of G/N it is easy to describe UE and Pfi . For instance, 
over the open stratum G/N, we start with the Poincare T-bundle over M^x E, cross 
this with G/T, and divide by W which acts on both G/T and M T 

E- 
A related object which we shall need is the quotient UE := (G/T x M^j/W. 

There is a natural morphism / : UE -» UE which, over each C G G/iV, maps 
H

1
(E,C(OE)) to its compact part H

1
(E,C'(PE))> where C is the quotient of C 

by its unipotent part, C := C/(C fl [B,B}) for a Borel B D C. Between fibers over 
points of the open stratum G/iV, this map is surjective (in fact, an isomorphism); but 
over the whole base its image is the constructible set 

UE :={(C,t)eG/TxMl  \  Stab^G) c Stabw(t)}/W. 

As described in the introduction, for G = SL(2) we have G/T — P1 x P1 and 
G/N = P2. The fiber of either UE or UE over a point not in the diagonal is E. 

Over points of the diagonal, the fibers in UE, UE and UE respectively are: four lines, 
four points, and P1. We may think of UE as parametrizing isomorphism classes of 
G-bundles having a semistable reduction to a regular centralizer G, together with a 
trivialization over 0 G E. The additional data in the fiber of UE over UE chooses 
such a G-structure. Thus / is the forgetful map sending a G-struture to its associated 
G-structure. The point is that the dimension of the normalizer NG(C) can be greater 
than r, so there can be a non-trivial family of G-bundles whose associated G-bundles 
are all isomorphic. 

3. Families of moduli spaces. Let TT : X -> 5 be an elliptic fibration with a 
section, with non-singular X, S. We want to put the basic objects from the previous 
section into families parametrized by 5. It will be convenient to work instead with 
a (singular) Weierstrass model X -> 5, given by an equation of the form y2 = x3 + 
b2X -f 63, where bi is a section of L®2i and L is TT* of the relative canonical bundle K^. 

Since TT has a section, we can identify Pic0 of a smooth fiber Eg := 7r_1(s) 
with Es. Globally, the relative Jacobian Pic0(X/S) is the complement in X of the 
locus of singular points of fibers. (By definition, this singular locus includes any fiber 
component of multiplicity > 1.) The reason for this is that a section of TT : X —> S 
must have intersection number 1 with each fiber, so it cannot pass through a singular 
point. This leads immediately to identification of M J ,s with the r-th cartesian power 

of X — Sing(X) over the base 5. 
A satisfactory construction of M^ ,s is somewhat more delicate. Looijenga shows 

[3] (see also [4]) that for simply connected group G and for fixed, non-singular E, M% 
is a weighted projective space. The weights are the Dynkin indices of the dual Dynkin 
diagram of G (i.e. the coefficients of the highest short root when expressed as a sum 
of simple roots, plus the coefficient 1 for the affine root). In order to be able to 
describe the relative object A^/^, we need a way of relating nearby fibers. A general 
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construction of a flat connection on such families was carried out by Saito [10] but more 
immediately useful results are in [5]. Wirthmuller takes the base 5 to be a modular 
curve, so that Jacobi forms give sections of powers of the "theta" bundle (giving the 
polarization) on M J ,s, and we are looking for the VF-invariants among them. These 
are now bi-graded, by what he calls "weight" (as modular form) and index. The 
"indices" correspond to the weights in Looijenga's weighted projective space, and also 
to the power of the theta bundle in which the section lives. I will refer to Wirthmuller's 
"weights" as degrees, to avoid confusion with Looijenga's weights. These degrees 
correspond to powers of L, the Weierstrass line bundle. One of them always turns 
out to be 0, the others are the degrees of the basic G-invariant polynomials. It is 
not clear a-priori why there should be a natural way to pair these two sequences, of 
indices and degrees. The end result is that M^, for simple G other then E8, can be 
identified with the quotient {(Bi=oLdi)/C*, where do = 0, {<&}£=! are the degrees of 
the invariant polynomials, and C* acts with weights equal to the Dynkin indices for 
the dual Kac-Moody algebra. 

At least for some groups, these results are elementary. For SL(r -f 1), all indices 
equal 1, while the degrees are 0,2,3,4, ...r +1. So M^ is the ordinary projective space, 
projectivization of O © L2 ©... © Lr+1. The fact that M^ is a projective space follows 
directly from Abel-Jacobi: M^ is the locus of (r + l)-tuples of points in E which add 
up to 0, W is the symmetric group, so the quotient is the variety of effective divisors 
in the linear system r + 1 times the origin, a projective space of dimension r. But 
we can really identify this space: for r = 1 it is the P1 with coordinate x, of which 
the Weierstrass equation exhibits E as a double cover. A basis of sections of (9(1) is 
given by 1 (of degree 0) and x (of degree 2). For r = 2 we get the P2 with functions 
l,a:,y, etc. Similar or easier arguments show that for G either SO(2r + 1) or 5p(r), 
the moduli space Mg is the r-th symmetric product of the basic P1, so it can be 
identified with the projectivization (all weights equal 1) of O + L2 + L4 + ... -j- L2r. 
For Sp(r), this is as it should be: the Dynkin diagram of the Kac-Moody algebra 

(CV) = £v+i kas a^ indices equal to 1. But the Dynkin diagram of the Kac-Moody 

algebra (Br) = ^r-i has its three extreme indices equal to 1, while the others equal 
2, so we expect a weighted projective space of weights (1,1,1,2, ...,2). And that is 
exactly what we get, if we replace SO(2r + 1) by the simply connected Spin(2r + 1): 
the double covering group yields a 4-sheeted covering moduli space (the elliptic curve 
has 4 two-torsion points), which can be identified as the unique Z/2 x Z/2 cover 
each of whose three Z/2 quotients is branched along two of the three hyperplanes 
in Pr = Syn/P1 corresponding to r-tuples containing one of the three roots of the 
Weierstrass equation. 

I have not worked out the missing case of E8, nor the remaining non simply 
connected groups. Presumably, even if M^ does not always turn out to be a weighted 
projective space, it can still be described by some universal construction in terms of 
the Weierstrass line bundle L. In particular, there is then a natural way to extend 
the family of quotients M^JW to a locally trivial family over the entire base S 
(including the discriminant) of any Weierstrass family. The most familiar instance of 
this is when G = SL(2): there the resulting M^/s '1S the P1-bundle over 5 obtained 
as projectivization of O © L, which is the quotient of the Weierstrass model by its 
natural involution fixing the 0-section. 

We also need to note that the spaces UE and UE parametrizing C- and G- bundles 
likewise extend in families to form objects Ux/s and Mx/s respectively. For Ux/s we 
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take {G/TxM^i^/W. Near 5 corresponding to non-singular fiber Es, this looks like a 

bundle over 5 with fibers UE- At singular 5, we have already removed the singularities 
of -Mw^, so we get a non-singular, but somewhat smaller, object. Likewise, we restrict 

Ux/s to the open subset which maps to Ux/s- Its points then parametrize C-bundles 
on the Es, and there is again a universal C-bundle on Ux/s Xs X. (It is possible that 
for those groups for which Wirthmuller-type constructions work we could extend these 
universal objects to some of the singular loci, but we have not pursued this, and the 
construction presented below seems to avoid the issue.) 

4. Spectral parametrization of bundles. In this section we describe the 
equivalence between regularized G-bundles on an elliptic fibration with a section and 
the corresponding spectral data. We fix an elliptic fibration TT : X -* 5 with a "zero" 
section a : 5 ->> X, where X,S are smooth. Let Es := 7r~1(s) denote a fiber. Given 
a principal G-bundle P on X, let Ps := P\a(S) be the restriction to the zero section. 
There are associated bundles of groups AdP, AdPs over X, S respectively. The sheaf 
of automorphisms along the fibers J5S, Auts(P) := 7r*AdP, can be identified as a sub- 
sheaf of AdPs. There is also an associated bundle Ps/N, whose fiber over s G 5 is 
the family of regular centralizers associated to the fiber Ps over a(s). 

A section c : S —> Ps/N determines an abelian group scheme C -> 5, a sub- 
group scheme of the group scheme AdPs- A 7r*C-torser Pc on X then induces a 
G-bundle P = Pc xc G. By a regularized G-bundle we mean such a triple {P, c : S —> 
Ps/N, Pc}, or equivalently a reduction of the structure of P to a group scheme C of 
regular centralizers. This group subscheme C C AdPs is contained in Auts(P), and 
extends naturally to a group subscheme of AdP. A key point is that an everywhere 
regular, semisimple and semistable bundle P (i.e. one whose restriction Ps to each 
Es has these properties) has a unique regularization, with C = Auts(P). But there 
are other regularized bundles, whose underlying G-bundles may not be everywhere, 
or even anywhere, regular. Yet these bundles too can be parametrized by their spec- 
tral data. (Being regularized means that we have chosen a reduction to a regular 
centralizer subgroup of the automorphisms along each Es, not necessarily that those 
automorphisms form a regular centralizer themselves.) If P is known to be regular, 
semisimple, and semistable only for generic s € S then a regularization is still unique if 
it exists; in general though, we may have to blow up the base 5 to find a regularization. 
 A cameral cover of S is a PF-Galois cover S —> S which is modelled on G/T ->> 
G/N. ("modelled on" means "obtained locally as pullback via maps of S to the base".) 
Recall that G/N parametrizes regular centralizers in G, while G/T parametrizes pairs 
of a regular centralizer and a Borel containing it. 

A regularized bundle {P,c,Pc} determines the following data: 
(1) A cameral cover 5 -» 5. 
(2) A W-equivariant morphism v : S -> M^/g.   (Equivalently, a morphism v' : 

A x S -> Pic0(X/S). By way of terminology, we refer to the image of v as the 
universal spectral cover. The various other spectral covers are the images under v' of 
Ax 5, for A G A.) 
(3) A homomorphism £ : A -4 Pic S (or equivalently, a T-bundle on S) satisfying the 
twisted W-equivariance property of [2]. 

These are obtained as follows.         
(1) The cameral cover S is the cover of S induced via c from the cover Ps/T —> Ps/N, 
which indeed looks locally like G/T -» G/N. 
(2) A point s E 5 above s € 5 corresponds to a choice of Borel in Ps containing the 
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regular centralizer Cs C Auts(Ps). This extends uniquely to a subbundle of Borels 
in P\Ea' Via the natural quotient map B -> B/lB.B] = T, there is an associated 
T-bundle, identified with a point of M^. When 5 is reduced, we get the map v 
by letting s and s vary, and the VF-equivariance holds, since it does so fiber-by-fiber. 
In the general case, the C-bundle Pc on X together with the inclusion of C into the 
universal Borel bundle B over S induce on S Xs X a fi-bundle, hence a quotient 
T-bundle. Our morphism v is the classifying map for this bundle. 
(3) Above 5 we have a bundle of Borels; the T-bundle is associated to it as above. 
We will discuss the shifted W-equivariance below. 

The main point of this note is that a regularized G-bundle can be reconstructed 
from its spectral data. To see this, it will be convenient to introduce an intermediate 
object, the principal G-Higgs bundle, cf. [2]. This is simply a pair (Ps,C) consisting of 
a principal G-bundle Ps on 5 together with a family C of regular centralizers in Ad Ps- 
(To avoid worrying about how the different types of centralizers fit together, we can 
instead consider the vector subbundle c of regular centralizers in the bundle ad Ps 
of Lie algebras. This , of course, is equivalent data.) Now as above, to a principal 
G-bundle (PsiC) corresponds an abstract cameral cover 5 -> 5 and a homomorphism 
£ : A —► Pic S. (The constructions of items (1) and (3) above used only the available 
data on 5.) As W acts on both sides, we can consider the subgroup of W-equivariant 
homomorphisms. In [2] this was called the distinguished Prym of 5/5. In case 5,5 
are non-singular, this is a finite group times an abelian subvariety of Hom(A,Pic(S)). 

The main observation in [2] is that the family of principal Higgs bundles with a 
given cameral cover 5 is, if non-empty, parametrized by a translate of the distinguished 
Prym. The exact point by which we need to translate will not be crucial for us here. 
It is described in sections 5.2 and 5.3 of [2] as the sum of a cohomological shift term 
depending only on the group G, and further twist terms coming from the fixed divisors 
for the action of W on 5. An analogous and more familiar situation applies in case 
G = 51/(n) when we replace the cameral cover by the degree-n spectral cover TT : 5 -> 5 
(5 is the image under v1 of Ai x 5, where Ai is the first fundamental weight.) The 
twisting along the ramification then corresponds to the relative Todd class (=half the 
ramification) which enters into the Grothendieck-Riemann-Roch formula: In order for 
7r*(L) to have determinant 0, ci(L) needs to be the class of half the ramification. 

(The original purpose of [2] was to describe the fibers of the Hit chin map, from 
moduli of K-valued Higgs bundles on a variety 5, to if-valued spectral data. Here K 
can be the canonical bundle of 5, as in Hitchin's original work [11], but it can also be 
an arbitrary line bundle, or (with some additional symmetry conditions imposed) even 
a vector bundle on 5 as in Simpson's works. It turned out to be convenient to separate 
the problem into considerations of "eigenvectors" and "eigenvalues": we introduce the 
somewhat abstract "principal G-Higgs bundles" and show that they correspond to 
abstract spectral data (this is the eigenvector aspect); the K-valued versions are then 
recovered by adding a iiT-valued "Higgs field" </>, a section of ad(Ps) (8) K, on the one 
side, and an "eigenvalue map" v : S -> K on the other. This latter map is of course 
analogous to our datum (2). We are thus led to think of a G-bundle on an elliptic 
fibration as a sort of Higgs bundle on the base taking values in the fibration instead 
of in a line (or vector) bundle.) 

Returning to our situation, from the spectral data (l)-(3) we thus retrieve the 
principal G-Higgs bundle (Ps,C) together with a morphism v from 5 (which is de- 
termined by (Ps,C)) to M^/g, commuting with the projections to 5. It remains to 
recover the original regularized G-bundle {P,c,Pc} (on X) from this data. This goes 
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as follows: the situation is essentially rigid, so we can reduce to the case that S is a 
point, i.e. to bundles on one elliptic curve. For a given regular centralizer C, this then 
reduces to the straightforward verification that the canonical map: 

is an isomorphism. Here (G/B)c is the subscheme of G/B parametrizing Borels 
through C (it is finite of length equal to the cardinality of W, and is not reduced 
except when C is a torus), and Morw is the (group of) W-equivariant morphisms. 

Working globally over 5, the principal G-Higgs bundle (Ps,C) determines an 
("eigenvector") map c : S —)• Ps/N and its lift c : S —> Ps/T, which together with the 
"eigenvalue" map v : S -+ Mjr>s sends 5 to the fiber product Ps/T xs Mjr/g. This 

map is W-equivariant, so it descends to give a section a : S —> Ux/s •= {Ps/T xs 
M'x/s)lW. This last object is a version of our previous Ux/s which is twisted by 

the bundle Ps'. it is isomorphic to Ux/s over any open subset of S over which Ps is 
trivial. Likewise, we have the twisted version Ux

siS of Ux/s- Now, the data needed 

to lift our section a to a section a of Ux
s,s is precisely given by v : S -* -M^^. (In 

particular, existence of v implies that the image of a is contained in Ux/s •) Now on 
Ux/s xs ^ we have the universal C-bundle trivialized along 5. Twisting by Ps, we 
get a universal C-bundle on Ux

s,s x $ X , but instead of a trivialization we now get an 
identification of its restriction to 5 with the universal C-subbundle of Ps. Pulling back 
via the section a to X — S xs X gives a C-bundle Pc, whose associated G-bundle is 
the original P. 

REMARK 1: We have emphasized the cameral covers, since they are, in our view, 
the most basic objects in the picture. But in order to parametrize entire components 
of the moduli space of G-bundles on X, it is necessary to allow the cover to vary. For 
this purpose, it is more convenient to consider instead the universal spectral covers. 
These are all obtained by pulling back one object, the W-cover M^ig —> M%iS, by 

arbitrary sections 5 ->■ M^jg. As we saw in the previous section, M^.g is, for most 
groups, a bundle of weighted projective spaces over S. So in a connected component 
(obtained by fixing the numerical invariants of the map), these maps are specified by 
the (weighted projectivization of) the space of sections of an appropriate vector bundle 
over S. In "nice" situations, a generic map of this kind will determine a non-singular 
universal spectral cover, and therefore also a unique cameral cover. 

REMARK 2: An alternative approach to reconstruction of a G-bundle on X from 
spectral data might be based on application of the equivalence of [2] directly to the 
principal G-Higgs bundle (P, 7r*C) on X. One then obtains a cameral cover X ->• X 
and a point t,x in a translate of its distinguished Prym. It is interesting to compare 
this to the spectral data (S,v,£s) which we used above. The cover X -» X is clearly 
the pullback via TT of S —> 5, but n^is is not the same as ix- the former is trivial 
along fibers of TT, while the behavior of the latter along fibers is equivalent to the 
additional datum v : S -> Mjr,s. Our original approach has a clear advantage over 
this alternative in situations where X is interesting (say a K3 or CY3) while 5 is a 
much simpler object (P1,Fn). 
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