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Introduction

The present paper breaks new ground in the classification of group actions on C∗-algebras

up to cocycle conjugacy. The development of such a classification theory represents the

overarching goal behind a lot of past and present research in the area of operator algebras,

and can be argued to form a branch of its own. Non-commutative dynamics is deeply

rooted and ubiquitous within the subject of operator algebras, arguably because of the

interesting ways in which groups can act on non-commutative structures. Whether one

wishes to mention R-actions in Tomita–Takesaki theory [108], [15], the role of single

automorphisms within Connes–Haagerup’s classification of injective factors [17], [47] or

later subsequent developments in Jones’ subfactor theory [62], [88], [89], [91] or Popa’s

deformation/rigidity theory [90], [113], [53], it is evident that dynamical ideas have been

taking center stage on the side of von Neumann algebras for a long time. The von

Neumann algebraic result most pertinent to the context of this paper is the complete

classification of actions of discrete amenable groups on injective factors [16], [18], [61],
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[83], [66], [65], [77], whose famous type-II subcase was pioneered by Connes, Jones and

Ocneanu.

A special case of our main result Theorem F is the following C∗-algebraic analogue

of the above, though we wish to emphasise that our main theorem is applicable to all

second countable, locally compact groups. The general statement merely requires setting

up some additional terminology.

Theorem A. Let G be a countable discrete amenable group and let α:G↷A and

β:G↷B be pointwise outer actions on stable Kirchberg algebras.(1) Then, (A,α) and

(B, β) are cocycle conjugate if and only if they are KKG-equivalent.

A classification theory of this scope has long been sought-after for C∗-algebras and

has in fact motivated most of the interesting developments found in the literature. Yet

our understanding of C∗-dynamics on simple C∗-algebras has mostly remained under-

developed in direct comparison to von Neumann algebras, which in hindsight is not

surprising given the extra challenge posed by K-theoretical obstructions. This is per-

haps most convincingly demonstrated in the recent article [80] of Meyer. It would be an

unpractically herculean task to thoroughly review all the important developments found

in the literature in this regard (especially relating to finite C∗-algebras), hence we will

be somewhat selective in what we mention, in particular considering past articles that

have given more thorough reviews (at least in part) already. An obvious quintessential

reference is Izumi’s survey article [56], though the reader may also wish to consult the

introduction of [107] and the references therein with an eye to more recent works of the

past decade.

At the level of methodology, almost all classification results for group actions rely on

some kind of Rokhlin property, which in one way or another is made to work in conjunc-

tion with the Evans–Kishimoto intertwining method [34]. This kind of modus operandi

still underpins the majority of the state-of-the-art concerning actions of non-compact

groups, be it for flows [106] or poly-Z groups [59], [60]. The drawback of this approach is

that the actual implementation of the Evans–Kishimoto intertwining technique becomes

considerably less realistic without having full control over the precise structure of the

acting group, which is due to the fact that the technical obstacles one faces become in-

creasingly opaque in K-theoretic terms. In this paper we hope to achieve a full paradigm

shift by promoting an approach that instead mirrors much more closely the methodol-

ogy of the Elliott program [28], [67], [115], [114] to classify simple nuclear C∗-algebras.

More concretely, we classify group actions following the conceptual approach suggested

by the second author in [107], which relies on the prevalence of so-called existence and

(1) These are the separable, nuclear, purely infinite, simple C∗-algebras classified in [69], [86].
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uniqueness theorems in conjunction with Elliott’s intertwining machinery applied to the

(proper) cocycle category of C∗-dynamics.

Definition B. Let G be any locally compact group. Let α:G↷A and β:G↷B be

two actions on C∗-algebras. A proper cocycle morphism is a pair (φ,u): (A,α)!(B, β),

where φ:A!B is a ∗-homomorphism, u:G!U(1+B) is a norm-continuous β -cocycle,

and one has the equation Ad(ug)�βg �φ=φ�αg for all g∈G.

As is fleshed out in [107], the proper cocycle morphisms form the arrows in a category,

which provides a fair deal of additional flexibility in comparison to just working with

equivariant maps. In particular, it is natural in this framework to start from a proper

cocycle morphism as above and perturb it with any given unitary v∈U(1+B) to arrive

at another proper cocycle morphism

Ad(v)�(φ,u)= (Ad(v)�φ, vu
�
β
�
(v)∗).

This provides the concept of unitary equivalence among proper cocycle morphisms, and

in complete analogy to what one does for ∗-homomorphisms, one can generalize this to

get a suitable notion of (proper) approximate or asymptotic unitary equivalence. This

turns out to fit into Elliott’s intertwining machinery [29], which provides a full-fledged

analog of the fundamental methodology underpinning the Elliott program. The latter

has enjoyed enormous success in recent years in the context of finite C∗-algebras, first

driven by breakthroughs in the approach related to tracial approximation [45], [46], [32],

[30], [31], [42], [44], [43], and more recently gaining momentum through a more refined

understanding of how ultrapowers, traces and K-theory interact [111], [96], [12].

However, it cannot be emphasized enough how influential and groundbreaking the

much earlier work of Kirchberg and Phillips [69], [86], [70] has been, which classified

the traceless algebras within Elliott’s program, now commonly referred to as the class

of Kirchberg algebras. Their classification result was arguably the first classification

of C∗-algebras that was truly abstract. Using ideas of Rørdam from [92], they exploit

Kasparov’s bivariant K-theory [64] for the classification of ∗-homomorphisms. To sum-

marize their main result, one has for any two stable Kirchberg algebras A and B that

any invertible element in KK(A,B) lifts to an isomorphism A∼=B. Determining whether

this is true becomes more tractable if one assumes these algebras to satisfy the univer-

sal coefficient theorem (UCT) [95], whereby a KK-equivalence can be obtained from an

isomorphism between the ordinary K-groups of A and B.

For the reasons stated above, the class of Kirchberg algebras plays a special role

within the Elliott program, to the point where many problems pertaining to general

classifiable C∗-algebras are first considered for Kirchberg algebras as a supposedly easier
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test case. The desire to unravel the structure of group actions is no exception, hence

the case of Kirchberg algebras has long been considered as the natural starting point in

this regard [82], [54], [55], [57]. In fact, they were still the focal point in Izumi–Matui’s

recent groundbreaking work [59], [58], [60]. In view of these past developments, a few

researchers have raised suspicions over the years that there ought to be a dynamical

analog of the Kirchberg–Phillips theorem for outer actions of discrete amenable groups.

Phillips himself has notably promoted this viewpoint for actions of finite groups in

conference talks dating back at least a decade, and it should be mentioned that he has

had an unpublished draft proving a number of results overlapping with our present work

for actions of finite groups, although the detailed methods differ significantly. For actions

of torsion-free groups, Izumi conjectured in [56] that outer actions are classified up to

cocycle conjugacy via isomorphism classes of certain bundles, and his recent work with

Matui is the positive solution to his conjecture for poly-Z groups. Meyer has discovered in

[80] that the Baum–Connes machinery can be employed to reformulate Izumi’s conjecture

in terms of equivariant KK-theory. As we make more precise in the sixth section, we can

use Meyer’s observation and our main result Theorem A to obtain a positive solution to

Izumi’s conjecture; see Theorem 6.6. While the things mentioned above have been going

on, a part of the second author’s work was driven by the goal to get closer to some kind

of dynamical Kirchberg–Phillips theorem, which is most obvious in [101].

Apart from the aforementioned difficulties related to the implementation of the

Evans–Kishimoto method, another major obstacle to cover larger classes of acting groups

has been a lack of any means to systematically employ equivariant KK-theory as an in-

variant. If we look back at more recent milestones in C∗-algebra classification, one can

see upon close examination that the systematic use of KK-theory is most commonly

achieved in the Cuntz picture [21], [23], [48] via the stable uniqueness theorem of Lin

and Dadarlat–Eilers [76], [25], [26]. Although something similar had been demonstrated

in Dadarlat–Eilers’ original work, the recent work of the first author [37] includes a new

proof of the original Kirchberg–Phillips theorem by exploiting the stable uniqueness the-

orem to its fullest. Motivated by the importance of such methods in the Elliott program,

the authors developed in [38] a dynamical generalization of the stable uniqueness theorem

in the context of equivariant KK-theory for arbitrary locally compact groups.

In the present work, we take the next major step and prove the desired dynamical

Kirchberg–Phillips theorem in the highest generality possible. Although we originally

set out to classify outer actions of discrete amenable groups, we can in fact cover actions

of arbitrary (second-countable) locally compact groups on Kirchberg algebras under ap-

propriate dynamical assumptions. The first important assumption is that the involved

actions ought to be amenable (instead of the acting groups), the theory of which was
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only fleshed out recently in full generality [10], [11], [97], [84]. The basic idea that the

amenability of actions can be used for classification even for non-amenable acting groups

goes back to Suzuki [98]. We note that this stands out as a feature that seems unique

to C∗-algebras, as it is for instance well-known that non-amenable groups cannot act

amenably on factors. The second important assumption is inspired by a known result

for finite group actions [41] and gives rise to a class of actions that we call isometrically

shift-absorbing.

Definition C. Let µ be a left-invariant Haar measure on G and λ:G!U(L2(G,µ))

be the left-regular representation. Let β:G↷B be an action on a separable unital C∗-

algebra.(2) We say that β is isometrically shift-absorbing if there exists a linear map

s:L2(G,µ)−!B∞∩B′

that is equivariant in the sense that β∞,g �s=s�λg holds for all g∈G, and such that one

has s(ξ)∗s(η)=⟨ξ |η⟩·1B for all ξ, η∈L2(G,µ).(3)

Although we have not yet succeeded in finding a characterization of isometrically

shift-absorbing actions on Kirchberg algebras in more familiar terms for arbitrary locally

compact groups, one can easily obtain one for discrete groups with the available literature.

In what essentially boils down to an observation of Izumi–Matui in [57], an action of a

countable discrete group on a Kirchberg algebra is isometrically shift-absorbing if and

only if it is outer. For topological groups, outerness is known to be a significantly weaker

property, however. For instance, we prove that for actions of Rk on O∞-absorbing C∗-

algebras, being isometrically shift-absorbing is equivalent to the Rokhlin property [73],

although the analogous statement is not true for many other groups like compact ones.

As one can observe with the help of [84, Theorem 6.1], every second-countable locally

compact group admits actions on Kirchberg algebras that are amenable and isometrically

shift-absorbing. One might adopt the viewpoint that isometric shift-absorption is some

general manifestation of a Rokhlin-type property, but it has several major benefits in

comparison to any earlier candidates given in the literature. On the one hand, it can be

formulated for all groups, and on the other hand, it turns out to pose no K-theoretical

obstruction as a property of actions. The latter is for instance the primary drawback of

the Rokhlin property for compact group actions [55], [50], [2], [39], [40]. In fact, we can

observe the following, which is Theorem 3.13 in the main body of the article.

(2) We note that unitality is only assumed for ease of notation here. Our definition in the main
body of the paper, Definition 3.7, covers arbitrary separable C∗-algebras.

(3) In order to be in line with common terminology related to Hilbert modules over C∗-algebras,
we will always assume the first component of an inner product to be anti-linear.
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Theorem D. (Cf. Pimsner, Kumjian, Meyer, Ozawa–Suzuki) Let α:G↷A be an

amenable action on a separable nuclear C∗-algebra. Then, there exists an amenable

and isometrically shift-absorbing action β:G↷B on a stable Kirchberg algebra and an

equivariant embedding (A,α)!(B, β) that induces a KKG-equivalence. By Theorem F,

it follows that (B, β) is unique up to cocycle conjugacy.

In this article we prove a classification result for actions on Kirchberg algebras that

are both amenable and isometrically shift-absorbing. Our theory is enabled by the obser-

vation that our two dynamical assumptions work as a very powerful tool in conjunction.

In a nutshell, an action β:G↷B can be seen to be isometrically shift-absorbing if B

is locally approximated by L2(G,B) as an equivariant B -bimodule (Proposition 3.8),

whereas β is amenable precisely when L2(G,B) admits a suitable net of approximate

fixed points. This grants us access to the kind of averaging arguments that one usually

only has with some kind of Rokhlin property, and becomes the key ingredient that allows

us to apply our stable uniqueness theorem [38] in a fruitful way. All of this culminates

in suitable existence and uniqueness theorems for the group actions under consideration,

which we shall state here in an oversimplified form for the sake of readability. For the

precise statements, we refer to Theorems 5.5 and 5.7.

Theorem E. Let α:G↷A and β:G↷B be actions on Kirchberg algebras. Suppose

that α and β are amenable and isometrically shift-absorbing. Assume that β tensorially

absorbs the trivial G-action on K up to conjugacy. Then, the assignment

(φ,u) 7−!KKG(φ,u)

induces a bijection between proper cocycle embeddings

(A,α)−! (B, β)

which are anchored (see Remark 5.4), modulo strong asymptotic unitary equivalence, and

the group KKG(α, β).

There is of course a unital version of the above theorem as well (see Theorems 5.6

and 5.8), but it should be noted that the level of generality is then in truth strictly

lower, because only exact groups can act amenably on unital C∗-algebras, as shown in

[84, Corollary 3.6]. The above ends up being the optimal generalization of the known

existence and uniqueness theorems in the context of the Kirchberg–Phillips theorem,

whereby ∗-homomorphisms between stable Kirchberg algebras are classified by KK-

theory up to asymptotic unitary equivalence. Finally, the desired classification result

for the actions can be deduced from the above theorem in conjunction with the Elliott

intertwining machinery. We shall again state it here in its most abridged form, and refer

to Theorem 6.2 for the detailed statement.
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Theorem F. Let α:G↷A and β:G↷B be actions on stable Kirchberg algebras.

Suppose α and β are amenable and isometrically shift-absorbing. Then, (A,α) and (B, β)

are cocycle conjugate if and only if they are KKG-equivalent.

In light of an earlier remark, we can restrict to G being discrete and conclude that

we have classified all amenable and outer G-actions on Kirchberg algebras up to cocycle

conjugacy. This represents the first abstract classification result up to cocycle conjugacy

byK-theoretical invariants that covers all (discrete) amenable groups. One may of course

argue that the main result of [101] went in this direction, but the scope and methods

therein were very narrow in comparison and relied on much more than just K-theoretical

information. Even if we were to count this and hence also Suzuki’s work [98] as a sort of

classification theory, Theorem F is certainly the first result of its kind covering actions

of arbitrary locally compact groups.

In order to come full circle with the analogy regarding the known Kirchberg–Phillips

theorem, we remark that the results achieved in this article ought to be viewed as the

completion of the analytical work needed to arrive at a fully satisfactory classification

theory. In analogy to Rosenberg–Schochet’s work on the UCT [95], it is still a largely

unsolved and independent problem to determine the existence of a KK-equivalence be-

tween two actions in the equivariant bootstrap class [27] in terms of isomorphism of more

manageable local invariants. It should be noted that Rosenberg–Schochet recognized this

challenge early on and developed methods to tackle this problem for certain compact con-

nected Lie groups [94], but there was a subsequent long period without any follow-up. In

our opinion, the ideas in Köhler’s Ph.D. thesis [74] related to the equivariant UCT seem

promising to build on, but this needs to involve methods related to algebraic topology

and homological algebra. Therefore, we support the viewpoint propagated by Meyer [80]

to view that as the algebraic side of the classification problem.

The article is organized as follows. Conceptually speaking, the content is deliberately

ordered so that the level of generality of the involved techniques decreases with each

section. The introduction of basic concepts is done in the first section, covering the

cocycle category framework, equivariant KK-theory, sequence algebras, and amenability

for actions. In the second section, we study the concept of approximate domination

between cocycle representations, which is a stronger version of weak containment. In

particular, we obtain a sufficient condition for a proper cocycle morphism to absorb

another one in the sense of Cuntz addition up to asymptotic unitary equivalence, which

is inspired by an important technical step in the known Kirchberg–Phillips theorem; see

[86, Lemma 2.3.6].

In the third section we introduce and study isometrically shift-absorbing actions,

with a focus on those that are also amenable. The key lemma of this section (Lemma 3.16)
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serves as the technical backbone of our theory and represents a reduction principle: if

one considers a pair of cocycle representations (φ,u), (ψ, v): (A,α)!(B, β), with β be-

ing amenable and isometrically shift-absorbing, then (φ,u) approximately dominates

(ψ, v) if and only if φ approximately dominates ψ as an ordinary ∗-homomorphism. In

other words, the dynamical assumptions of the codomain action allow one to solve an a-

priori difficult dynamical problem by solving a much easier and more familiar C∗-algebra

problem one encounters in the literature. An important consequence of this reduction

principle is that it allows us to obtain explicit descriptions of examples of absorbing co-

cycle representations, which are highly relevant in light of the stable uniqueness theorem

for equivariant KK-theory. We note here that in various places in both the second and

third sections, many of the most non-trivial technical ingredients are imported as con-

sequences of observations made in the context of studying general KKG-groups in our

earlier article [38].

In the fourth section we prove a dynamical version of the famous O2-embedding

theorem [70], which is a technical centerpiece towards the “onto” part of Theorem E.

Since one may see this as a result of independent interest generalizing also significant

parts of [101], [98], let us state it here; see also Theorem 4.8.

Theorem G. Let α:G↷A be an amenable action on a separable exact C∗-algebra.

Let β:G↷B be an isometrically shift-absorbing action on a Kirchberg algebra. Then,

there exists a proper cocycle embedding (A,α)!(B⊗O2, β⊗idO2
).

The main conclusions of our work are then coming together in the fifth section. Here

we prove the aforementioned existence and uniqueness theorems, i.e., the more detailed

version of Theorem E. Conceptually speaking, this part of our approach runs in perfect

parallel with techniques suggested by the first author in [37, §7] as a more direct way to

prove the Kirchberg–Phillips theorem that also applied to the classification of non-simple

C∗-algebras absorbing the Cuntz algebra O∞.

In the sixth and final section, we prove our main classification result, i.e., the more

detailed version of Theorem F. In the rest of the section, we deduce a number of conse-

quences of our main result, including the following:

(a) A refined version of our main result classifying actions of compact groups up to

genuine conjugacy; see Corollary 6.4.

(b) The positive solution to a conjecture of Izumi [56], a special case of which was

recently the focus of [59], [58], [60]; see Theorem 6.6.

(c) An alternative proof of [106, Theorem A], asserting that every Kirchberg algebra

admits a unique Rokhlin flow [73] up to cocycle conjugacy, which started as a conjecture

of Kishimoto. We can in fact obtain the same rigidity theorem for actions of Rk for all
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k⩾1; see Corollary 6.15.

(d) If G is a discrete amenable group, then all faithful quasi-free actions of G on

O∞ are mutually cocycle conjugate; see Theorem 6.9. This generalizes the main result

of [41] and confirms another conjecture of Izumi.

(e) For all exact groups with the Haagerup property, we prove the existence of an

amenable G-action on O∞ which is canonically KKG-equivalent to C; see Theorem 6.10.

Aside from amenable groups, the existence of such actions has only been known for

discrete free groups due to Suzuki. (We remark that shortly before submission of our

article, Suzuki has independently constructed such examples by a different method [99].)

(f) If G is a discrete exact torsion-free group with the Haagerup property and D is

a strongly self-absorbing Kirchberg algebra, then there exists a unique amenable outer

G-action on D, up to cocycle conjugacy, which in fact must be a strongly self-absorbing

action [102]; see Corollary 6.13. This confirms and generalizes the traceless case of [104,

Conjecture A].

1. Preliminaries

Notation 1.1. Throughout, G will denote a second-countable, locally compact group

unless specified otherwise. Normal capital letters like A, B, C will denote C∗-algebras.

The multiplier algebra of A is denoted as M(A), whereas A† denotes the proper uniti-

zation of A, i.e., one adds a new unit even if A was unital. We sometimes denote the

closed unital ball of A by A⩽1. We write U(1+A) for the set of all unitaries in A† whose

scalar part is 1, which can be canonically identified with the unitary group of A if it was

already unital. Throughout the article, the symbol K denotes the C∗-algebra of compact

operators on a separable infinite-dimensional Hilbert space H, and we write K(H) when
a specific description of H is relevant to the matter at hand. A C∗-algebra A is called

stable when A∼=A⊗K. Let ek,ℓ∈K for k, ℓ⩾1 denote a collection of generating matrix

units. Greek letters such as α, β, γ are used for point-norm continuous maps G!Aut(A),

most often group actions. Depending on the situation, we may denote idA either for the

identity map on A or the trivial G-action on A. We will denote by Aα or M(A)α the

C∗-subalgebra of fixed points (in A or M(A)) with respect to α. Normal alphabetical

letters such as u, v, U , V are used for unitary elements in some C∗-algebra A. If either

u∈U(M(A)) or u∈U(1+A), we denote by Ad(u) the induced inner automorphism of A

given by a 7!uau∗. Double-struck letters such as u, v, U, V are used for strictly con-

tinuous maps G!U(M(A)), most often (1-)cocycles with respect to an action α:G↷A,

which for the map u would mean that it satisfies the cocycle identity ugh=ugαg(uh)
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for all g, h∈G. Under this assumption, one obtains a new (cocycle-perturbed) action

αu:G↷A via αug=Ad(ug)�αg.

Although we will introduce equivariant KK-theory in this section via the Cuntz–

Thomsen picture, we will implicitly assume that the reader has some existing passing

familiarity with it; see for example [5]. In particular, we make use of the Kasparov prod-

uct and freely use its known properties. We apply the common tensor product notation

x⊗y∈KKG(α, γ) for the product of two elements x∈KKG(α, β) and y∈KKG(β, γ).

Definition 1.2. (see [107, §1]) Let α:G↷A and β:G↷B be two actions on C∗-

algebras.

(i) A cocycle representation (φ,u): (A,α)!(M(B), β) consists of a ∗-homomorphism

φ:A!M(B) and a strictly continuous β-cocycle u:G!U(M(B)) satisfying

Ad(ug)�βg �φ=φ�αg for all g ∈G.

(ii) If additionally φ(A)⊆B, then the pair (φ,u) is called a cocycle morphism, and

we denote it by

(φ,u): (A,α)−! (B, β).

(iii) If φ(A)⊆B and furthermore u takes values in U(1+B), then the pair (φ,u) is

called a proper cocycle morphism. Note that, by [107, Proposition 6.9 (ii)], this assump-

tion implies that u is automatically a norm-continuous map.

We will later use the convention that a (proper) cocycle embedding is a (proper)

cocycle morphism (φ,u) with the property that φ is injective. Moreover a (proper)

cocycle conjugacy is a (proper) cocycle morphism (φ,u) with the property that φ is an

isomorphism. We write ≃cc for the relation of cocycle conjugacy.

Notation 1.3. We say that an action β:G↷B is strongly stable if (B, β) is (gen-

uinely) conjugate to (B⊗K, β⊗idK).

As is easily observed (see [38, Remark 1.4]), an action β:G↷B is strongly stable if

and only if there is a sequence of isometries rn∈M(B)β such that

1=

∞∑
n=1

rnr
∗
n

holds in the strict topology. After exploring the literature it would appear that, at least

to the best of our knowledge, the following simple observation is so far unknown.(4) We

(4) There seems to be evidence suggesting that the analogous statement in the setting of von

Neumann algebras is known; see for example the proof of [78, Theorem 6.1 (2)]. Our method of proof

would appear to suitably translate back to that context to give an elegant approach to that analogous
result.
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note that this is the one and only spot in the entire article that refers to twisted G-

actions instead of genuine actions, so we deliberately stated Definition 1.2 above only for

genuine actions. Before delving into the proof below, the reader may hence either choose

to check out [107, Definitions 1.1 and 1.10], or pretend like one has w=1 below.

Proposition 1.4. Let B be a stable C∗-algebra. Then, we have that every twisted

action (β,w):G↷B is cocycle conjugate to (β⊗idK,w⊗1):G↷B⊗K. In particular,

every action on a stable C∗-algebra is cocycle conjugate to a strongly stable action.

Proof. Since B is stable, we may find a sequence of isometries rn∈M(B) such that

∞∑
n=1

rnr
∗
n=1

holds in the strict topology. Let {ej,k}j,k⩾1 be a set of matrix units generating the

compacts K. We consider the isomorphism

Λ:B⊗K−!B,

b⊗ej,k 7−! rjbr
∗
k.

We moreover consider the strictly continuous map

U:G−!U(M(B)),

g 7−!Ug =
∞∑
n=1

rnβg(rn)
∗.

We claim that (Λ,U) is a cocycle conjugacy (B⊗K, β⊗idK,w⊗1)≃cc(B, β,w). Since

Λ is an isomorphism, we only need to verify the equivariance condition and the cocycle

condition. The first follows because we can compute, for all j, k⩾1, b∈B and g∈G, that

Ad(Ug)�βg �Λ(b⊗ej,k)=Ugβg(rjbr∗k)U∗
g = rjβg(b)r

∗
k =Λ�(βg⊗idK)(b⊗ej,k).

The cocycle condition follows as we compute, for all g, h∈G, that

Ugβg(Uh)wg,hU∗
gh=

∞∑
n,m=1

rnβg(rn)
∗βg(rm)(βg �βh)(rm)∗wg,hU∗

gh

=

∞∑
n=1

rnwg,hβgh(rn)
∗U∗

gh

=

∞∑
n=1

rnwg,hr
∗
n

=Λ(wg,h⊗1M(K)).

This finishes our proof.
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Remark 1.5. By the Packer–Raeburn stabilization technique [85, §3], it follows as a
consequence of the above that, when B is a stable C∗-algebra, then every twisted action

on B is exterior equivalent to a genuine action. As far as we are aware, this has not been

observed before.

We shall now recall some necessary background on equivariantKK-theory. Through-

out the paper, the main focus lies on the Cuntz–Thomsen picture [21], [23], [48], [109].

Definition 1.6. (Cf. [109, §3]) Let α:G↷A and β:G↷B be two actions on C∗-

algebras such that A is separable and B is σ-unital. An (α, β)-Cuntz pair is a pair of

cocycle representations

(φ,u), (ψ, v) : (A,α)! (M(B⊗K), β⊗idK),

such that the pointwise differences φ−ψ and u−v take values in B⊗K.(5) Whenever β is

assumed to be strongly stable, we also allow (B, β) in place of (B⊗K, β⊗idK) appearing
in the definition of an (α, β)-Cuntz pair.

Definition 1.7. (Cf. [109, Lemma 3.4]) Let β:G↷B be an action on a C∗-algebra.

Suppose that there exists a unital inclusion O2⊆M(B)β . For two isometries t1, t2∈
M(B)β with t1t

∗
1+t2t

∗
2=1, we may consider the β-equivariant ∗-homomorphism

M(B)⊕M(B)−!M(B),

b1⊕b2 7−! b1⊕t1,t2 b2 := t1b1t
∗
1+t2b2t

∗
2.

Up to unitary equivalence with a unitary in M(B)β , this ∗-homomorphism does not

depend on the choice of t1 and t2.(
6) One refers to the element b1⊕t1,t2 b2 as the Cuntz

sum of the two elements b1 and b2 (with respect to t1 and t2). Now let α:G↷A be another

action on a C∗-algebra, and (φ,u), (ψ, v): (A,α)!(M(B), β) two cocycle representations.

We likewise define the (pointwise) Cuntz sum

(φ,u)⊕t1,t2 (ψ, v)= (φ⊕t1,t2ψ,u⊕t1,t2v): (A,α)−! (M(B), β),

which is easily seen to be another cocycle representation. As its unitary equivalence class

does not depend on the choice of t1 and t2, we will often omit t1 and t2 from the notation

if it is clear from context that a given statement is invariant under said equivalence.

(5) In Thomsen’s article it was also assumed that the map u−v is norm-continuous. This turns

out to be redundant; see [107, Proposition 6.9].
(6) If v1, v2∈M(B)β are two other isometries with v1v∗1+v2v

∗
2=1, then the unitary equivalence

between “⊕t1,t2” and “⊕v1,v2” is implemented by w=t1v∗1+t2v
∗
2∈M(B)β .
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Notation 1.8. Given a C∗-algebra B, we denote B[0, 1]=C[0, 1]⊗B. If one has an

action β:G↷B, we consider the obvious G-action on B[0, 1] given by

β[0, 1]= idC[0,1]⊗β.

Definition 1.9. (See [109, §3] and [38, §1]) Let A be a separable C∗-algebra and B

be a σ-unital C∗-algebra. For two actions α:G↷A and β:G↷B, let EG(α, β) denote

the set of all (α, β)-Cuntz pairs.

Two elements ((φ0,u0), (ψ0, v0)) and ((φ1,u1), (ψ1, v1)) in EG(α, β) are called ho-

motopic, abbreviated

((φ0,u0), (ψ0, v0))∼h ((φ1,u1), (ψ1, v1)),

if there exists an (α, β[0, 1])-Cuntz pair that restricts to ((φ0,u0), (ψ0, v0)) upon eval-

uation at 0∈[0, 1], and restricts to ((φ1,u1), (ψ1, v1)) upon evaluation at 1∈[0, 1]. An

(α, β)-Cuntz pair of the form ((φ,u), (ψ, v)) with φ=ψ=0 is called a cocycle pair and is

denoted by (u, v) with slight abuse of notation. We define EG0 (α, β) as the set of all an-

chored (α, β)-Cuntz pairs, i.e., those ((φ,u), (ψ, v))∈EG(α, β) such that (u, v)∼h(1,1).
For any unital inclusion O2⊆M(B⊗K)β⊗idK with generating isometries t1 and t2,

one can perform the Cuntz addition for two (α, β)-Cuntz pairs as

((φ0,u0), (ψ0, v0))⊕t1,t2 ((φ1,u1), (ψ1, v1))

= ((φ0,u0)⊕t1,t2 (φ1,u1), (ψ0, v0)⊕t1,t2 (ψ1, v1)).

This Cuntz pair is independent of the choice of t1 and t2 up to homotopy; see [110,

Lemma 3.4].

Remark 1.10. (See [38, Proposition 1.12]) The quotient EG(α, β)/∼h becomes an

abelian group with Cuntz addition. The homotopy classes of cocycle pairs form a

subgroup Hβ . It was proved by Thomsen in [109, Theorem 3.5] that the group quo-

tient of EG(α, β)/∼h modulo Hβ is naturally isomorphic to KKG(α, β). For an (α, β)-

Cuntz pair consisting of (φ,u) and (ψ, v), we denote its associated equivalence class in

KKG(α, β) by [(φ,u), (ψ, v)]. Under this identification, one has that the inclusion map

EG0 (α, β)⊆EG(α, β) also induces a natural isomorphism of abelian groups

EG0 (α, β)/∼h∼=KKG(α, β).

In other words, KKG(α, β) may be defined as the abelian group of homotopy classes of

anchored (α, β)-Cuntz pairs.
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Remark 1.11. Thomsen explicitly constructs the aforementioned isomorphism (de-

scribed just before [109, Theorem 3.5]). In [107, §6] this description was revisited in

detail and used to show that, under certain conditions, compositions of cocycle mor-

phisms are compatible with the Kasparov product. In this paper we need that this holds

for arbitrary compositions of proper cocycle morphisms, so let us briefly recall again the

functoriality of KKG both in the Kasparov picture and the Cuntz–Thomsen picture.

Given an action β:G↷B and a β-cocycle u:G!U(M(B)), we denote by Bu the Hilbert

(B, β)-module that is equal to B as an ordinary Hilbert right-B-module, but is equipped

with the continuous linear G-action given by g ·b:=ugβg(b) for all g∈G and b∈B. For

any cocycle morphism (φ,u):(A,α)!(B, β), one has that (Bu, φ, 0) is a Kasparov triple,

and one defines KKG(φ,u)∈KKG(α, β) as its equivalence class; see [107, Definition 6.3].

Under Thomsen’s identification above, the element KKG(φ,u) is the class associated to

the (α, β)-Cuntz pair

((φ⊗e1,1,u⊗e1,1+(1−e1,1)), (0,u⊗e1,1+(1−e1,1)).

If (φ,u) happens to be proper, then the second cocycle above can also be chosen to be

trivial; see [107, Proposition 6.14]. Note that these two different ways of associating a

Cuntz pair to a proper cocycle morphism might give different classes in EG(α, β)/∼h,
but they agree in KKG(α, β).

Proposition 1.12. Let (φ,u): (A,α)!(B, β) be a cocycle morphism. Then, we have

that KKG(φ,u) is represented by the Kasparov triple (φ(A)Bu, φ, 0).

Proof. By the above remark, it suffices to show that (φ(A)Bu, φ, 0) and (Bu, φ, 0)

are homotopic in the sense of [5, Definition 17.2.2]. Let

D= {f ∈C([0, 1], B) : f(0)∈φ(A)B}

be the equivariant Hilbert (B[0, 1], β[0, 1])-module with G-action (g ·f)(t)=ugβg(f(t)).
Let Φ:A!K(D) be the representation where Φ(a) is given by pointwise multiplication

from the left by φ(a). Then, (D,Φ, 0) is the desired homotopy.

Corollary 1.13. (Cf. [107, Proposition 6.5]) Let α:G↷A, β:G↷B and γ:G↷C

be actions on separable C∗-algebras. Let (φ,u): (A,α)!(B, β) and (ψ, v): (B, β)!(C, γ)

be proper cocycle morphisms. Then,

KKG(φ,u)⊗KKG(ψ, v)=KKG((ψ, v)�(φ,u))∈KKG(α, γ).

Proof. Let w=φ†(u)v:G!U(1+C) be the induced γ -cocycle such that

(ψ, v)�(φ,u)= (ψ�φ,w).
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Since the KK-elements are in this instance represented by Kasparov triples of a specific

form, their Kasparov product can be described as a balanced tensor product as in [5,

Example 18.4.2]. In light of Proposition 1.12, the Kasparov product

KKG(φ,u)⊗KKG(ψ, v)

is represented by the triple (E, κ, 0), where

E=φ(A)Bu⊗ψψ(B)Cv

is equipped with the tensor product G-action, and κ=φ⊗1. We have

E∼=(ψ�φ)(A)Cw

via b⊗c 7!ψ(b)c as Hilbert right-C-modules, and under this identification the map κ

corresponds to ψ�φ. This map is actually equivariant because an element of the form

E ∋ g ·(b⊗c)=ugβg(b)⊗vgγg(c)

is mapped to the product

ψ(ugβg(b))vgγg(c)=ψ†(ug)ψ(βg(b))vg︸ ︷︷ ︸
=vgγg(ψ(b))

γg(c)=wgγg(ψ(b)c)= g ·(ψ(b)c).

So, appealing to Proposition 1.12 again, we have found an identification with a Kasparov

triple representing the composition (ψ, v)�(φ,u).

Definition 1.14. Let (φ,u), (ψ, v): (A,α)!(B, β) be two proper cocycle morphisms.

We say that (φ,u) and (ψ, v) are properly unitarily equivalent if there exists a unitary

u∈U(1+B), with ψ=Ad(u)�φ and vg=uugβg(u)
∗ for all g∈G.

Definition 1.15. Let (φ,u), (ψ, v): (A,α)!(M(B), β) be two cocycle representa-

tions. We write

(φ,u)∼asymp (ψ, v),

if there exists a norm-continuous path u: [0,∞)!U(M(B)) such that

• ψ(a)= lim
t!∞

utφ(a)u
∗
t for all a∈A;

• ψ(a)−utφ(a)u∗t ∈B for all a∈A and t⩾0;

• lim
t!∞

max
g∈K

∥vg−utugβg(ut)∗∥=0 for all compact sets K⊆G;

• vg−utugβg(ut)∗∈B for all t⩾0 and g∈G.
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If it is possible to choose u to have its range in U(1+B), then (φ,u) and (ψ, v) are called

properly asymptotically unitarily equivalent. If it is additionally possible to arrange u0=1,

then we say that (φ,u) and (ψ, v) are strongly asymptotically unitarily equivalent. If B

is unital to begin with, we usually omit the word “properly” above.

Since we will appeal to the following technical result in various places, we shall state

it here for subsequent use.

Theorem 1.16. (See [107, Theorem 5.6]) Let α:G↷A be an action on a separa-

ble C∗-algebra, and let δ:G↷D be a strongly self-absorbing action(7) on a (necessarily

strongly self-absorbing [112]) C∗-algebra. Suppose that α, or δ, is equivariantly Jiang–Su

stable.(8) Then, α≃ccα⊗δ if and only if the equivariant first-factor embedding

idA⊗1D: (A,α)−! (A⊗D, α⊗δ)

is strongly asymptotically unitarily equivalent to a proper cocycle conjugacy.

Definition 1.17. Suppose that there exists a unital inclusion O2⊆M(B)β . Let

(φ,u), (ψ, v): (A,α)!(M(B), β) be two cocycle representations. We say that (φ,u) ab-

sorbs (ψ, v) if (φ⊕ψ,u⊕v)∼asymp(φ,u). A cocycle representation is called absorbing, if

it absorbs every cocycle representation.

We will in some instances make use of the following useful fact due to Kasparov

concerning quasicentral approximate units coming from ideals invariant under a group

action.

Lemma 1.18. (See [64, Lemma 1.4] and its proof) Let β:G↷B be an action on a σ-

unital C∗-algebra and let en∈B be any countable increasing approximate unit. Then, for

any separable C∗-subalgebra D⊆M(B), there exists a countable increasing approximate

unit of positive contractions hn∈B belonging to the convex hull of {en :n⩾1} satisfying

lim
n!∞

∥[hn, d]∥=0 and lim
n!∞

max
g∈K
∥hn−βg(hn)∥=0

for all d∈D and all compact sets K⊆G.

Similarly to how we formed Cuntz sums of two elements earlier, we may also form

countably infinite sums by a similar method if the underlying action is strongly stable.

Definition 1.19. Suppose that β is strongly stable. Let tn∈M(B)β be any sequence

of isometries such that
∞∑
n=1

tnt
∗
n=1

(7) Here, we use the definition given in [107, §5].
(8) In particular, this is the case if α≃ccα⊗idO∞ or δ≃ccδ⊗idO∞ .
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in the strict topology. Then, we have a β-equivariant ∗-homomorphism

ℓ∞(N,M(B))−!M(B),

(bn)n⩾1 7−!
∞∑
n=1

tnbnt
∗
n,

which does not depend on the choice of tn up to unitary equivalence with a unitary in

M(B)β .(9) For any sequence of cocycle representations (φ(n),u(n)): (A,α)!(M(B), β),

we may hence define the countable sum

(Φ,U)=
∞⊕
n=1

(φ(n),u(n)): (A,α)−! (M(B), β)

via the pointwise strict limits

Φ(a)=
∞∑
n=1

tnφ
(n)(a)t∗n and Ug =

∞∑
n=1

tnu
(n)
g t∗n.

Up to equivalence with a unitary inM(B)β , this cocycle representation does not depend

on the choice of (tn)n. In particular, in the special case that (φ(n),u(n))=(φ,u) for

all n, we denote the resulting countable sum by (φ∞,u∞) and call it the infinite repeat

of (φ,u).

Definition 1.20. Let β:G↷B be an action on a C∗-algebra. We denote by ℓ∞β (N, B)

the C∗-algebra of those B -valued bounded sequences (bn) such that the map [g 7!
(βg(bn))n] is continuous, and consider the (β-continuous) sequence algebra

B∞,β = ℓ∞β (N, B)/c0(N, B),

which carries an induced continuous action β∞:G↷B given by pointwise application of

β. Noting that B canonically embeds as (equivalence classes of) constant sequences, the

(β-continuous) central sequence algebra is

F∞,β(B)= (B∞,β∩B′)/(B∞,β∩B⊥),

which carries an induced continuous action β̃∞:G↷F∞,β(B). Note that, if B is σ-unital,

then F∞,β(B) is unital, and the unit is represented by any sequential approximate unit

of B.

(9) Similarly as before, if vn∈M(B)β is another sequence of isometries satisfying the same relation,

then the unitary

w=

∞∑
n=1

tnv
∗
n

implements this equivalence.
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The better-known object B∞ is recovered upon choosing β=id. Note that any action

β as above induces an algebraic G-action on B∞, the equicontinuous elements of which

can be identified with the elements in B∞,β ; see [8, Theorem 2].

Lemma 1.21. Let β:G↷B be a strongly stable action on a C∗-algebra. Then,

for every σ-unital β∞-invariant C∗-subalgebra D⊆B∞,β , there exists an equivariant ∗-
homomorphism ι: (D⊗K, β∞⊗idK)!(B∞,β , β∞) such that ι(d⊗e11)=d for all d∈D.

Proof. Let rn∈M(B)β be a sequence of isometries such that 1=
∑∞
n=1 rnr

∗
n. For

each k⩾0, we define another such sequence via

r
(k)
1 =

k∑
j=1

rjr
∗
j+rk+1

∞∑
ℓ=1

rℓr
∗
ℓ+k,

and

r(k)n = rn+k for n⩾ 2.

Then, we have r
(k)
1 !1 in the strict topology. By using that D has a strictly positive

element, we may find an increasing sequence of numbers ℓk such that, if we consider

sn= [(r(ℓk)n )k]∈ (M(B)β)∞,

then we have s1d=ds1=d for all d∈D. Using this fact, we can proceed as in the proof

of Proposition 1.4 and define ι:D⊗K!B∞,β via ι(d⊗ek,ℓ)=skds∗ℓ , which satisfies the

desired property.

We end this preliminary section with a brief discussion of amenability for actions.

For actions on von Neumann algebras, this concept has long been around due to work

of Anantharaman–Delaroche [1], which provided a rather straightforward candidate of

amenability for C∗-dynamics over discrete groups. After Suzuki recently demonstrated

that this theory applies to interesting examples on simple C∗-algebras [97] (contrary to

the case of factors), some attention was dedicated to flesh out the correct concept for

general C∗-dynamics by Buss–Echterhoff–Willett [10], [11]. The theory was subsequently

enriched further by work of Suzuki [98], [99] and Ozawa–Suzuki [84]. By now, it is clear

that amenability can be defined in various equivalent ways, and we use the version most

useful to us, which is also known as the quasicentral approximation property.

Definition 1.22. (Cf. [84, Definition 2.11]) Let α:G↷A be an action on a C∗-algebra.

Let us consider Cc(G,A) equipped with the action ᾱ:G↷Cc(G,A) via

ᾱg(f)(h)=αg(f(g
−1h)).
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Given a Haar measure µ on G, let us equip Cc(G,A) with the A-valued inner product

given by

⟨f | g⟩=
∫
G

f∗g dµ.

The resulting norm on Cc(G,A) shall be denoted as ∥ · ∥2. We say that α is amenable, if

there exists a net ζi∈Cc(G,A) such that

∥ζi∥2 ⩽ 1, ⟨ζi | ζi⟩a! a, ∥aζi−ζia∥2! 0, max
g∈K
∥(ζi−ᾱg(ζi))a∥2! 0

for all a∈A and compact sets K⊆G.

Remark 1.23. In the context of working with nets such as above coming from

amenability of a given action, we will subsequently use without further mention the

following simple observation. The two properties

1⩾ ⟨ζi | ζi⟩
strictly−−−−!1 and ∥aζi−ζia∥2! 0

imply in conjunction that ⟨ζi |aζi⟩!a for all a∈A. Furthermore, we can also conclude

that

⟨ζi | dζi⟩
strictly−−−−! d for all d∈M(A),

as follows from considering that, for all a∈A and large enough i, one has

⟨ζi | dζi⟩a= ⟨ζi | dζia⟩≈ ⟨ζi | daζi⟩≈ da,

and analogously a⟨ζi |dζi⟩≈ad. Finally, if u is an α-cocycle, it is easy to check that

max
g∈K
∥(ζi−ᾱug (ζi))a∥2! 0

for all a∈A and all compact sets K⊆G, and thus the net ζi also witnesses amenability of

the perturbed action αu. In particular, amenability is preserved under cocycle conjugacy.

Remark 1.24. We will use several times without reference that, for any f, g∈Cc(G,A)
and every norm-bounded continuous function h:G!A, one has

∥⟨f, hg⟩∥⩽ sup
t∈suppf∩suppg

∥h(t)∥ ∥f∥2 ∥g∥2,

by the Cauchy–Schwarz inequality. Here, the product hg is to be understood as pointwise.
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2. Approximate 1-domination of cocycle representations

Going forward, we let A be a separable C∗-algebra and B be a σ-unital C∗-algebra,

unless specified otherwise.

Definition 2.1. (Cf. [38, Definition 3.3]) Let

(φ,u), (ψ, v): (A,α)−! (M(B), β)

be two cocycle representations. We say that (ψ, v) is weakly contained in (φ,u) if the

following is true. For all compact sets K⊆G and F⊂A, every ε>0 and every contraction

b∈B, there exists a collection of elements {ck :k=1, ..., N}⊂B satisfying

max
g∈K

∥∥∥∥b∗vgβg(b)− N∑
k=1

c∗kugβg(ck)

∥∥∥∥⩽ ε (2.1)

and

max
a∈F

∥∥∥∥b∗ψ(a)b− N∑
k=1

c∗kφ(a)ck

∥∥∥∥⩽ ε. (2.2)

If it is always possible to choose N=1, then we say that (φ,u) approximately 1-dominates

(ψ, v).(10) If (φ,u) and (ψ, v) weakly contain each other, we say that they are weakly

equivalent.

Remark 2.2. For an application later, we record a known result in the context of

the above definition when G={1}. Suppose that A and B are separable C∗-algebras

with B∼=B⊗O∞⊗K, and φ,ψ:A!M(B) are two ∗-homomorphisms with φ(A)⊆B. If

φ is full and ψ is weakly nuclear,(11) then, for every contraction b∈B, one can find c∈B
satisfying condition (2.2) (with N=1) by [71, Theorem 7.21] and [37, Proposition 3.12].

By [71, Lemma 7.4], one gets that (φ,1) approximately 1-dominates (ψ,1) in the case

G={1}.

Definition 2.3. (Cf. [38, Notation 2.2]) Let β:G↷B be an action on a C∗-algebra.

We denote byMβ(B) the C∗-subalgebra consisting of those elements x∈M(B) such that

{x−βg(x):g∈G}⊂B.(12) The canonical extension of β to an action on this C∗-algebra

is in fact point-norm continuous.

(10) We may sometimes omit the “1-” for convenience, since this causes no notational conflicts

within this article. We note however, that “approximately dominates” may in general conflict with
definitions in other sources.

(11) This means that for all contractions b∈B, the completely positive contractive (c.p.c.) map

b∗ψ( ·)b is nuclear.
(12) This is not be confused with the algebra M(B)β of genuine fixed points; see Notation 1.1.
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Lemma 2.4. Let α:G↷A and β:G↷B be two actions on C∗-algebras, where A is

separable. Suppose that β is strongly stable. Let

(φ,u), (ψ, v): (A,α)−! (B, β)

be proper cocycle morphisms. Suppose there exists a sequence of contractions sn∈B such

that, for every a∈A and every compact set K⊆G, the following conditions hold :

(i) ∥s∗nφ(a)sn−ψ(a)∥!0;

(ii) max
g∈K
∥s∗nugβg(sn)−vgs∗nsn∥!0;

(iii) max
g∈K
∥s∗nsn−βg(s∗nsn)∥!0;

(iv) max
g∈K
∥(1−s∗nsn)(vg−1)∥!0.

Then, there exists a sequence of isometries Sn∈Mβ(B) such that

lim
n!∞

∥φ(a)Sn−Snψ(a)∥ and lim
n!∞

max
g∈K
∥ugβg(Sn)−Snvg∥=0

for all a∈A and every compact set K⊆G.

Proof. We claim that

∥φ(a)sn−snψ(a)∥! 0 and max
g∈K
∥ugβg(sn)−snvg∥! 0 (2.3)

holds in place of the first two properties. The first property follows from applying (i)

and [36, Lemma 3.8] to the case D=B∞ and v=[(sn)n∈N]. This lemma also implies that

s∗nsn acts like an approximate unit on ψ(A). For the second property, we observe, for

every compact set K⊆G, that

lim sup
n!∞

max
g∈K
∥snvg−ugβg(sn)∥2

= lim sup
n!∞

max
g∈K
∥(snvg−ugβg(sn))∗(snvg−ugβg(sn))∥

= lim sup
n!∞

max
g∈K
∥v∗gs∗nsnvg−βg(sn)∗u∗

gsnvg−v∗gs∗nugβg(sn)+βg(s∗nsn)∥

(by (ii) and (iii)) = lim sup
n!∞

max
g∈K
∥v∗gs∗nsnvg−s∗nsn∥

= lim sup
n!∞

max
g∈K
∥(v∗g−1)s∗nsn+v∗gs∗nsn(vg−1)∥

(by (iv)) =max
g∈K
∥v∗g−1+v∗g(vg−1)∥

=0.

Since β is strongly stable, we can find two sequences of isometries r1,n, r2,n∈M(B)β such

that r1,nr
∗
1,n+r2,nr

∗
2,n=1 and r1,n!1 in the strict topology; cf. the proof of Lemma 1.21.
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By passing to a subsequence of r1,n and r2,n, if necessary, let us additionally assume that

∥(1−r1,n)sn∥!0. We consider

Sn= r1,nsn+r2,n(1−s∗nsn)1/2 ∈Mβ(B). (2.4)

Then, Sn is an isometry. Clearly, b(Sn−sn)!0 for all b∈B. Since the sequence s∗nsn

acts like an approximate unit on ψ(A), we also have (Sn−sn)ψ(a)!0 for all a∈A. We

can in particular observe, for every a∈A and large enough n, that

φ(a)sn−snψ(a)≈φ(a)Sn−Snψ(a).

For large enough n, property (iii) implies that

(1−s∗nsn)1/2≈ (1−βg(s∗nsn))1/2,

and therefore, by (2.4),

Sn−βg(Sn)≈ sn−βg(sn).

Using that u takes values in U(1+B), we have

(ug−1)βg(sn)≈ (ug−1)βg(Sn)

uniformly over compact sets if n is sufficiently large. Given property (iv), we also have

sn(vg−1)≈Sn(vg−1).

Thus, we see for large enough n that

snvg−ugβg(sn)= sn−βg(sn)+sn(vg−1)−(ug−1)βg(sn)

≈Sn−βg(Sn)+Sn(vg−1)−(ug−1)βg(Sn)

=Snvg−ugβg(Sn).

Note that these approximations are uniform over compact subsets in G. The claim follows

with (2.3).

Lemma 2.5. Let α:G↷A and β:G↷B be two actions on C∗-algebras, where A is

separable and B is σ-unital. Let

(φ,u), (ψ, v): (A,α)−! (B, β)

be two cocycle morphisms such that (φ,u) approximately 1-dominates (ψ, v). Then, there

exists a sequence of contractions sn∈B such that s∗nsn is a (not necessarily increasing)

approximately β-invariant approximate unit, and moreover

lim
n!∞

∥s∗nφ(a)sn−ψ(a)∥=0 and lim
n!∞

max
g∈K
∥s∗nugβg(sn)−vgs∗nsn∥=0

for all a∈A and every compact set K⊆G.
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Proof. Let en∈B be any countable increasing approximate unit. Then, (en, en)∈
B⊕B is a countable increasing approximate unit as well. If we equip B⊕B with the

action β⊕βv, then we may apply Lemma 1.18 and conclude that there exists a countable

approximate unit bn∈B that is both asymptotically β -invariant and asymptotically βv-

invariant. In particular, this implies that bn approximately commutes with the values

of v, uniformly over compact sets, as n!∞.

We can now apply Definition 2.1 to b=bn and increasing K, F and decreasing ε to

find sequences of contractions sn∈B such that

lim
n!∞

s∗nφ(a)sn= lim
n!∞

bnψ(a)bn=ψ(a), a∈A, (2.5)

and

lim
n!∞

max
g∈K
∥s∗nugβg(sn)−bnvgβg(bn)∥=0 (2.6)

for every compact set K⊆G. Applying this relation to the particular case g=1G and

keeping in mind that bn approximately commutes with the values of v, we see that s∗nsn

approximately equals b2n, and therefore has the stated properties.

Corollary 2.6. Let α:G↷A and β:G↷B be two actions on C∗-algebras, where

A is separable and B is σ-unital. Suppose that β is strongly stable. Let

(φ,u), (ψ, v): (A,α)−! (B, β)

be two proper cocycle morphisms such that (φ,u) approximately 1-dominates (ψ, v).

Then, there exists a sequence of isometries Sn∈Mβ(B) such that

lim
n!∞

∥φ(a)Sn−Snψ(a)∥ and lim
n!∞

max
g∈K
∥ugβg(Sn)−Snvg∥=0

for all a∈A and every compact set K⊆G.

Proof. Combine Lemmas 2.4 and 2.5.

Lemma 2.7. Let β:G↷B be a strongly stable action on a σ-unital C∗-algebra. Let

W∈U(Mβ(B)) be a unitary such that there exists a norm-continuous path

U : [0,∞)−!U(Mβ(B))

with U0∈M(B)β and

lim
t!∞

max
g∈K
∥Utβg(Ut)∗−Wβg(W )∗∥=0

for every compact set K⊆G. Then, there exists a norm-continuous unitary path

v: [0,∞)−!U(1+B),
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with v0=1, such that

lim
t!∞

max
g∈K
∥vtβg(vt)∗−Wβg(W )∗∥=0

for every compact set K⊆G, and
lim
t!∞

vt=W

holds in the strict topology.

In particular, for every V ∈U(M(B)β), the equivariant automorphism Ad(V ) is

strongly asymptotically unitarily equivalent to idB.

Proof. Since β is strongly stable, we choose (cf. [38, Proposition 1.9]) strictly con-

tinuous paths of isometries r1, r2 :[0,∞)!M(B)β satisfying the relation

r
(t)
1 r

(t)∗
1 +r

(t)
2 r

(t)∗
2 =1

for all t⩾0, as well as r
(t)
1 !1 strictly as t!∞. Consider the strictly continuous path of

unitaries z: [0,∞)!U(M(B)β) given by

zt= r
(t)
1 r

(0)∗
1 +r

(t)
2 r

(0)∗
2 .

We observe, for all b∈B, that

lim
t!∞

ztr
(0)
1 br

(0)∗
1 z∗t = lim

t!∞
b⊕

r
(t)
1 ,r

(t)
2

0= b. (2.7)

We consider the norm-continuous path X: [0,∞)!U(Mβ(B)) given by

Xt=W⊕
r
(0)
1 ,r

(0)
2
U∗
0W

∗Ut.

Then,

X0 =W⊕
r
(0)
1 ,r

(0)
2
U∗
0W

∗U0

is norm-homotopic to the unit inside U(Mβ(B)) via

X0 =(1⊕
r
(0)
1 ,r

(0)
2
U∗
0 )(W⊕r(0)1 ,r

(0)
2
W ∗U0)

∼h (U∗
0⊕r(0)1 ,r

(0)
2

1)(W⊕
r
(0)
1 ,r

(0)
2
W ∗U0)

= (U∗
0W⊕r(0)1 ,r

(0)
2

1)(1⊕
r
(0)
1 ,r

(0)
2
W ∗U0)

∼h (U∗
0W⊕r(0)1 ,r

(0)
2

1)(W ∗U0⊕r(0)1 ,r
(0)
2

1)

=1.
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Thus, we may apply [38, Lemma 4.3] (with D=0) and see that there is a norm-continuous

path y: [0,∞)!U(1+B), with y0=1, such that

lim
t!∞

max
g∈K
∥ytβg(yt)∗−Xtβg(Xt)

∗∥=0 (2.8)

for every compact set K⊆G, and

yt−Xt
t!∞−−−−! 0 strictly. (2.9)

We claim that the path vt=ztytz
∗
t does the job. First, we compute for all b∈B that

lim
t!∞

vtb

= lim
t!∞

ztytz
∗
t b

(by (2.7)) = lim
t!∞

ztyt(r
(0)
1 br

(0)∗
1 )z∗t

(by (2.9)) = lim
t!∞

ztXtr
(0)
1 br

(0)∗
1 z∗t

= lim
t!∞

ztr
(0)
1 Wbr

(0)∗
1 z∗t

(by (2.7)) =Wb.

Similarly, limt!∞ bvt=bW , so vt!W strictly. Using that Wβg(W )∗∈U(1+B) for all

g∈G, we observe that, for every compact set K⊆G,

lim
t!∞

max
g∈K
∥vtβg(vt)∗−Wβg(W )∗∥

(by (2.7)) = lim
t!∞

max
g∈K
∥vtβg(vt)∗−zt(Wβg(W )∗⊕

r
(0)
1 ,r

(0)
2

1)z∗t ∥

(as zt ∈M(B)
β
) = lim

t!∞
max
g∈K
∥ytβg(yt)∗−(Wβg(W )∗⊕

r
(0)
1 ,r

(0)
2

1)∥

(by (2.8)) = lim
t!∞

max
g∈K
∥Xtβg(Xt)

∗−(Wβg(W )∗⊕
r
(0)
1 ,r

(0)
2

1)∥

= lim
t!∞

max
g∈K
∥U∗

0W
∗Utβg(U

∗
tWU0)−1∥

(as U0 ∈M(B)
β
) = lim

t!∞
max
g∈K
∥W ∗Utβg(U

∗
tW )−1∥ = 0.

The “in particular” part follows by applying the result to V =W=Ut.

The following abstract absorption principle resembles and generalizes analogous

technical results appearing in the known proofs of the classical Kirchberg–Phillips the-

orem. As it was the case there, this will become a quintessential ingredient in our

uniqueness theorem later.
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Lemma 2.8. Let α:G↷A and β:G↷B be two actions on C∗-algebras, where A is

separable and B is σ-unital. Suppose that β is strongly stable. Let

(φ,u), (θ, y): (A,α)−! (B, β)

be two proper cocycle morphisms such that (φ,u) approximately 1-dominates (θ, y). Sup-

pose that there exists a unital embedding O2!M(B)β commuting with the range of θ

and y, and a unital embedding O∞!M(B)β commuting with the range of φ and u.

Then, (φ,u) and (φ⊕θ,u⊕y) are strongly asymptotically unitarily equivalent.(13)

Proof. Because of Corollary 2.6, we can find isometries Sn∈Mβ(B) with

lim
n!∞

∥φ(a)Sn−Snθ(a)∥=0 and lim
n!∞

max
g∈K
∥Snyg−ugβg(Sn)∥=0

for all a∈A and every compact set K⊆G. Since both (φ,u) and (θ, y) are proper cocycle

morphisms, we have automatically that

φ(a)Sn−Snθ(a)∈B and Snyg−ugβg(Sn)∈B.

By [38, Lemma 3.9 and Remark 3.10], it follows that there exists a norm-continuous path

of unitaries U : [0,∞)!U(Mβ(B)), with U0∈M(B)β , such that

lim
t!∞
∥φ(a)−Ut(φ⊕θ)(a)U∗

t ∥=0 and lim
t!∞

max
g∈K
∥ug−Ut(u⊕y)gβg(Ut)∗∥=0

for all a∈A and every compact set K⊆G. Applying [38, Corollary 4.4] to the unitary

path (UtU
∗
0 )t, one has that (φ,u) is strongly asymptotically unitarily equivalent to

Ad(U0)�(φ⊕θ,u⊕y),

and, by Lemma 2.7, the proof is complete.

3. Isometrically shift-absorbing actions

Remark 3.1. Let H be an infinite-dimensional separable Hilbert space. Recall [33]

that the Cuntz algebra O∞ is isomorphic to OH, the universal unital C∗-algebra gener-

ated by the range of a linear map s:H!OH subject to the relation s(ξ)∗s(η)=⟨ξ |η⟩·1

(13) Here “⊕” denotes the Cuntz sum. It is worth noticing right away that the choice of the

isometries used to form this sum has no effect on the resulting strong asymptotic unitary equivalence

class. This is a consequence of Lemma 2.7, since Cuntz sums with two different choices of isometries are
unitarily equivalent via an element in M(B)β .
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for all ξ, η∈H.(14) As a consequence, every unitary U on H gives rise to a unique

automorphism on OH such that s(ξ) is sent to s(Uξ) for all ξ∈H. The resulting assign-

ment U(H)!Aut(OH) is a group homomorphism which is continuous with respect to

the strong operator topology on the left and the point-norm topology on the right. Any

group action on O∞ that is conjugate to one factoring through this homomorphism is

said to be quasi-free.

Let HF=
⊕∞

n=0H⊗n be the Fock space and consider the linear map sF :H!B(HF )
given by sF (ξ)(x)=ξ⊗x for all ξ∈H, x∈H⊗n and all n⩾0. Then, sF gives rise to

the Fock representation π:OH!B(HF ), which is easily seen (and well-known) to be

irreducible. The vacuum state on OH is the vector state given by any fixed unit vector

in the one-dimensional subspace H⊗0 of HF .

Although the following is well-known, we provide the full justification for the reader’s

convenience.

Proposition 3.2. Every automorphism on OH induced by a unitary U∈U(H)\{1}
is outer, and the vacuum state is invariant.

Proof. To see this one can consider the Fock representation of OH as above. For

notional convenience we also denote sF (ξ)=ξ̂ in this proof. We see that the unitary

UF =

∞⊕
n=0

U⊗n ∈U(HF )

satisfies

Ad(UF )�sF (ξ)= sF (Uξ)

for all ξ∈H. By convention, U⊗0 is the identity map on the 1-dimensional subspace H⊗0,

and therefore the vacuum state is invariant. Note in particular that the gauge action

β:T↷π(OH) is implemented by the unitaries (z ·1)F for z∈T.
Now let us assume that the automorphism δ∈Aut(π(OH)) given by ξ̂ 7!Ûξ for all

ξ∈H is inner, say implemented by v∈π(OH). Then, UF v
∗ commutes with π(OH), and

so, by the irreducibility of π, we may assume v=UF ∈π(OH). We will lead this to a

contradiction. We first observe for all z∈T that UF commutes with (z1)F , and hence

βz(UF )= (zUz−1)F =UF .

By classical methods of Cuntz from [20], one observes that

π(OH)β =C1+span{ξ̂1ξ̂2 ... ξ̂nη̂∗n ... η̂∗1 :n⩾ 1 and ξ1, ..., ξn, η1, ..., ηn ∈H}.

(14) Here, we follow the convention that an inner product on a Hilbert space is linear in the second

variable instead of the first. This ensures that in the common language of right Hilbert modules over
C∗-algebras, every Hilbert space is a right C-Hilbert module in the obvious sense.
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Note that, for any η∈H, one has η̂∗|H⊗0=0 and

η̂∗(x1⊗...⊗xn)= ⟨η |x1⟩(x2⊗...⊗xn)

for all n⩾1 and elementary tensors x1⊗...⊗xn∈H⊗n. By assumption, we may find some

natural number N , a scalar λ0∈C and finitely many vectors

{ξℓ,m,n :n=1, ..., N, m=1, ..., kn and ℓ=1, ..., n}⊂H

and

{ηℓ,m,n :n=1, ..., N, m=1, ..., kn and ℓ=1, ..., n}⊂H

such that the element

a=λ01+

N∑
n=1

kn∑
m=1

ξ̂1,m,nξ̂2,m,n ... ξ̂n,m,nη̂
∗
n,m,n ... η̂

∗
1,m,n

satisfies ε:=∥a−UF ∥< 1
2∥U−1∥. We may thus conclude for all elementary tensors of unit

vectors x1⊗...⊗xN∈H⊗N the approximate equality

Ux1⊗...⊗UxN

=ε λ0(x1⊗...⊗xN )+

kN∑
m=1

⟨η1,m,N |x1⟩ ... ⟨ηN,m,N |xn⟩·(ξ1,m,N⊗...⊗ξN,m,N )

Now, let xN+1∈H be a specific unit vector such that ∥UxN+1−xN+1∥>2ε. Then, we

observe the approximate equalities

Ux1⊗...⊗UxN⊗UxN+1

=ε λ0(x1⊗...⊗xN⊗xN+1)

+

kN∑
m=1

⟨η1,m,N |x1⟩ ... ⟨ηN,m,N |xN ⟩·(ξ1,m,N⊗...⊗ξN,m,N⊗xN+1)

=ε Ux1⊗...⊗UxN⊗xN+1

Since all the vectors xj∈H are unit vectors, this leads to the inequality

∥UxN+1−xN+1∥⩽ 2ε,

a contradiction. We may thus finally conclude that δ is outer.

Remark 3.3. Let H be a separable infinite-dimensional Hilbert space. The construc-

tion of OH∼=O∞ is a special case of the construction of Pimsner from [87]. With this in

mind, the quasi-free actions δ:G↷OH are exactly the actions considered in [87, Corol-

lary 4.5 and Remark 4.10 (2)], and therefore the unital inclusion (C, idC)!(O∞, δ) is a

KKG-equivalence for every quasi-free action δ.
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Definition 3.4. Let G be a second-countable, locally compact group. Let us choose

a left-invariant Haar measure µ for G. We set

HG=L2(G,µ) and H∞
G = ℓ2(N)⊗̂HG,

both of which are separable Hilbert spaces, and at least the latter is infinite-dimensional.

Then, the left-regular representation λ:G!U(HG) is given by

λg(ξ)(h)= ξ(g−1h)

for all g, h∈G. The infinite repeat is denoted by λ∞:G!U(H∞
G ). For the rest of the

paper, we denote (using the notation from Remark 3.1) by γ:G↷O∞∼=OH∞
G

the quasi-

free action determined by γg �s=s�λ∞g for all g∈G.

Notation 3.5. Let A and B be two C∗-algebras. Let Z be a Hilbert A-B-module,

i.e., a right Hilbert B-module with B-valued inner product

⟨· | ·⟩= ⟨· | ·⟩B :Z×Z−!B

and a left-action of A; cf. [5, §13]. For any given Hilbert space H, the external tensor

product H⊗Z is then a Hilbert A-B-module after the obvious identifications A∼=C⊗A
and B∼=C⊗B. Suppose furthermore that α:G↷A and β:G↷B are two actions and

δ:G↷Z is a point-norm continuous action by linear isometries turning (Z, δ) into a Hilbert

(A,α)-(B, β)-module, i.e., satisfying the formulas

δg(az)=αg(a)δg(z), δg(zb)= δg(z)βg(b) and ⟨δg(z1) | δg(z2)⟩=βg(⟨z1 | z2⟩)

for all g∈G, a∈A, b∈B and z, z1, z2∈Z. If σ:G!U(H) is an SOT-continuous unitary

representation, we may obtain a point-norm continuous action σ⊗δ:G↷H⊗Z by linear

isometries. This turns (H⊗Z, σ⊗δ) into a Hilbert (A,α)-(B, β)-module as well. Of

special significance will be the two choices H=HG and H=H∞
G of Hilbert spaces, where

we denote

L2(G,Z)=HG⊗Z and L2
∞(G,Z)=H∞

G ⊗Z,

respectively. Recall from [64, §1.3] that L2(G,Z) contains the compactly supported

continuous functions Cc(G,Z) as a dense pre-Hilbert module. Unless specified otherwise,

we will always implicitly equipHG with the left-regular representation of G, andH∞
G with

its infinite repeat. In applications, we will usually encounter the case where A=B=Z,

the latter having the obvious B-valued inner product. We then denote, with slight abuse

of notation, β̄=λ⊗β:G↷L2(G,B), as well as β̄=λ∞⊗β:G↷L2
∞(G,B).
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Proposition 3.6. Let β:G↷C be an algebraic action on a C∗-algebra, and let

Cβ⊆C be the largest C∗-subalgebra on which β restricts to a point-norm continuous ac-

tion. Let B⊆C be a non-degenerate β-invariant C∗-subalgebra and A⊆M(B) be any

β-invariant C∗-subalgebra such that both restrictions β|B and β|A are point-norm con-

tinuous. Let H be a separable infinite-dimensional Hilbert space with an SOT-continuous

unitary representation σ:G!U(H). Suppose there is a linear σ-to-β-equivariant map

s:H−!M(C)∩A′

that satisfies the identity s(ξ)∗s(η)=⟨ξ |η⟩·1 for all ξ, η∈H. Then, there exists an equi-

variant isometric linear left A-module and right B-module map

θ: (H⊗AB, σ⊗β)−! (Cβ , β)

satisfying the identity

θ(ξ)∗θ(η)= ⟨ξ | η⟩B for all ξ, η ∈H⊗AB.

Proof. We consider the linear map on the algebraic tensor product

θ:H⊙AB−!C,

ξ⊗b 7−! s(ξ)b.

Since the range of s is in the relative commutant of A, we see that θ is indeed a left

A-module and right B-module map. It is obvious that βg �θ=θ�(σ⊗β)g for all g∈G,
and hence the range of the map above belongs to Cβ . If we can show that θ satisfies

the required inner product formula on H⊙AB, then θ is automatically isometric with

respect to the norm whose completion yields H⊗AB, in which case its unique continuous

extension will be the required map. Indeed, if we are given elements a
(i)
1 , ..., a

(i)
n ∈A,

b
(i)
1 , ..., b

(i)
n ∈B, for i=1, 2, and ξ1, ..., ξn, η1, ..., ηn∈H, then we can directly compute

θ

( n∑
j=1

ξj⊗a(1)j b
(1)
j

)∗
θ

( n∑
k=1

ηk⊗a(2)k b
(2)
k

)

=

n∑
j,k=1

(b
(1)
j )∗(a

(1)
j )∗s(ξj)

∗s(ηk)a
(2)
k b

(2)
k

=

n∑
j,k=1

(b
(1)
j )∗(a

(1)
j )∗a

(2)
k b

(2)
k ·⟨ξj | ηk⟩

=

〈 n∑
j=1

ξj⊗a(1)j b
(1)
j

∣∣∣∣ n∑
k=1

ηk⊗a(2)k b
(2)
k

〉
B

.
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The following dynamical condition is one of the key assumptions that enable the

classification via the techniques presented in this article.

Definition 3.7. Let β:G↷B be an action on a separable C∗-algebra. We say that

β is isometrically shift-absorbing if there is a linear equivariant map

s: (HG, λ)−! (F∞,β(B), β̃∞)

satisfying the identity s(ξ)∗s(η)=⟨ξ |η⟩·1 for all ξ, η∈HG.

Proposition 3.8. Let G be a second-countable, locally compact group with more

than one element.(15) Let β:G↷B be an action on a separable C∗-algebra, and let

γ:G↷O∞ be the action from Definition 3.4. The following conditions are equivalent :

(i) β is isometrically shift-absorbing ;

(ii) there exists a unital equivariant ∗-homomorphism from (O∞, γ) to (F∞,β(B), β̃∞);

(iii) there exists an equivariant linear B-bimodule map

θ: (L2
∞(G,B), β̄)−! (B∞,β , β∞)

satisfying θ(ξ)∗θ(η)=⟨ξ |η⟩B for all ξ, η∈L2
∞(G,B);

(iv) there exists an equivariant linear B-bimodule map

θ: (L2(G,B), β̄)−! (B∞,β , β∞)

satisfying θ(ξ)∗θ(η)=⟨ξ |η⟩B for all ξ, η∈L2(G,B).

.

Proof. We note right away that, due to the definition of the model action γ, it is

tautological that condition (ii) is equivalent to the existence of a linear equivariant map

s: (H∞
G , λ

∞)−! (F∞,β(B), β̃∞) (3.1)

satisfying the identity s(ξ)∗s(η)=⟨ξ |η⟩·1 for all ξ, η∈H∞
G . We have a canonical equivari-

ant isomorphism(16)

F∞(B)∼=M(B ·B∞ ·B)∩B′,

which (together with the last remark in Definition 1.20) gives the implications (ii)⇒ (iii)

in light of Proposition 3.6. The implication (iii)⇒ (iv) is obvious, because (L2(G,B), β̄)

embeds into (L2
∞(G,B), β̄).

(15) We assume this because the statement would need to be awkwardly adjusted otherwise, due
to the fact that being isometrically shift-absorbing is a vacuous condition if G={1}.

(16) This is [4, Proposition 1.5 (ii)], which originally goes back to [68, Proposition 1.9 (4) and (5)].

Since the isomorphism is natural, it is automatically equivariant with respect to any of the maps induced
from automorphisms of B.
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Now let us show (iv)⇒ (i). Suppose that a map θ is given as in (iv). Let hn∈B be

an increasing approximate unit satisfying maxg∈K ∥βg(hn)−hn∥!0 for every compact

set K⊆G. Then, we can consider the contractive linear maps sn:HG!B∞,β given by

sn(ξ)=θ(ξ⊗hn) for ξ∈HG. Then, given any b∈B and ξ, η∈HG, we can see that

sn(ξ)
∗sn(η)b= ⟨ξ | η⟩·h2nb! ⟨ξ | η⟩·b

and

sn(ξ)b−bsn(ξ)= θ(ξ⊗(hnb−bhn))! 0.

If K⊆G is a compact set and ξ∈H∞
G is any unit vector, then

max
g∈K
∥βg,∞(sn(ξ))−sn(λg(ξ))∥=max

g∈K
∥θ(λg(ξ)⊗(βg(hn)−hn))∥! 0.

By a standard reindexation trick, we may therefore come up with a contractive linear

map s:HG!B∞∩B′ satisfying the relations

s(ξ)∗s(η)b= ⟨ξ | η⟩b and β∞,g �s= s�λg

for all b∈B and g∈G. As s is equivariant and contractive, its image is contained in

B∞,β∩B′. The induced linear map s:HG!F∞,β(B) given by s(ξ)=s(ξ)+(B∞,β∩B⊥)

then witnesses isometric shift absorption.

We finally show that (i) implies (ii). Let s be a map as in the definition of isometric

shift-absorption. It is necessary to argue a bit differently, depending on whether G is

finite or not. Assume for now that G has infinitely many elements. Let

s×s:HG⊙HG−!F∞,β(B)

be the product map given on elementary tensors by (s×s)(ξ1⊗ξ2)=s(ξ1)s(ξ2). A straight-

forward computation gives that

(s×s)(ξ)∗(s×s)(η)= ⟨ξ | η⟩·1 for ξ, η ∈HG⊙HG,

and that

βg �(s×s)= (s×s)�(λg×λg) for g ∈G.

Thus, s×s extends to an equivariant linear map (HG⊗̂HG, λ×λ)!(F∞,β(B), β̃∞) with

the inner product condition. By Fell’s absorption principle, (H∞
G , λ

∞)∼=(HG⊗HG, λ×λ),
sinceHG is infinite-dimensional. Hence, a map as in (3.1) exists whenever G has infinitely

many elements, thus witnessing (ii).
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Still assuming (i), suppose now that G is a non-trivial finite group. Fix h∈G\{1}
and let

s1 :=
1

|G|1/2
∑
g∈G

s(δg)s(δg) and s2 :=
1

|G|1/2
∑
g∈G

s(δg)s(δgh)∈F∞,β(B).

It is straightforward to check that s1 and s2 are β̃∞-invariant isometries for which s∗1s2=0.

Thus, the fixed-point algebra F∞,β(B)β̃∞ is properly infinite. Equivalently, there is an

equivariant unital embedding (O∞, idO∞)!(F∞,β(B), β̃∞). Hence, there is an equivari-

ant linear map ŝ: (ℓ2(N),1)!(F∞,β(B), β̃∞) such that ŝ(ξ)∗ŝ(η)=⟨ξ |η⟩·1 for ξ, η∈ℓ2(N).
Arguing as for infinite groups, the product map ŝ×s realizes a map as in (3.1) and thus

(ii) is satisfied.

Proposition 3.9. Let G be a second-countable, locally compact group with more

than one element. Let β:G↷B be an action on a separable C∗-algebra. If β is isomet-

rically shift-absorbing and amenable, then β is equivariantly O∞-absorbing, i.e.,

β≃cc β⊗idO∞ .

Proof. Since G is not the trivial group, the Hilbert space HG has at least two

orthogonal unit vectors. If s:HG!F∞,β(B) is a linear map witnessing that β is isomet-

rically shift-absorbing, then the images of two such unit vectors are two isometries in

F∞,β(B)⊆F∞(B) with orthogonal ranges. Since B is separable, this means that there

exist two approximately central sequences of contractions t
(1)
n , t

(2)
n ∈B such that (t

(i)
n )∗t

(j)
n

strictly converges to δij ·1 for i, j=1, 2. We let θ be a map as in Proposition 3.8 (iv). Let

ε>0, and let K⊆G and F⊂B⩽1 be two compact sets. Let µ be a left-invariant Haar

measure on G. As β is amenable, there exists a function ζ∈Cc(G,B) with ∥ζ∥2⩽1 and

max
b∈F
∥bζ−ζb∥2+∥(1−⟨ζ | ζ⟩)b∥⩽ ε and max

g∈K
∥ζ−β̄g(ζ)∥2 ⩽ ε.

Let us denote R=supp(ζ)⊆G. Define elements ξ
(1)
n , ξ

(2)
n ∈Cc(G,B) via

ξ(i)n (h)=βh(t
(i)
n )ζ(h), h∈G and i=1, 2.

Here, we implicitly exploit the fact that Cc(G,B) is a Cb(G,B)-bimodule in an obvious

way, such that one has ∥fη∥22⩽∥f∥2∥η∥22 for all f∈Cb(G,B) and all η∈Cc(G,B). Denote

by oβ :B!Cb(G,B) the ∗-homomorphism given via oβ(b)(g)=βg(b) for all b∈B and g∈G.
Using this perspective, we can view ξ

(i)
n =oβ(t

(i)
n )ζ.

We note that, for h∈G and g∈K, one has

β̄g(ξ
(i)
n )(h)=βg(ξ

(i)
n (g−1h))=βg(βg−1h(t

(i)
n )ζ(g−1h))=βh(t

(i)
n )·β̄g(ζ)(h),
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and therefore

β̄g(ξ
(i)
n )(h)−ξ(i)n (h)=βh(t

(i)
n )·(β̄g(ζ)(h)−ζ(h)).

Thus we observe, for every g∈K, that

∥βg,∞(θ(ξ(i)n ))−θ(ξ(i)n )∥= ∥θ(β̄g(ξ(i)n )−ξ(i)n )∥

= ∥β̄g(ξ(i)n )−ξ(i)n ∥2

⩽ ∥β̄g(ζ)−ζ∥2

⩽ ε.

Furthermore we observe, for i, j=1, 2 and b∈F , that

∥θ(ξ(i)n )b−bθ(ξ(i)n )∥= ∥θ(ξ(i)n b−bξ(i)n )∥

= ∥ξ(i)n b−bξ(i)n ∥2

= ∥oβ(t(i)n )ζb−boβ(t(i)n )ζ∥2

⩽max
h∈R
∥[b, βh(t(i)n )]∥+∥oβ(t(i)n )ζb−oβ(t(i)n )bζ∥2

⩽max
h∈R
∥[b, βh(t(i)n )]∥+∥ζb−bζ∥2

⩽max
h∈R
∥[βh−1(b), t(i)n ]∥+ε

! ε

and

∥θ(ξ(i)n )∗θ(ξ(j)n )b−δijb∥= ∥⟨ξ(i)n | ξ(j)n ⟩b−δijb∥

=max
h∈R
∥(βh(t(i)n t(j)n )−δij)ζ(h)∥+δij ·∥(1−⟨ζ | ζ⟩)b∥

⩽max
h∈R
∥(βh(t(i)n t(j)n )−δij)ζ(h)∥+ε

! ε.

Clearly, we have ∥θ(ξ(i)n )∥⩽1 for all n⩾1 and i=1, 2. Since the triple (ε,K,F) was arbi-
trary, we can apply a standard diagonal sequence argument to obtain two contractions

w1, w2∈(B∞,β∩B′)β∞ such that w∗
iwjb=δijb for all b∈B and i, j=1, 2. The resulting

isometries vi=wi+(B∞,β∩B⊥) are then in F∞,β(B)β̃∞ and have orthogonal ranges. In

particular, we may obtain a unital inclusion O∞⊂F∞,β(B)β̃∞ (see, e.g., [93, Proposi-

tion 1.1.2]), which yields β≃ccβ⊗idO∞ by [102, Corollary 3.8].
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Remark 3.10. Note that the B-bimodule maps θ:L2
(∞)(G,B)!B∞,β (the notation

suggests that inserting the symbol∞ is optional) from Proposition 3.8 are automatically

M(B)-bimodule maps. One can verify this directly using approximate units, but here is

an alternative short argument using Cohen’s factorization property (see for instance [9,

Theorem 4.6.4]). In fact, by the factorization property, any element ξ∈L2
(∞)(G,B) can

be written as b1ξ0b2, for some b1, b2∈B and ξ0∈L2
(∞)(G,B). Hence, for every x∈M(B),

one has

xθ(ξ)=xθ(b1ξ0b2)= (xb1)θ(ξ0b2)= θ((xb1)ξ0b2)= θ(xξ),

and similarly θ(ξ)x=θ(ξx).

Next, we include an argument proving a folklore result, which we will use to see that

isometric shift-absorption has no K-theoretical obstruction for group actions.

Lemma 3.11. Let αn:G↷An be actions on separable C∗-algebras for n∈N. Let

φn: (An, αn)!(An+1, αn+1) and ψn: (An+1, αn+1)!(An, αn) be, respectively, equivari-

ant ∗-homomorphisms and equivariant completely positive contractive maps such that

ψn�φn= idAn
.

If each φn is a KKG-equivalence, then the canonical equivariant ∗-homomorphism

(A1, α1)−! lim−→((An, αn), φn)

is a KKG-equivalence.

Proof. By the results of [81, §2.4], the inductive system ((An, αn), φn) is admissible

(because of the maps ψn), and therefore there is an induced short exact sequence

0−! lim←−
1KKG

1 (αn, β)−!KKG(lim−→αn, β)−! lim←−KK
G(αn, β)−! 0

for any action β:G↷B on a separable C∗-algebra. As each map φn is aKKG-equivalence,

the induced maps KKG(αn+1, β)!KK
G(αn, β) are isomorphisms. It follows that the

lim←−
1-term vanishes, and we have

lim←−KK
G(αn, β)∼=KKG(α1, β)

canonically. Therefore, the canonical equivariant map (A1, α1)!lim−→(An, αn) induces an

isomorphism KKG(lim−→αn, β)!KK
G(α1, β). Applying this to β=α1 and β=lim−→αn, it

easily follows that A1!lim−→An is a KKG-equivalence.
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Corollary 3.12. Let γ:G↷O∞ be the action from Definition 3.4. Then, the

canonical unital inclusion (C, idC)!(O⊗∞
∞ , γ⊗∞) is a KKG-equivalence.

Proof. Let (An, αn)=(O⊗n
∞ , γ⊗n). By Proposition 3.2, we have that the vacuum

state on OH∞
G

∼=O∞ is a γ -invariant state. Hence, the slice map with respect to this

state gives an equivariant conditional expectation ψn: (O⊗(n+1)
∞ , γ⊗(n+1))!(O⊗n

∞ , γ⊗n).

By Remark 3.3 and Lemma 3.11, the result follows.

The following result demonstrates that the main classification theorem cannot be

extended (using only KKG) to cover more general amenable actions on nuclear C∗-

algebras, since the actions we classify form a skeleton in the KKG-category. The version

given here is slightly more general than Theorem D given in the introduction. The proof

(which amounts to a combination of literature sources) uses a Cuntz–Pimsner algebra

construction which is due to Kumjian [75] in the non-equivariant case, and to Meyer [80]

in the equivariant case. The fact that amenability is preserved by this construction is

due to Ozawa–Suzuki [84].

Theorem 3.13. (Cf. Pimsner, Kumjian, Meyer, Ozawa–Suzuki) Let G be a second-

countable locally compact group and let α:G↷A be an amenable action on a separable

nuclear C∗-algebra. Then, there exists an amenable and isometrically shift-absorbing ac-

tion β:G↷B on a stable Kirchberg algebra and an equivariant embedding (A,α)!(B, β)

that induces a KKG-equivalence. If A is unital (in which case G must be exact), then

B can instead be chosen unital such that the embedding is unital.

Proof. [84, Theorem 6.1] implies the above result, except for the part about β being

isometrically shift-absorbing. By Corollary 3.12, we may tensor (B, β) with (O⊗∞
∞ , γ⊗∞),

and obtain an action which additionally is isometrically shift-absorbing, by Proposi-

tion 3.8.

Remark 3.14. If G has the Haagerup property (see [13]), then Theorem 3.13 holds

even without assuming that α is amenable. In fact, by a theorem of Higson–Kasparov [49],

there exists a proper (and therefore amenable) action on a separable type-I C∗-algebra

which is KKG-equivalent to C. Hence, we may tensor this onto any action, and obtain

an amenable action with the same KKG-equivalence class. In the case where G is

exact, the unital subcase can be obtained by additionally applying Theorem 6.10 or [99,

Theorem B].

On the other hand, if G admits an amenable action on any C∗-algebra which is

KKG-equivalent to C, then the quotient map C∗(G)!C∗
λ(G) from the full to the reduced

group C∗-algebra is a KK-equivalence by [84, Proposition 6.5]. If G is non-compact and

has property (T) (as opposed to the Haagerup property), then this quotient map is
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not a KK-equivalence, since the canonical Kazhdan projection has non-trivial class in

K0(C
∗(G)), but it vanishes in C∗

λ(G) (cf. [22, Remark 2.7] and [63, Corollary 3.7]). Thus,

no amenable action is KKG-equivalent to C for such groups.

Suppose for now that G is a countable discrete group and that β:G↷B is an action

on a separable C∗-algebra. Then, if we keep in mind that the left-regular representation

on ℓ2(G) is cyclic with respect to the characteristic function over the neutral element,

it follows that β is isometrically shift-absorbing if and only if there exists an isometry

s∈F∞(B) such that ss∗⊥β̃∞,g(ss
∗) for all g ̸=1.

With this observation at hand, we identify isometric shift-absorption for actions by

discrete groups on Kirchberg algebras in terms of outerness. In the unital case, this was

observed by Izumi–Matui in [57, Lemma 3.4]. For completion, we fill in a proof that

also works in the non-unital case, using results of the second author. These are based on

substantially deeper results by Kishimoto [72] and Kirchberg–Phillips [70]. We remark

that this is the only place in the paper where ultrafilters are used.(17)

Proposition 3.15. Suppose that G is a countable discrete group, and let β:G↷B

be an action on a Kirchberg algebra. Then, β is isometrically shift-absorbing if and only

if it is pointwise outer.

Proof. Any inner automorphism on B induces the trivial automorphism on F∞(B),

and thus isometrically shift-absorbing actions must be pointwise outer. Conversely, sup-

pose that β is pointwise outer. Let F⊂B and K⊆G\{1} be finite subsets and ε>0. By

[101, Propositions 2.2 and 3.2, and Theorem 3.1], the (ultrapower) central sequence alge-

bra Fω(B) is purely infinite and simple, and there exists a non-zero projection p∈Fω(B)

such that pβ̃∞,g(p)=0 for g∈K. As Fω(B) is unital, purely infinite and simple, there

exists an isometry v∈Fω(B) such that vv∗⩽p. By picking a contractive representing

sequence for v, and choosing a suitable entry from this sequence, we obtain a contraction

d∈B satisfying

max
b∈F
∥(1−d∗d)b∥⩽ ε, max

b∈F
∥db−bd∥⩽ ε and max

b∈F,g∈K
∥d∗βg(d)b∥⩽ ε.

By a standard diagonal argument, we obtain an isometry s∈F∞(B) such that

ss∗⊥ β̃∞,g(ss
∗) for g ̸=1,

as desired.

(17) One could modify the results from [101] and obtain a proof without using ultrafilters, but this
would be a major digression from our main objective.
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Next to using our recent results from [38], the following technical observation can

be seen as the driving force behind our classification theory.

Lemma 3.16. Let α:G↷A and β:G↷B be two actions on separable C∗-algebras,

and assume that β is amenable and isometrically shift-absorbing. Let

(φ,u), (ψ, v): (A,α)−! (M(B), β)

be two cocycle representations. Suppose that φ weakly contains ψ, when they are viewed

as cocycle representations with respect to the trivial group. Then, it follows that (φ,u)

approximately 1-dominates (ψ, v).

Proof. As before, we choose a Haar measure µ on G. Let compact sets 1∈K⊆G
and F⊂A⩽1, and an ε>0, be given. Let b∈B be any contraction. Since β is amenable,

so is βv, and there exists a function ζ∈Cc(G,B) with ∥ζ∥2⩽1 such that

max
a∈F
∥(⟨ζ |ψ(a)ζ⟩−ψ(a))b∥⩽ ε, (3.2)

max
g∈K
∥(1−⟨ζ | β̄vg (ζ)⟩)vgβg(b)∥⩽ ε. (3.3)

Set R=supp(ζ) and choose a positive contraction e∈B (apply Lemma 1.18 with βv in

place of β) with the following properties:

max
g∈R
∥βvg (e)−e∥⩽ ε, (3.4)

max
g∈K
∥⟨ζ | e2vgβ̄g(ζ)⟩−e⟨ζ | vgβ̄g(ζ)⟩e∥⩽ ε, (3.5)

max
a∈F
∥⟨ζ | eψ(a)eζ⟩−e⟨ζ |ψ(a)ζ⟩e∥⩽ ε, (3.6)

max
g∈K
∥(1−e)βg(b)∥⩽ ε. (3.7)

Using that φ weakly contains ψ (as an ordinary ∗-homomorphism), we may choose a

collection of elements {ck :k=1, ..., N}⊂B satisfying∥∥∥∥e2− N∑
k=1

c∗kck

∥∥∥∥⩽ ε (3.8)

and

max
a∈F

max
h∈R

∥∥∥∥eψ(αh−1(a))e−
N∑
k=1

c∗kφ(αh−1(a))ck

∥∥∥∥⩽ ε. (3.9)

Since β is isometrically shift-absorbing, it follows from Proposition 3.8 that there exists

an equivariant linear B-bimodule map

θ: (L2
∞(G,B), β̄)−! (B∞,β , β∞)
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satisfying θ(ξ)∗θ(η)=⟨ξ |η⟩B for all ξ, η∈L2
∞(G,B). For every k=1, ..., N , we consider

ξk∈Cc(G,B) via

ξk(h)=uhβh(ck)v
∗
hζ(h), h∈G.

We set ξ=(ξ1, ξ2, ..., ξN , 0, 0, ... )∈L2
∞(G,B). Recall that θ is aM(B)-bimodule map, by

Remark 3.10. Using this, we compute, for every g∈K, that

θ(ξ)∗ugβg,∞(θ(ξ))

= θ(ξ)∗θ(ugβ̄g(ξ))

= ⟨ξ |ugβ̄g(ξ)⟩

=

N∑
k=1

∫
G

ζ(h)∗vhβh(c
∗
k)u

∗
h ·ugβg(ug−1hβg−1h(ck)v

∗
g−1hζ(g

−1h)) dµ(h)

=

N∑
k=1

∫
G

ζ(h)vhβh(c
∗
kck)βg(vg−1h)

∗β̄g(ζ)(h) dµ(h)

=

N∑
k=1

∫
G

ζ(h)βvh(c
∗
kck)vgβ̄g(ζ)(h) dµ(h)

(by (3.4), (3.8)) =2ε

∫
G

ζ(h)e2vgβ̄g(ζ)(h) dµ(h)

= ⟨ζ | e2vgβ̄g(ζ)⟩

(by (3.5)) =ε e⟨ζ | vgβ̄g(ζ)⟩e.

Using how we chose e and ζ, we apply the above to observe that

θ(ξb)∗ugβg,∞(θ(ξb))

=3ε b
∗e⟨ζ | vgβ̄g(ζ)⟩eβg(b)

(by (3.7)) =2ε b
∗⟨ζ | β̄vg (ζ)⟩vgβg(b)

(by (3.3)) =ε b
∗
vgβg(b).

Moreover, again using that θ is aM(B)-bimodule map, we compute for every a∈F that

θ(ξb)∗φ(a)θ(ξb)

= b∗θ(ξ)∗θ(φ(a)ξ)b

= b∗
N∑
k=1

∫
G

ζ(h)∗vhβh(ck)
∗
u
∗
hφ(a)uhβh(ck)v

∗
hζ(h) dµ(h)·b

= b∗
N∑
k=1

∫
G

ζ(h)∗vhβh(ck)
∗βh(φ(αh−1(a)))βh(ck)v

∗
hζ(h) dµ(h)·b
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= b∗
∫
G

ζ(h)∗βvh

( N∑
k=1

c∗kφ(αh−1(a))ck

)
ζ(h) dµ(h)·b

(by (3.9)) =ε b
∗
∫
G

ζ(h)∗βvh(eψ(αh−1(a))e)ζ(h) dµ(h)·b

(by (3.4)) =2ε b
∗
∫
G

ζ(h)∗eβvh(ψ(αh−1(a)))eζ(h) dµ(h)·b

= b∗⟨ζ | eψ(a)eζ⟩b

(by (3.6)) =ε b
∗e⟨ζ |ψ(a)ζ⟩eb

(by (3.7)) =2ε b
∗⟨ζ |ψ(a)ζ⟩b

(by (3.2)) =ε b
∗ψ(a)b.

By lifting the element θ(ξb)∈B∞,β to a sequence of contractions in B, the computations

above imply that we can obtain a contraction v∈B such that

max
g∈K
∥b∗vgβg(b)−v∗ugβg(v)∥⩽ 7ε,

max
a∈F
∥b∗ψ(a)b−v∗φ(a)v∥⩽ 8ε.

Since K, F , ε and b were arbitrary, this implies that the cocycle representation (φ,u)

approximately 1-dominates (ψ, v).

Corollary 3.17. Let α:G↷A and β:G↷B be actions on separable C∗-algebras,

and assume that β is amenable, isometrically shift-absorbing and strongly stable. Suppose

that A or B is nuclear. Let (φ,u): (A,α)!(B, β) be a cocycle morphism such that φ

is full. Then, the infinite repeat (φ∞,u∞): (A,α)!(M(B), β) is an absorbing cocycle

representation.

Proof. By [38, Corollary 3.12], the claim is true if (φ,u) weakly contains every

cocycle representation. By Lemma 3.16, this is true if φ weakly contains every ∗-
homomorphism A!M(B), which follows from Remark 2.2.

4. The dynamical O2-embedding theorem

In this section we prove a dynamical version of the O2-embedding theorem, namely

Theorem G. Our strategy follows the broad strokes of the classical strategy of proving

the known O2-embedding theorem, but requires some specific technical setup in order to

be adapted. In particular, we need access to a uniqueness theorem for equivariant maps

of the form (A,α)!(B∞,β , β∞), where the results from the previous section may not



the dynamical kirchberg–phillips theorem 41

immediately apply, because for certain choices of G the action β∞ is never amenable.(18)

Some of the arguments that follow are nevertheless similar in spirit to the arguments

in the previous sections, but work based on the amenability of α rather than β, at the

expense of having a rather narrow range of applicability (though sufficient for the goal

of this section).

Lemma 4.1. Let α:G↷A and β:G↷B be two actions on C∗-algebras. Suppose that

A is separable and β is strongly stable. Let φ,ψ: (A,α)!(B∞,β , β∞) be two equivariant

∗-homomorphisms. Suppose that, for every contraction d∈A, there exists a contraction

s∈B∞ with

s∗β∞,g(s)=ψ(d∗αg(d)) and s∗φ(a)s=ψ(d∗ad)

for all a∈A and g∈G. Then, it follows that (φ,1) approximately 1-dominates (ψ,1).

Proof. Let b∈B∞,β be a contraction. Choose an approximately α-invariant approx-

imate unit en∈A. For each n⩾1, apply the assumption for en in place of d, and choose a

corresponding element sn. Given that en is an approximate unit, we see that the second

condition implies s∗nφ(a)sn!ψ(a) for all a∈A. Furthermore, the first condition yields,

for all g∈G, that

∥sn−β∞,g(sn)∥2 = ∥(sn−β∞,g(sn))
∗(sn−β∞,g(sn))∥

⩽ ∥e2n−enαg(en)−αg(en)en+αg(e2n)∥! 0.

Note that the intermediate inequality yields sn∈B∞,β for all n, and this computation

implies that the convergence is uniform over compact sets. By Lemma 1.21, we may

choose a separable β∞-invariant C∗-subalgebra D⊂B∞,β containing

φ(A)∪ψ(A)∪{sn}n⩾1∪{b}

such that β∞|D is strongly stable. If we view φ and ψ as equivariant maps into D, we

see that the sequence sn∈D satisfies the requirements of Lemma 2.4. Thus, there exists

a sequence of isometries Sn∈Mβ∞(D) such that

S∗
nφ(a)Sn!ψ(a) and max

g∈K
∥Sn−β∞,g(Sn)∥! 0

for all a∈A and all compact sets K⊆G. If we set cn=Snb∈D, then

c∗nψ(a)cn! b∗ψ(a)b and max
g∈K
∥c∗nβ∞,g(cn)−b∗β∞,g(b)∥! 0

for all a∈A and all compact set K⊆G. As b∈B∞,β was arbitrary, we are done.

(18) We note, however, that this issue and the resulting technical setup becomes somewhat redun-
dant when G is exact, by virtue of the results in [84]



42 j. gabe and g. szabó

Lemma 4.2. Let α:G↷A and β:G↷B be two actions on separable C∗-algebras.

Assume that α is amenable and β is strongly stable and isometrically shift-absorbing.

Let φ,ψ: (A,α)!(B∞,β , β∞) be two equivariant ∗-homomorphisms. Suppose that, as

(ordinary) maps into B∞, φ and ψ are nuclear and φ approximately 1-dominates ψ.

Then, it follows that (φ,1) approximately 1-dominates (ψ,1) as maps into B∞,β.

Proof. Let d∈A be a contraction (we consider this independently to the other pa-

rameters that will now be fixed). Let compact sets 1∈K⊆G and F⊂A⩽1, and an ε>0,

be given. As α is amenable, there exists a function ζ∈Cc(G,A) with ∥ζ∥2⩽1 such that

max
a∈F
∥⟨ζ | aζ⟩−a∥⩽ ε, (4.1)

max
g∈K
∥d∗(1−⟨ζ | ᾱg(ζ)⟩)∥⩽ ε. (4.2)

Set R=supp(ζ). By applying Lemma 1.18 with α in place of β, we choose a positive

contraction e∈A with the following properties:

max
g∈R
∥αg(e)−e∥⩽ ε, (4.3)

max
g∈K
∥⟨ζ | e2ᾱg(ζ)⟩−e⟨ζ | ᾱg(ζ)⟩e∥⩽ ε, (4.4)

max
a∈F
∥⟨ζ | eaeζ⟩−e⟨ζ | aζ⟩e∥⩽ ε, (4.5)

max
g∈K
∥(1−e)αg(d)∥⩽ ε. (4.6)

As φ and ψ are nuclear as maps into B∞, we can use the Choi–Effros lifting theorem

[14] to pick completely positive contractive maps

(φk)k, (ψk)k:A−! ℓ∞(B)

that lift φ and ψ, respectively. Since φ and ψ take values in B∞,β , it follows that (φk)k

and (ψk)k take values in ℓ∞β (B). Consider

G0 = {d, d∗, e, e2}∪F∪ζ(G)∪{⟨ζ, aαg(ζ)⟩ : a∈F and g ∈K}.

Set

G1 =
⋃

h∈K∪R∪R−1

αh(G0),

and let G be the set of products of five or less elements from G1. Then, G⊂A is compact.

Set M=1+µ(R)(∥ζ∥∞+∥ζ∥2∞). Using the fact that (φk)k and (ψk)k are pointwise G-

equicontinuous, approximately equivariant approximate ∗-homomorphisms, we may pick
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N∈N such that

max
a∈G

max
g∈K∪R∪R−1

sup
k⩾N
∥βg(φk(a))−φk(αg(a))∥⩽

ε

M
, (4.7)

max
a1,a2∈G

sup
k⩾N
∥φk(a1a2)−φk(a1)φk(a2)∥⩽

ε

M
. (4.8)

We also assume that the above hold with ψk in place φk. Note that, for any f∈Cc(G),
one has ∥f∥2⩽µ(supp(f))∥f∥∞. Hence, the estimates above with ε/M imply that

max
g∈K

sup
k⩾N
∥βg �ψk �f−ψk �αg �f∥2 ⩽ ε, (4.9)

sup
k⩾N
∥ψk �(F ·f)−(ψk �F )·(ψk �f)∥2 ⩽ ε (4.10)

for every f∈Cc(G,A) and F∈Cb(G,A) with f(G), F (G)⊆G, µ(suppf)⩽µ(R) and

∥f∥∞ ⩽ ∥ζ∥∞ and ∥F∥∞ ⩽min{1, ∥ζ∥∞}.

Moreover, as φ approximately 1-dominates ψ as maps into B∞, we may find a

contraction (ck)k∈ℓ∞(B) such that, after possibly increasing N , we have

max
a∈G

sup
k⩾N
∥c∗kφk(a)ck−ψk(a)∥⩽ ε. (4.11)

Since the maps ψk are completely positive contractive, we get from Kadison’s inequality

that, for every f∈Cc(G,A), one has

∥ψk �f∥22 =
∥∥∥∥∫

G

ψk(f(h))
∗ψk(f(h)) dµ(h)

∥∥∥∥⩽ ∥ψk(⟨f, f⟩)∥⩽ ∥f∥22.
Since we assumed β to be isometrically shift-absorbing, it follows from Proposition 3.8

that there exists an equivariant linear B-bimodule map

θ: (L2(G,B), β̄)−! (B∞,β , β∞)

satisfying

θ(ξ)∗θ(η)= ⟨ξ | η⟩B for all ξ, η ∈L2(G,B).

We consider ξk∈Cc(G,B)⊆L2(G,B) via

ξk(h)=βh(φk(e)ck)ψk(ζ(h)), h∈G.
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Recall that we consider B⊆B∞,β as constant sequences. We compute, for every g∈K
and k⩾N , that

θ(ξk)
∗βg,∞(θ(ξk))

= θ(ξk)
∗θ(β̄g(ξk))

= ⟨ξk | β̄g(ξk)⟩

=

∫
G

ψk(ζ(h))
∗βh(c

∗
kφk(e))βg(βg−1h(φk(e)ck)ψk(ζ(g

−1h))) dµ(h)

=

∫
G

ψk(ζ(h))
∗βh(c

∗
kφk(e)

2ck)βg(ψk(ζ(g
−1h))) dµ(h)

(by (4.9)) =ε

∫
G

ψk(ζ(h))
∗βh(c

∗
kφk(e)

2ck)ψk(ᾱg(ζ)(h))) dµ(h)

(by (4.8)) =ε

∫
G

ψk(ζ(h))
∗βh(c

∗
kφk(e

2)ck)ψk(ᾱg(ζ)(h))) dµ(h)

(by (4.11)) =ε

∫
G

ψk(ζ(h))
∗βh(ψk(e

2))ψk(ᾱg(ζ)(h)) dµ(h)

(by (4.7)) =ε

∫
G

ψk(ζ(h))
∗ψk(αh(e

2))ψk(ᾱg(ζ)(h)) dµ(h)

(by (4.10)) =2ε

∫
G

ψk

(
ζ(h)∗αh(e

2)ᾱg(ζ)(h)
)
dµ(h)

=ψk

(∫
G

ζ(h)∗αh(e
2)ᾱg(ζ)(h) dµ(h)

)
(by (4.3)) =2ε ψk

(∫
G

ζ(h)∗e2ᾱg(ζ)(h) dµ(h)
)

=ψk(⟨ζ | e2ᾱg(ζ)⟩)

(by (4.4)) =ε ψk(e⟨ζ | ᾱg(ζ)⟩e).

Hence, for k⩾N and g∈K, we get

ψk(d)
∗θ(ξk)

∗βg,∞(θ(ξk)ψk(d))

=ψk(d)
∗θ(ξk)

∗βg,∞(θ(ξk))βg(ψk(d))

=9ε ψk(d)
∗ψk(e⟨ζ | ᾱg(ζ)⟩e)βg(ψk(d))

(by (4.7)) =ε ψk(d)
∗ψk(e⟨ζ | ᾱg(ζ)⟩e)ψk(αg(d))

(by (4.8)) =2ε ψk(d
∗e⟨ζ | ᾱg(ζ)⟩eαg(d))

(by (4.6)) =2ε ψk(d
∗⟨ζ | ᾱg(ζ)⟩αg(d))

(by (4.2)) =ε ψk(d
∗αg(d)).
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Moreover, for a∈F and k⩾N , we have

θ(ξk)
∗φk(a)θ(ξk)

= θ(ξk)
∗θ(φk(a)ξk)

=

∫
G

ψk(ζ(h))
∗βh(c

∗
kφk(e)βh−1(φk(a))φk(e)ck)ψk(ζ(h)) dµ(h)

(by (4.7)) =ε

∫
G

ψk(ζ(h))
∗βh(c

∗
kφk(e)φk(αh−1(a))φk(e)ck)ψk(ζ(h)) dµ(h)

(by (4.8)) =2ε

∫
G

ψk(ζ(h))
∗βh(c

∗
kφk(eαh−1(a)e)ck)ψk(ζ(h)) dµ(h)

(by (4.11)) =ε

∫
G

ψk(ζ(h))
∗βh(ψk(eαh−1(a)e))ψk(ζ(h)) dµ(h)

(by (4.3)) =2ε

∫
G

ψk(ζ(h))
∗βh(ψk(αh−1(eae)))ψk(ζ(h)) dµ(h)

(by (4.7)) =ε

∫
G

ψk(ζ(h))
∗ψk(eae)ψk(ζ(h)) dµ(h)

(by (4.10)) =2ε

∫
G

ψk(ζ(h)
∗eaeζ(h)) dµ(h)

=ψk(⟨ζ | eaeζ⟩)

(by (4.5)) =ε ψk(e⟨ζ | aζ⟩e).

So, for a∈F and k⩾N , we get

ψk(d)
∗θ(ξk)

∗φk(a)θ(ξk)ψk(d)

=10ε ψk(d)
∗ψk(e⟨ζ | aζ⟩e)ψk(d)

(by (4.8)) =2ε ψk(d
∗e⟨ζ | aζ⟩ed)

(by (4.6)) =2ε ψk(d
∗⟨ζ | aζ⟩d)

(by (4.1)) =ε ψk(d
∗ad).

Hence we may, for each k⩾N , lift θ(ξk)ψk(d) to a contraction ℓ∞β (B) and pick an entry

zk such that

sup
k⩾N

max
g∈K
|∥z∗kβg(zk)−ψk(d∗αg(d))∥|⩽ 16ε,

sup
k⩾N

max
a∈F
∥z∗kφk(a)zk−ψk(d∗ad)∥⩽ 16ε.

By a diagonal argument (with respect to ε,F and K), we may find a contraction s∈B∞

such that

s∗φ(a)s=ψ(d∗ad) and s∗β∞,g(s)=ψ(d∗αg(d))
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for all a∈A and all g∈G. As d∈A was an arbitrary contraction, it follows from Lemma 4.1

that (φ,1) approximately 1-dominates (ψ,1)

Lemma 4.3. Let α:G↷A and β:G↷B be two actions on separable C∗-algebras.

Suppose that α is amenable and β is isometrically shift-absorbing, strongly stable and

that β≃ccβ⊗idO2
. Let φ,ψ: (A,α)!(B∞,β , β∞) be two equivariant ∗-homomorphisms

that are full and nuclear when considered as ∗-homomorphisms into B∞. Then, (φ,1)

and (ψ,1) are properly unitarily equivalent.

Proof. Since B is O∞-stable, it follows that B∞ is strongly purely infinite by [71,

Proposition 5.12, Theorem 8.6]. The ∗-homomorphisms φ,ψ:A!B∞ are full and nu-

clear, and thus they approximately 1-dominate each other by [37, Corollary 3.13, Theo-

rem 4.8, Proposition 9.4].

By Lemma 4.2 it follows that (φ,1) and (ψ,1) approximately 1-dominate each other

as maps into B∞,β . Pick a separable, β∞-invariant C∗-subalgebra D⊆B∞,β containing

the images of φ and ψ, and such that (φ,1) and (ψ,1) approximately 1-dominate each

other when corestricted to D. By Lemma 1.21, we may assume that β∞|D is strongly

stable. Moreover, as β≃ccβ⊗idO2
, it follows (see [103, Lemma 2.12]) that O2 unitally

embeds into F (D,B∞,β)
β̃∞ .(19) There is a canonical commutative diagram of equivariant

∗-homomorphisms given by

(D,β∞)

idD ⊗1

  

// (B∞,β , β∞)

(D⊗maxF (D,B∞,β), β∞⊗β̃∞).

<<

Hence, we may enlarge D and thus assume that there is a unital inclusion

O2−!M(D)β∞

commuting with the images of φ and ψ. By applying Lemma 2.8 twice, we get that (φ,1)

and (ψ,1) are strongly asymptotically unitarily equivalent. As the cocycles involved are

trivial, the unitary path implementing this equivalence is asymptotically β∞|D-invariant.
By performing a standard diagonal sequence argument within B∞, it is a routine con-

sequence that (φ,1) and (ψ,1) are properly unitarily equivalent as maps into B∞ im-

plemented by a β∞-invariant unitary, and thus they are properly unitarily equivalent as

equivariant maps into B∞,β .

(19) Here, F (D,B∞,β)=(B∞,β∩D′)/(B∞,β∩D⊥) and β̃∞ is the action induced by β.
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Remark 4.4. For the purpose of subsequent applications of Lemma 4.3, we shall

point out in more explicit terms when ∗-homomorphisms φ:A!B∞ are full and nuclear,

for A exact and B simple and purely infinite. Assuming that A is exact, it follows from

[24, Proposition 3.3] and the Choi–Effros lifting theorem that φ is nuclear if and only if

it can be represented by a sequence of maps (φn)n, where each φn :A!B is a nuclear

c.p.c. map.

To describe full maps, we first describe full elements of B∞. It is obvious that for

x=[(xn)n]∈B∞ to be full, it must satisfy lim infn!∞ ∥xn∥>0. Moreover, when B is

simple and purely infinite, this characterizes full elements in B∞. This follows easily by

the same argument as [93, Proposition 6.2.6], which showed that the ultrapower Bω is

simple and purely infinite.

In particular, if A is exact and B is a Kirchberg algebra, then a ∗-homomorphism

φ:A!B∞ is full and nuclear if and only if it can be represented by a sequence of

c.p.c. maps φn:A!B, n∈N, such that lim infn!∞ ∥φn(a)∥>0 for every non-zero a∈A.
In a situation where the domain A happens to be given as a minimal tensor product of

two C∗-algebras, it follows from [93, Lemma 4.1.9] that it suffices to check fullness on

elementary tensors. We apply this observation in the proof of Lemma 4.7.

Remark 4.5. We claim that there exists an equivariant embedding

(K(H∞
G ),Ad(λ∞))−! (O∞, γ).

Indeed, let s:H∞
G!O∞ be the universal linear map whose range generatesO∞, and which

satisfies s�λ∞g =γg �s for all g∈G. Then, we obtain a ∗-homomorphism ι:K(H∞
G )!O∞

that is uniquely determined, on the set of rank-1 operators, via the formula

ι(Eξ,η)= s(ξ)s(η)∗, where ξ, η ∈H∞
G , ξ, η ̸=0 and Eξ,η(ν) := ξ ·⟨η | ν⟩.

Evidently ι is equivariant, and hence defines the desired inclusion.

Remark 4.6. Let σ be the shift automorphism on C0(R) given by σ(f)(t)=f(t+1).

It is well known that C0(R)⋊σZ is isomorphic to C(T)⊗K. If A is a C∗-algebra, we

denote for brevity SA=C0(R)⊗A. Then, there is a natural isomorphism

SA⋊σ⊗idA
Z∼=A⊗(C0(R)⋊σZ)∼=A⊗C(T)⊗K.

If α:G↷A is an action, then Sα=idC0(R)⊗α:G↷SA commutes with σ⊗idA, so natu-

rality of this isomorphism entails that the action α⊗id on the right-hand side becomes

the unique G-action on the left-hand side that extends idC0(R)⊗α by acting trivially on

the copy of Z. In particular, A embeds equivariantly as a full corner into both sides of

this isomorphism, which we will use below.
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Lemma 4.7. Let A be a separable exact C∗-algebra with an action α:G↷A. Let

β:G↷B be an isometrically shift-absorbing action on a Kirchberg algebra with

β≃cc β⊗idO∞ .

Then, there exists an equivariant ∗-homomorphism from (SA, Sα) to (B∞,β , β∞) which

is full and nuclear as a map into B∞.

Proof. Since A is separable, we find a faithful representation π:A!B(ℓ2(N)). The

canonically induced covariant representation of (A,α) then consists of the unitary repre-

sentation λ∞=1ℓ2(N)⊗λ:G!U(ℓ2(N)⊗̂HG) and the representation

πα:A!B(ℓ2(N)⊗̂HG)=B(L2(G, ℓ2(N)))

given by πα(a)(ξ)(g)=π(αg−1(a))ξ(g) for all ξ∈L2(G, ℓ2(N)) and g∈G. We may apply

Lemma 1.18, and choose an approximate unit h
(1)
n ∈K:=K(ℓ2(N)⊗̂HG) such that

lim
n!∞

max
g∈K
∥Ad(λ∞g )(h(1)n )−h(1)n ∥=0 and lim

n!∞
∥[h(1)n , πα(a)]∥=0

for every compact set K⊆G and all a∈A. Using that β≃ccβ⊗idO∞ and that (B, β) also

has an approximately β-invariant approximate unit, we may find a sequence of positive

elements h
(2)
n ∈B with full spectrum [0, 1] and such that

lim
n!∞

max
g∈K
∥βg(h(2)n )−h(2)n ∥=0

for every compact setK⊆G. Set Bs=B⊗K and βs=β⊗Ad(λ∞). We define the sequence

hn=h
(2)
n ⊗h(1)n ∈Bs and consider the element h=(hn)n in the sequence algebra of Bs. It

is then fixed under the induced action βs∞ and commutes with the range of 1M(B)⊗πα,
if we view the latter as an equivariant ∗-homomorphism into M(Bs). We obtain an

equivariant ∗-homomorphism

ψ: (SA, Sα)−! (Bs∞,βs , βs∞),

f⊗a 7−! f(h)·(1M(B)⊗πα(a))

for all f∈C0(0, 1)∼=C0(R) and a∈A. For any non-zero a∈A and f∈C0(0, 1), we may pick

a contraction x∈K such that πα(a)x ̸=0. Since h
(1)
n approximately acts as a unit on

πα(a)x, we get that

ψ(f⊗a)·(1M(B)⊗x)= [(f(h(2)n )⊗πα(a)x)n∈N]∈Bs∞.
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Because

lim inf
n!∞

∥f(h(2)n )⊗πα(a)x∥= lim inf
n!∞

∥f(h(2)n )∥ ∥πα(a)x∥> 0,

it follows from Remark 4.4 that ψ is a full map into Bs∞ (since we verified fullness on

elementary tensors). Since A is exact, the representation πα is nuclear, so it follows

by [36, Lemma 6.9] that ψ is also nuclear. Hence, it can be represented by a sequence

(ψn:SA!B
s) of c.p.c. maps such that lim infn!∞ ∥ψn(c)∥>0 for all non-zero c∈SA.

Since β is assumed to be isometrically shift-absorbing, we can conclude from Propo-

sition 3.8 that there exists an equivariant ∗-homomorphism

Θ: (B⊗O∞, β⊗γ)−! (B∞,β , β∞),

which is (automatically) nuclear and full as a map into B∞. By Remark 4.5, we have that

(B⊗O∞, β⊗γ) contains (Bs, βs) as a subsystem. We now use Remark 4.4 to represent

Θ|Bs by a sequence of c.p.c. maps θm :Bs!B such that lim infm!∞ ∥θm(b)∥>0 for all

non-zero b∈Bs.
By a standard diagonal argument applied to the c.p.c. maps θm�ψn:SA!B, we

obtain an equivariant ∗-homomorphism from (SA, Sα) to (B∞,β , β∞) which is full and

nuclear as a map into B∞, by Remark 4.4.

Theorem 4.8. Let A be a separable exact C∗-algebra with an amenable action

α:G↷A. Suppose that β:G↷B is an isometrically shift-absorbing action on a Kirchberg

algebra with

β≃cc β⊗idO2
.

Then, there exists a proper cocycle embedding from (A,α) to (B, β).

Proof. We note first that we may assume without loss of generality that β is strongly

stable. This is because β being cocycle conjugate to β⊗idO2
automatically implies that

it is properly cocycle conjugate to β⊗idO2 , by Theorem 1.16. Since one can easily

construct an inclusion K⊆O2, this provides a proper cocycle embedding from β⊗idK to

β, and hence we assume from now on that β is strongly stable.

We apply Lemma 4.7 and choose an equivariant ∗-homomorphism

ψ: (SA, Sα)−! (B∞,β , β∞)

that is full and nuclear as a map into B∞. Recall the notation introduced in Remark 4.6.

Due to our assumptions on α and β, the assumptions of Lemma 4.3 are satisfied, so it

follows that ψ and ψ�(σ⊗idA) are properly unitarily equivalent. In other words, there

exists a unitary in the fixed point algebra U∈U(1+(B∞,β)
β∞) with

Ad(U)�ψ=ψ�(σ⊗idA).
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By the universal property of the crossed product, we obtain a ∗-homomorphism

ψ̄:SA⋊σ⊗idA
Z−!B∞,β with ψ̄|SA=ψ,

which is nuclear by [36, Lemma 6.10]. By construction, ψ̄ is also equivariant with respect

to the obvious extension of idC0(R)⊗α on the left side and β∞ on the right. In light of

Remark 4.6, we can restrict ψ̄ to a full corner that is equivariantly isomorphic to (A,α),

and thereby obtain an equivariant ∗-homomorphism

φ: (A,α)−! (B∞,β , β∞)

that is nuclear as a map into B∞. Since φ(a) generates a larger closed ideal than ψ(f⊗a)
for any f∈C0(R), it follows that φ is full as a map into B∞. Let κ:N!N be an arbitrary

map with limn!∞ κ(n)=∞. Then, we obtain an equivariant endomorphism κ∗ of B∞,β

given at the level of representing sequences by

κ∗[(bn)n] = [(bκ(n))n].

By Remark 4.4, it follows that κ∗ has the property that it maps full elements in B∞

to full elements. Therefore, we have that the composition κ∗�φ is also an equivariant

∗-homomorphism from (A,α) to (B∞,β , β∞) that is full and nuclear as a map into B∞.

By the assumptions on α and β, the assumptions of Lemma 4.3 are satisfied, and we can

conclude that φ and κ∗�φ are properly unitarily equivalent. Since κ was arbitrary, the

existence of the claimed proper cocycle embedding follows directly from the one-sided

intertwining result [107, Theorem 4.10].

Remark 4.9. We note that, if G is exact, then Theorem 4.8 holds without the as-

sumption that α is amenable. This is because, by exactness, we may find some amenable

action δ:G↷D on a separable unital C∗-algebra, and hence embed α⊗δ in place of α.

In contrast, if G is not exact, then Theorem 4.8 fails even for α being the trivial action

on C. Namely, if we exploit [84], we can find an action β as in the statement that is

also amenable, which rules out the possibility that any of its cocycle perturbations fix a

non-zero projection.

5. Existence and uniqueness theorems

The following observation by the first author is central to both the existence and unique-

ness theorem proved in this section.
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Lemma 5.1. (See [37, Lemma 7.1]) There exists a continuous map

u: [0,∞)−!U(1+O2⊗K),

with u0=1, such that the following conditions hold :

(i) u∗t (1⊗e1,1)ut!1 in the strict topology as t!∞;

(ii) for all x∈O2⊗K, one has that utx converges in norm as t!∞.

Lemma 5.2. Let B be a C∗-algebra and β:G↷B be a strongly stable action. Then,

there exists a non-degenerate equivariant embedding

(B⊗O2, β⊗idO2
)−! (B⊗O∞, β⊗idO∞)

Proof. Since β is (genuinely) conjugate to β⊗idK, it suffices to show that there

exists a non-degenerate embedding O2⊗K!O∞⊗K. Such an embedding is known to

exist, for instance as a consequence of Brown’s stable isomorphism theorem [7].

Corollary 5.3. Let α:G↷A and β:G↷B be actions on C∗-algebras. Suppose

that β is strongly stable and conjugate to β⊗idO∞ . Suppose that there exists a proper

cocycle embedding from (A,α) into (B⊗O2, β⊗idO2
). Then, there exists a proper cocycle

embedding (θ, y): (A,α)!(B, β) along with a unital embedding ι0:O2!M(B)β , whose

range commutes with the ranges of θ and y.

Proof. By assumption, there exists a proper cocycle embedding

(A,α)−! (B⊗O2, β⊗idO2).

If we use an isomorphism O2
∼=O2⊗O2, we may choose one whose range commutes point-

wise with the range of some unital embedding ι0:O2!M(B⊗O2)
β⊗idO2 . By Lemma 5.2

and the assumption that β is conjugate to β⊗idO∞ , there exists a non-degenerate equi-

variant embedding from (B⊗O2, β⊗idO2
) to (B, β), so the claim follows.

The next remark slightly extends some terminology from the first section.

Remark 5.4. (Cf. Definition 1.10) Suppose that β is strongly stable. Given some

x∈EG(α, β), we denote its homotopy class by [x]h. More specifically, if we are given

a proper cocycle morphism (φ,u): (A,α)!(B, β), then we naturally associate to it the

Cuntz pair ((φ,u), (0,1)). Its homotopy class in EG(α, β)/∼h is also denoted [(φ,u)]h.

We call it anchored when (u,1)∼h(1,1).
Note that any anchored proper cocycle conjugacy (ψ, v): (B, β)!(C, γ) induces an

isomorphism (ψ, v)∗:EG(α, β)/∼h!EG(α, γ)/∼h such that

(ψ, v)∗([(φ,u)]h)= [(ψ, v)�(φ,u)]h

for all anchored proper cocycle morphisms (φ,u): (A,α)!(B, β).
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We shall now prove the existence and uniqueness theorems underpinning our classi-

fication theory. We note that the combination of Theorem 5.5 and Theorem 5.7 proves

Theorem E.

5.1. Existence

The following is the existence theorem underpinning our classification theory. Its strategy

of proof can be regarded as the dynamical generalization of [37, Lemma 7.3].

Theorem 5.5. Let A be a separable exact C∗-algebra with an action α:G↷A. Sup-

pose that G is exact or that α is amenable. Let B be a Kirchberg algebra and β:G↷B

a strongly stable, amenable and isometrically shift-absorbing action.

(i) For every z∈EG(α, β)/∼h, there exists a proper cocycle embedding

(φ,u): (A,α)−! (B, β)

such that [(φ,u)]h=z.

(ii) For every z∈KKG(α, β), there exists an anchored proper cocycle embedding

(φ,u): (A,α)−! (B, β)

with KKG(φ,u)=z.

Proof. We note that (ii) can be viewed as a special case of (i) in light of Defini-

tion 1.10, and hence we only need to prove the first part.

We know from Proposition 3.9 that β≃ccβ⊗idO∞ . By Theorem 1.16, it follows in

fact that the first factor embedding

(B, β)−! (B⊗O∞, β⊗idO∞)

is strongly asympotically unitarily equivalent to a properly cocycle conjugacy, which is

anchored since the first factor embedding is trivially anchored. We may therefore, without

any loss of generality, replace β by β⊗idO∞ in our claim and assume that β is conjugate

to β⊗idO∞ . Depending on whether G is exact or not, we argue as in Remark 4.9, and

apply Corollary 5.3 and Theorem 4.8, with β⊗idO2
in place of β. This allows us to find a

proper cocycle embedding (θ, y): (A,α)!(B, β) and a unital embedding ι0:O2!M(B)β

whose range commutes with θ and y.

Using that β is strongly stable, let us choose a sequence of isometries rn∈M(B)β

such that
∞∑
n=1

rnr
∗
n=1
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in the strict topology. As before, we let {ek,ℓ :k, ℓ⩾1} be a set of matrix units generating

K. We then consider the non-degenerate embedding

ι:O2⊗K−!M(B)β ,

a⊗ek,ℓ 7−! rkι0(a)r
∗
ℓ , k, ℓ⩾ 1.

Using Lemma 5.1, we may find a continuous unitary path

u: [0,∞)−!U(1+ι(O2⊗K))⊆U(M(B)β),

with u0=1, such that

1= lim
t!∞

u∗t ι(1⊗e1,1)ut= lim
t!∞

u∗t r1r
∗
1ut (5.1)

holds in the strict topology as t!∞, and moreover utb converges in norm as t!∞ for

all b∈B.

By Corollary 3.17, we have that (θ∞, y∞) is an absorbing cocycle representation,

where we note that the infinite repeat is meant to be formed via the sequence rn. This

ensures that the range of ι, and therefore also the range of u, commutes pointwise with

the range of θ∞ and y∞. It follows from [38, Corollary 3.17] that we can find some cocycle

representation (ψ, v): (A,α)!(M(B), β) that forms an (α, β)-Cuntz pair together with

(θ∞, y∞) such that one has z=[(ψ, v), (θ∞, y∞)]h.

By the properties of the unitary path u constructed above, we have, for all a∈A,
that

utψ(a)u
∗
t =ut(ψ(a)−θ∞(a)︸ ︷︷ ︸

∈B

)u∗t+θ
∞(a)

converges in norm as t!∞. Let φ′=limt!∞ Ad(ut)�ψ be the ∗-homomorphism arising

as the point-norm limit. We observe, for every a∈A, that

∥(1−r1r∗1)(φ′(a)−θ∞(a))∥= lim
t!∞
∥(1−r1r∗1)(utψ(a)u∗t−θ∞(a))∥

= lim
t!∞
∥(1−u∗t r1r∗1ut)(ψ(a)−θ∞(a))∥

(by (5.1)) =0.

Let us consider the isometry

r∞ =

∞∑
n=1

rn+1r
∗
n ∈M(B)β ,
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which has the property that r1r
∗
1+r∞r

∗
∞=1. Since all partial isometries of the form rkr

∗
ℓ

commute with the range of θ∞, we can conclude that the projection r1r
∗
1 commutes with

the range of φ′. Hence, it follows for all a∈A that

φ′(a)= r1r
∗
1φ

′(a)+(1−r1r∗1)φ′(a)

= r1r
∗
1φ

′(a)+(1−r1r∗1)θ∞(a)

=φ(a)⊕r1,r∞ θ∞(a),

where φ:A!M(B) is the ∗-homomorphism defined as φ(a)=r∗1φ
′(a)r1. Appealing to

the properties of the unitary path u once more, we have for all g∈G that

utvgu
∗
t =ut(vg−y∞g︸ ︷︷ ︸

∈B

)u∗t+y
∞
g

converges in norm as t!∞. Since the pointwise difference v−y∞ is norm-continuous

(see [107, Proposition 6.9]), this convergence is uniform over compact subsets of G. Let

u
′
�
= lim
t!∞

utv�u
∗
t

be the β -cocycle arising as the pointwise limit in norm. We observe, for every g∈G, that

∥(1−r1r∗1)(u′
g−y∞g )∥= lim

t!∞
∥(1−r1r∗1)(utvgu∗t−y∞g )∥

= lim
t!∞
∥(1−u∗t r1r∗1ut)(vg−y∞g )∥

(by (5.1)) =0.

Since all partial isometries of the form rkr
∗
ℓ commute with the range of y∞, we can

conclude that the projection r1r
∗
1 commutes with the range of u′. Hence, it follows, for

all g∈G, that

u
′
g = r1r

∗
1u

′
g+(1−r1r∗1)u′

g = r1r
∗
1u

′
g+(1−r1r∗1)y∞g =ug⊕r1,r∞y

∞
g ,

where u:G!U(M(B)) is the β -cocycle defined as ug=r
∗
1u

′
gr1. In conclusion, we have

constructed a cocycle representation (φ,u): (A,α)!(M(B), β) such that the two (α, β)-

Cuntz pairs

((φ,u)⊕r1,r∞ (θ∞, y∞), (θ∞, y∞)) and ((ψ, v), (θ∞, y∞))

are homotopic. Note that our choice of isometries to define the Cuntz sum leads to the

equation (θ∞, y∞)=(θ, y)⊕r1,r∞ (θ∞, y∞). In particular, we see that (φ,u) and (θ, y)
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also necessarily form an (α, β)-Cuntz pair representing the class z. Since (θ, y) was a

proper cocycle morphism, so is hence (φ,u). By construction (and Definition 1.10) it is

clear that [(θ, y)]h=0, so we may conlude that

z=
[
(φ,u), (θ, y)

]
h
= [(φ,u)]h−[(θ, y)]h= [(φ,u)]h.

Finally, if φ is not an embedding, we may replace (φ,u) by (φ,u)⊕(θ, y), the homotopy

class of which also equals z. This finishes the proof.

Theorem 5.6. Suppose that G is exact.(20) Let A be a separable exact unital C∗-

algebra with an action α:G↷A. Let B be a unital Kirchberg algebra and β:G↷B be an

amenable and isometrically shift-absorbing action. Then, for every x∈KKG(α, β) with

[1A]0⊗x=[1B ]0∈K0(B),(21) there exists a unital cocycle embedding

(ψ, v): (A,α)−! (B, β)

such that KKG(ψ, v)=x.

Proof. Denote Bs=B⊗K and βs=β⊗idK. Let us consider the invertible element

κ∈KKG(β, βs) given by the canonical inclusion B⊆Bs, b 7!b⊗e1,1. By Theorem 5.5, we

can find a proper cocycle embedding (φ,u): (A,α)!(Bs, βs) such that

KKG(φ,u)=x⊗κ.

By the assumptions on x, it follows that the projections φ(1A) and 1B⊗e1,1 represent

the same K0 -class. Since B
s is a stable Kirchberg algebra, these projections are unitarily

equivalent, so we find a unitary U∈U(1+Bs) with

Uφ(1)U∗ =1B⊗e1,1.

Thus, Ad(U)�(φ,u): (A,α)!(Bs, βs) is of the form (ψ⊗e1,1, v⊗e1,1+v′) for a unital

cocycle embedding (ψ, v): (A,α)!(B, β) and a β-cocycle v′ with values in

(1−e1,1)+(1−e1,1)Bs(1−e1,1).

Using [107, Proposition 6.14], it follows that indeed

KKG(ψ, v)=KKG(Ad(U)�(φ,u))⊗κ−1 =KKG(φ,u)⊗κ−1 =x.

(20) When G is non-exact, an action β as in this theorem cannot exist.
(21) To make sense of this formula, we can view x∈KK(A,B) via the forgetful map. The canonical

identification K0( ·)∼=KK(C, ·) and the Kasparov product allow us to make sense of this compatibility
formula of x with the K0-classes of the unit elements.
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5.2. Uniqueness

The following is the uniqueness theorem underpinning our classification theory. Its strat-

egy of proof can be regarded as the dynamical generalization of [37, Lemma 7.4].

Theorem 5.7. Let A be a separable exact C∗-algebra with an action α:G↷A. Let

B be a Kirchberg algebra and β:G↷B be a strongly stable, amenable and isometrically

shift-absorbing action. Let (φ,u), (ψ, v): (A,α)!(B, β) be two proper cocycle embeddings

that form an anchored Cuntz pair. Then, KKG(φ,u)=KKG(ψ, v) if and only if (φ,u)

and (ψ, v) are strongly asymptotically unitarily equivalent.

Proof. Since the “if” part is clear, we prove the “only if” part. By Proposition 3.9,

we have β≃ccβ⊗idO∞ . So, with Theorem 1.16, it follows that there exists a proper

cocycle conjugacy

(κ, x): (B, β)−! (B⊗O∞, β⊗idO∞)

that is strongly asymptotically unitarily equivalent to the equivariant first-factor embed-

ding idB ⊗1O∞ . We may in particular conclude that the proper cocycle morphism

(κ, x)−1
�(idB ⊗1O∞ ,1)

is strongly asymptotically inner. This way we see that, in order to prove the claim, it

suffices to show that the two proper cocycle morphisms

(φ⊗1O∞ ,u⊗1O∞), (ψ⊗1O∞ , v⊗1O∞): (A,α)−! (B⊗O∞, β⊗idO∞)

are strongly asymptotically unitarily equivalent. By appealing to Corollary 5.3, we may

hence assume, without loss of generality, that there exist a unital inclusion O∞⊂M(B)β

that commutes pointwise with the ranges of the maps φ, ψ, u and v, and moreover a

proper cocycle embedding (θ, y): (A,α)!(B, β) and a unital inclusion ι0:O2!M(B)β

whose range commutes with the range of θ and y.

Combining Remark 2.2 and Lemma 3.16, it follows that both (φ,u) and (ψ, v) ap-

proximately 1-dominate (θ, y). By Lemma 2.8, it follows that (φ,u) is strongly asymp-

totically unitarily equivalent to (φ⊕θ,u⊕y), and that (ψ, v) is strongly asymptotically

unitarily equivalent to (ψ⊕θ, v⊕y). In particular, it suffices to show that the two proper

cocycle morphisms

(φ⊕θ,u⊕y), (ψ⊕θ, v⊕y): (A,α)−! (B, β)

are strongly asymptotically unitarily equivalent, which we are about to do.
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As before, we pick a sequence of isometries rn∈M(B)β such that

∞∑
n=1

rnr
∗
n=1

holds in the strict topology, and construct all infinite repeats by using this sequence. Let

us also consider the isometry

r∞ =

∞∑
n=1

rn+1r
∗
n,

which fits into the equation r1r
∗
1+r∞r

∗
∞=1. Furthermore, we let {ek,ℓ :k, ℓ⩾1} be a set

of matrix units generating K.
By Corollary 3.17, the infinite repeat (θ∞, y∞) is an absorbing cocycle representa-

tion. We then consider the non-degenerate embedding

ι:O2⊗K−!M(B)β ,

a⊗ek,ℓ 7−! rkι0(a)r
∗
ℓ , k, ℓ⩾ 1.

Using Lemma 5.1, we may find a continuous unitary path

u: [0,∞)−!U(1+r∞ι(O2⊗K)r∗∞)⊆U(M(B)β)

such that

r∞r
∗
∞ = lim

t!∞
u∗t r∞ι(1⊗e1,1)r∗∞ut= lim

t!∞
u∗t r2r

∗
2ut

in the strict topology as t!∞. Note that, by construction, the range of ι commutes

pointwise with the range of θ∞ and y∞, and therefore the range of u commutes pointwise

with the range of 0⊕r1,r∞ θ∞ and 0⊕r1,r∞y
∞. Since the range of u clearly acts like a

unit on r1M(B)r∗1 , we also observe the strict convergence

1= lim
t!∞

u∗t (r1r
∗
1+r2r

∗
2)ut.

By assumption, we have an equality of classes

0=KKG(φ,u)−KKG(ψ, v)= [(φ,u), (ψ, v)] in KKG(α, β).

Since we assumed the pair of proper cocycle morphisms to be anchored, it thus follows

from the stable uniqueness theorem [38, Theorem 5.4] that the cocycle representations

(φ,u)⊕r1,r∞ (θ∞, y∞) and (ψ, v)⊕r1,r∞ (θ∞, y∞)
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are strongly asymptotically unitarily equivalent. In other words, we find a norm-continuous

path of unitaries w: [0,∞)!U(1+B) with w0=1 such that

lim
t!∞

wt(φ(a)⊕r1,r∞ θ∞(a))w∗
t =ψ(a)⊕r1,r∞ θ∞(a)

for all a∈A, and

lim
t!∞

max
g∈K
∥wt(ug⊕r1,r∞y

∞
g )βg(wt)

∗−(vg⊕r1,r∞y
∞
g )∥=0

for every compact set K⊆G. For ease of notation, we shall denote p2=r1r
∗
1+r2r

∗
2 .

By reparameterizing and/or cutting off an initial segment of u, if necessary, we may

additionally assume

lim
t!∞
∥(u∗t p2ut−1)(wt−1)∥=0= lim

t!∞
∥(p2−1)(utwtu∗t−1)∥,

and that these norms are uniformly bounded above by 1
4 over all t⩾0. Let us consider

the norm-continuous path of elements z′: [0,∞)!1+p2Bp2 given by

z′t= p2utwtu
∗
t p2+(1−p2).

Then, z′0=1 and supt⩾0 ∥utwtu∗t−z′t∥<1, so we may define the continuous unitary path

z: [0,∞)!U(1+p2Bp2) via zt=z′t|z′t|−1. By construction, we can see that

lim
t!∞
∥zt−utwtu∗t ∥=0.

By choice of the unitary paths u and w, we can now conclude

lim
t!∞

zt(φ(a)⊕r1,r∞ θ∞(a))z∗t = lim
t!∞

utwtu
∗
t (φ(a)⊕r1,r∞ θ∞(a))utw

∗
t u

∗
t

= lim
t!∞

utwt(φ(a)⊕r1,r∞ θ∞(a))w∗
t u

∗
t

= lim
t!∞

ut(ψ(a)⊕r1,r∞ θ∞(a))u∗t

=ψ(a)⊕r1,r∞ θ∞(a)

for all a∈A, and likewise

lim
t!∞

max
g∈K
∥zt(ug⊕r1,r∞y

∞
g )βg(zt)

∗−(vg⊕r1,r∞y
∞
g )∥=0

for every compact set K⊆G. By multiplying all the involved elements with p2, we get

lim
t!∞

zt(r1φ(a)r
∗
1+r2θ(a)r

∗
2)z

∗
t = r1ψ(a)r

∗
1+r2θ(a)r

∗
2
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for all a∈A, and

lim
t!∞

max
g∈K
∥zt(r1ugr∗1+r2ygr∗2)βg(zt)∗−(r1vgr∗1+r2ygr∗2)∥=0

for every compact set K⊆G. Consider the isometry R=r1r
∗
1+r2r

∗
∞∈M(B)β , which

satisfies RR∗=p2. Then, v: [0,∞)!U(1+B) given by vt=R
∗ztR is a unitary path with

v0=1. Since R∗r1=r1 and R∗r2=r∞, we can consider the above limit properties and

conjugate the terms via R∗( ·)R, in order to finally arrive at

lim
t!∞

vt(φ(a)⊕r1,r∞ θ(a))v∗t =ψ(a)⊕r1,r∞ θ(a)

for all a∈A, and

lim
t!∞

max
g∈K
∥vt(ug⊕r1,r∞yg)βg(vt)

∗−(vg⊕r1,r∞yg)∥=0

for every compact set K⊆G. In particular, we have just shown that (φ⊕θ,u⊕y) and

(ψ⊕θ, v⊕y) are indeed strongly asymptotically unitarily equivalent. This finishes the

proof.

Theorem 5.8. Suppose that G is exact. Let A be a separable unital exact C∗-

algebra with an action α:G↷A. Let B be a unital Kirchberg algebra and β:G↷B be

an amenable and isometrically shift-absorbing action. Let (φ,u), (ψ, v): (A,α)!(B, β)

be two unital cocycle embeddings. Then, KKG(φ,u)=KKG(ψ, v) if and only if (φ,u)

and (ψ, v) are asymptotically unitarily equivalent.

Proof. As before, the “if” part is clear, so from now on assume that

KKG(φ,u)=KKG(ψ, v)

holds.

We set Bs=B⊗K and βs=β⊗idK. Let us consider the canonical inclusion

ι:B−!Bs,

b 7−! b⊗e1,1.

We now consider the βs-cocycles u′
g=ι(ug)+1−e1,1 and v

′
g=ι(vg)+1−e1,1. Applying

Theorem 5.5 (i) to A=0, we obtain a norm-continuous βs-cocycle x:G!U(1+Bs) such
that [(u′, v′)]h=[(x,1)]h.

Choose a pair of isometries r1, r2∈M(K)⊆M(Bs)β
s

with

r1r
∗
1+r2r

∗
2 =1 and r1e1,1 = e1,1.
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This leads in particular to the equation u
′=u′⊕r1,r21. Then, we have the equality (see

[107, Proposition 6.14])

KKG(ι�φ,u′)=KKG(ι�ψ, v′⊕r1,r2x)

in KKG(α, βs). By construction, we have

[(u′, v⊕x)]h= [(u′⊕r1,r21, v′⊕r1,r2x)]h= [(u′, v′)]h−[(x,1)]h=0.

Thus, we can apply Theorem 5.7 and find a norm-continuous path of unitaries

v: [0,∞)−!U(1+Bs)

witnessing that (ι�φ,u′) and (ι�ψ, v′⊕r1,r2x) are strongly asymptotically unitarily equiv-

alent. Then, as t!∞, the unitaries vt approximately commute with 1B⊗e1,1. Thus, after
cutting away an initial segment of v, if necessary,(22) we can define a norm-continuous

path of unitaries

u: [0,∞)−!U(B),

t 7−!ut= ι−1((1B⊗e1,1)vt(1B⊗e1,1)|(1B⊗e1,1)vt(1B⊗e1,1)|−1),

which then satisfies

lim
t!∞

utφ(a)u
∗
t =ψ(a) and lim

t!∞
max
g∈K
∥utugβg(ut)∗−vg∥=0

for all a∈A and every compact set K⊆G. This finishes the proof.

5.3. Characterizing asymptotic coboundaries

We finish this section by applying the uniqueness theorem to determine in K-theoretic

terms when cocycles on unital Kirchberg algebras can be realized as continuous limits of

coboundaries.

Definition 5.9. (Cf. [100, Definition 1.4]) Let G be a second-countable, locally com-

pact group. Let B be a C∗-algebra and β:G↷B be an action. We say that a norm-

continuous cocycle u:G!U(1+B) is an asymptotic coboundary if there exists a contin-

uous path of unitaries v: [0,∞)!U(1+B) such that

lim
t!∞

max
g∈K
∥ug−vtβg(vt)∗∥=0

for every compact set K⊆G. If α:G↷A is another action on a C∗-algebra, then a proper

cocycle conjugacy (φ,u): (A,α)!(B, β) is called a very strong cocycle conjugacy if u is

an asymptotic coboundary.

(22) This is the reason why it is not always possible to arrange strong asymptotic unitary equivalence
in the claim here.
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We recall the following observation due to Izumi.

Proposition 5.10. (See [54, Lemma 2.4]) Let G be a compact group and let

β:G↷B be an action on a C∗-algebra. If u:G!U(1+B) is a norm-continuous β-

cocycle with maxg∈G ∥ug−1∥<1, then u is a coboundary, i.e., there exists v∈U(1+B)

with ug=vβg(v)
∗ for all g∈G.

Corollary 5.11. Let G be a compact group and β:G↷B be an action on a C∗-

algebra. If a norm-continuous β-cocycle u:G!U(1+B) is an asymptotic coboundary,

then it is a coboundary. Moreover, if α:G↷A is another action on a C∗-algebra, then

a very strong cocycle conjugacy (φ,u): (A,α)!(B, β) is properly unitarily equivalent to

a conjugacy.

Remark 5.12. We recall (see [107, §1]) that, for any two proper cocycle morphisms

(φ,u): (A,α)!(B, β) and (ψ, v): (B, β)!(C, γ), their composition is given by

(ψ, v)�(φ,u)= (ψ�φ,ψ(u
�
)v

�
).

Suppose that u is an asymptotic β -coboundary witnessed by a path y: [0,∞)!U(1+B)

and that v is an asymptotic γ -coboundary witnessed by the path z: [0,∞)!U(1+C).
Then, it follows that also ψ(u

�
)v

�
is an asymptotic γ-coboundary, since we can compute

for all g∈G that

ψ(ug)vg = lim
t!∞

ψ(ytβg(yt)
∗)vg = lim

t!∞
ψ(yt)vgγg(ψ(yt))

∗ = lim
t!∞

ψ(yt)ztγg(z
∗
t ψ(yt)

∗).

Notation 5.13. Given a unital C∗-algebra A, we will denote by ιA:C!A the canon-

ical unital inclusion. If A carries a group action, we will equip C with the trivial action,

so that ιA can be viewed as an equivariant inclusion.

Theorem 5.14. Let β:G↷B be an amenable and isometrically shift-absorbing ac-

tion on a Kirchberg algebra, and let u:G!U(1+B) be a β-cocycle.

(i) Suppose that β is strongly stable. If (u,1)∼h(1,1) in the sense of Definition 1.9,

then u is an asymptotic coboundary, and in fact there exists a norm-continuous path

y: [0,∞)!U(1+B) with y0=1 and

lim
t!∞

max
g∈K
∥ug−ytβg(yt)∗∥=0

for every compact set K⊆G.
(ii) Suppose that G is exact and B is unital. Consider the element u♯=KKG(ιB ,u)∈

KKG(idC, β) associated to u. Then, u is an asymptotic coboundary if and only if

u
♯=KKG(ιB ,1).
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Proof. (i) This is a direct consequence of Theorem 5.7 applied to the special case

A=0 and the two proper cocycle embeddings (0,u) and (0,1).

(ii) We observe, by comparing definitions, that u is an asymptotic coboundary if

and only if the two unital cocycle embeddings

(ιB ,1), (ιB ,u): (C, id)−! (B, β)

are asymptotically unitarily equivalent. This is seen to be equivalent to u♯=KKG(ιB),

by applying Theorem 5.8 to A=C.

6. The classification theorem and some applications

We recall the following intertwining result from [107, Corollary 4.6], which will be the

last piece towards our main classification theorem.

Theorem 6.1. Let α:G↷A and β:G↷B be two actions on separable C∗-algebras.

Suppose that

(φ,u): (A,α)−! (B, β) and (ψ, v): (B, β)−! (A,α)

are two proper cocycle morphisms such that both

(ψ, v)�(φ,u) and (φ,u)�(ψ, v)

are properly asymptotically inner. Then, (φ,u) is strongly asymptotically unitarily equiv-

alent to a proper cocycle conjugacy.

The following is our main classification result and proves Theorem F, which includes

Theorem A as a special case. Before stating it, we remind the reader of Zhang’s dichotomy

[116], which implies that every Kirchberg algebra is either stable or unital.

Theorem 6.2. Let G be a second-countable locally compact group. Let α:G↷A

and β:G↷B be two amenable and isometrically shift-absorbing actions on Kirchberg

algebras.(23)

(i) If both A and B are stable, then every invertible element x∈KKG(α, β) lifts to

a cocycle conjugacy (A,α)!(B, β).

(ii) If α and β are strongly stable, then every invertible element x∈KKG(α, β) lifts

to a very strong cocycle conjugacy (A,α)!(B, β).

(23) Let us point out once more that when G is discrete, α and β are isometrically shift-absorbing
if and only if they are outer by Remark 3.15.
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(iii) Suppose that G is exact. If A and B are unital, then every invertible element

x∈KKG(α, β) with [1A]0⊗x=[1B ]0 lifts to a cocycle conjugacy (A,α)!(B, β). Also,

such an element x∈KKG(α, β) lifts to a very strong cocycle conjugacy if and only

KKG(ιA)⊗x=KKG(ιB).

Proof. In light of Proposition 1.4, we see that (i) follows directly from (ii).

(ii) By applying Theorem 5.5 twice, we may find two anchored proper cocycle

embeddings (φ,u): (A,α)!(B, β) and (ψ, v): (B, β)!(A,α) with KKG(φ,u)=x and

KKG(ψ, v)=x−1. By Theorem 5.14 (i), there exists a norm-continuous path

y: [0,∞)−!U(1+B)

with y0=1 and

lim
t!∞

max
g∈K
∥ug−ytβg(yt)∗∥=0

for every compact set K⊆G. Likewise, we can choose such a path

z: [0,∞)−!U(1+A)

for the α-cocycle v. In light of Remark 5.12, we can observe that the α-cocycle ψ(u
�
)v

�

is norm-homotopic to the trivial α-cocycle, and hence [(ψ(u
�
)v

�
,1)]h=0 in EG(β, α)/∼h.

Analogously, we have [(φ(v
�
)u

�
,1)]h=0 in EG(α, β)/∼h. It follows that the composi-

tions (ψ, v)�(φ,u) and (φ,u)�(ψ, v) are both anchored. This allows us to apply The-

orem 5.7 and conclude that they are both strongly asymptotically inner. We conclude

from Theorem 6.1 that (φ,u) is strongly asymptotically unitarily equivalent to a proper

cocycle conjugacy (Φ,U), which necessarily also represents x. Since u was an asymptotic

coboundary, so is U, and (Φ,U) is in fact a very strong cocycle conjugacy.

(iii) For the first part of the claim, carry out the analogous argument we used to

prove (ii) above, but use Theorem 5.6 in place of Theorem 5.5 and Theorem 5.8 in

place of Theorem 5.7. Let us hence prove the “Also” part, i.e., let an invertible element

x∈KKG(α, β) with [1A]0⊗x=[1B ]0 be given. We already know that x lifts to a cocycle

conjugacy (φ,u): (A,α)!(B, β). By the compatibility of the Kasparov product with

respect to compositions, we observe that

KKG(ιA)⊗x=KKG(ιA)⊗KKG(φ,u)=KKG(ιB ,u)=u
♯.

If (φ,u) can be chosen to be a very strong cocycle conjugacy, then it follows by the

“only if” part in Theorem 5.14 (ii) that this class is equal to KKG(ιB). Conversely, if we

assume KKG(ιA)⊗x=KKG(ιB) and choose (φ,u) arbitrarily, then it evidently follows

that u♯=KKG(ιB). By the “if” part from Theorem 5.14 (ii), it follows that u is an

asymptotic coboundary, so (φ,u) is automatically a very strong cocycle conjugacy.
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In the case of compact groups, we can further improve the conclusion above by

observing that one is always in one of the situations described by the two conditions (ii)

and (iii).

Proposition 6.3. Let G be a second-countable compact group and let β:G↷B

be an isometrically shift-absorbing action on a separable stable C∗-algebra. Then, β is

strongly stable.

Proof. We assume B ̸=0. The inclusion Bβ⊆B from the fixed point algebra is non-

degenerate. As this induces a canonical unital inclusionM(Bβ)⊆M(B)β that is strictly

continuous on the unit ball, it follows directly from [38, Remark 1.4] (see the paragraph

after Notation 1.3) that β is strongly stable if Bβ is stable. By the main result of [51],

any given σ-unital C∗-algebra A is stable if and only if, for every ε>0 and every positive

element e∈A of norm 1, there exists a contraction x∈A with e=εx
∗x and ∥exx∗∥⩽ε.

We shall verify this condition for A=Bβ .

Let ε>0 and e∈Bβ be given. Since B is stable, we can find a contraction y∈B with

e=εy
∗y and ∥e−y∗y∥+∥eyy∗∥⩽ε. Using that e is a fixed point, we get, for all g∈G, that

ε⩾ ∥e−y∗y∥+∥eyy∗∥= ∥e−βg(y∗y)∥+∥eβg(yy∗)∥.

We consider L2(G,B) constructed in the sense of Notation 3.5 with the normalized Haar

measure µ on G, and define a contraction ζ∈C(G,B)⊆L2(G,B) via ζ(h)=βh(y). Then,

ζ is fixed under β̄, and moreover we observe the two properties

∥e−⟨ζ | ζ⟩∥=
∥∥∥∥∫

G

(e−βg(y∗y)) dµ
∥∥∥∥⩽ ε

and

∥eζ∥22 =
∥∥∥∥∫

G

eβg(yy
∗)e dµ

∥∥∥∥⩽ ∫
G

∥eβg(yy∗)e∥ dµ⩽ ε.

By Proposition 3.8 (iv), there exists an equivariant linear B-bimodule map

θ: (L2(G,B), β̄)−! (B∞,β , β∞)

satisfying θ(ξ)∗θ(η)=⟨ξ |η⟩B for all ξ, η∈L2(G,B). By what we have computed above,

z= θ(ζ)∈ (B∞,β)
β∞ =(Bβ)∞

is a contraction satisfying ∥e−z∗z∥⩽ε and ∥ez∥2⩽ε. Since ε>0 was arbitrary, we can

apply a standard reindexation trick and find a sequence of contractions xn∈Bβ satisfying

x∗nxn!e and exn!0. Since e was arbitrary, it follows that Bβ is indeed stable.
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For compact groups G, very strong cocycle conjugacy coincides with conjugacy, by

Corollary 5.11. Hence, we may combine the above proposition with Theorem 6.2 and

obtain a classification up to genuine conjugacy for compact groups.

Corollary 6.4. Let G be a second-countable compact group. Let α:G↷A and

β:G↷B be two isometrically shift-absorbing actions on Kirchberg algebras.

(i) If A and B are stable, then every invertible element x∈KKG(α, β) lifts to a

conjugacy (A,α)!(B, β).

(ii) If A and B are unital, then every invertible element x∈KKG(α, β) with

KKG(ιA)⊗x=KKG(ιB)

lifts to a conjugacy (A,α)!(B, β).

Remark 6.5. The extra condition appearing in both Theorem 6.2 (iii) and Corol-

lary 6.4 (ii) on the KKG-class x is not redundant. Even for G=Z/2Z, there are known

examples of outer actions α, β:G↷B for B=O2 that are cocycle conjugate, but not

conjugate; see [3, Corollary 5.5]. If we choose these actions and define x to be the class

associated to a cocycle conjugacy (φ,u):(B,α)!(B, β), then it follows that x cannot sat-

isfy the extra condition KKG(ιB)⊗x=KKG(ιB). More generally, let G be any compact

group and β:G↷B be any action as in Theorem 6.2 (iii). Given a β -cocycle u:G↷U(B),

we consider the KKG-equivalence in KKG(βu, β) induced by the exterior equivalence

(idB ,u): (B, β
u)!(B, β). By Theorem 5.14, the extra condition u

♯=KKG(ιB) holds if

and only if u is a coboundary, which holds if and only if this element can also be rep-

resented by a conjugacy. In some very special cases, such as when β has the Rokhlin

property, it may happen that all cocycles are coboundaries, but in general this provides

plenty of examples demonstrating that conjugacy between actions on unital Kirchberg

algebras is indeed stronger than cocycle conjugacy.

We now demonstrate how a special case of our main results provides a positive

solution to a conjecture of Izumi; see [56, Conjecture 1], [59, Conjecture 1.2] and [60,

Conjecture 1.1]. The last of these three conjectures is the precise one that we verify

below, which has been deemed “the most optimistic version of conjectures of similar

kind” in [60]. In order to set up the statement of the theorem, we choose to directly

quote the relevant paragraph from the introduction of [60]:

“We recall the notion of classifying spaces in algebraic topology first.

For any topological group G, there exists a universal principal G-bundle

EG!BG satisfying the following property : every numerable principal

G-bundle P!X is isomorphic to the pullback bundle f∗EG of a contin-
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uous map f :X!BG so that the set of isomorphism classes of numer-

able principal G-bundles over X is in one-to-one correspondence with

the homotopy set [X,BG]; see [52, Chapter 4]. The space BG, which is

unique up to homotopy equivalence by universality, is called the classi-

fying space of G. Since the Milnor construction of BG is functorial, a

continuous group homomorphism h:G1!G2 induces a continuous map

Bh:BG1!BG2. If moreover G1 and G2 are discrete groups, the map

Hom(G1, G2)/conjugacy∋ [h] 7−! [Bh]∈ [BG1, BG2]

is a bijection, which follows from the classification of regular covering

spaces over BG1; see for example [79, §3.7, 3.8].”

The following theorem, when restricted to actions of poly-Z groups, recovers and

generalizes the main result of [60].

Theorem 6.6. Let G be a countable discrete amenable torsion-free group, and let

A be a stable Kirchberg algebra. Then, the map

OA(G,A)/cocycle conjugacy∋ [α] 7−! [Bα]∈ [BG,BAut(A)]

is a bijection, where OA(G,A) denotes the set of outer actions of G on A.

Proof. Meyer showed in [80, Theorem 3.10](24) that KKG-classes of (outer) G-

actions on A are in a natural bijective correspondence with [BG,BAut(A)]. As a con-

sequence, the claim holds precisely when outer G-actions on A are classified by KKG.

This is what is accomplished in Theorem 6.2, and therefore the claim is proved.

Next, we observe that the classification result implies that in many cases, isomet-

ric shift-absorption for an action is expressible in terms of (very strongly) tensorially

absorbing the canonical quasi-free action on O∞.

Definition 6.7. (Cf. [107, Definition 5.1]) Let α:G↷A and δ:G↷D be actions on

separable C∗-algebras, and suppose that D is unital. We say that α very strongly ab-

sorbs δ if the equivariant embedding

idA⊗1D: (A,α)−! (A⊗D,α⊗δ)

is strongly asymptotically unitarily equivalent to a cocycle conjugacy.

(24) Meyer’s theorem relies on Kirchberg’s unpublished classification of non-simple purely infinite

C∗-algebras. The proof was supposed to appear in his book, which unfortunately was not completed

before his passing. The first named author provided an alternative proof of this classification theorem
in [37].
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Corollary 6.8. Let γ:G↷O∞ be the model action from Definition 3.4 and let

β:G↷B be an amenable action on a Kirchberg algebra. Consider the following condi-

tions:

(i) β very strongly absorbs γ;

(ii) β is cocycle conjugate to β⊗γ⊗∞;

(iii) β is isometrically shift-absorbing.

Then, (i)⇒ (ii)⇔ (iii). If B is unital or β is strongly stable, then all three conditions

are equivalent. Furthermore, if G is amenable, then γ⊗∞:G↷O⊗∞
∞ is strongly self-

absorbing, and all three conditions are equivalent. If G is both discrete and amenable,

then in fact γ is strongly self-absorbing.(25)

Proof. The implication (i)⇒ (ii) holds in general, due to [107, Proposition 5.2]. The

implication (ii)⇒ (iii) is clear by Proposition 3.8. Let us for a moment assume that B

is either unital or β is strongly stable and prove (iii)⇒ (i). By Remark 3.3, we see that

the first-factor embedding

idB ⊗1: (B, β)−! (B⊗O∞, β⊗γ)

is a KKG-equivalence. Since both the domain and codomain actions are amenable and

isometrically shift-absorbing, it follows from Theorem 6.2, and either Theorem 5.8 or

Theorem 5.7, that this embedding is strongly asympotically unitarily equivalent to a

cocycle conjugacy. In particular, β very strongly absorbs γ. The only remaining impli-

cation is (iii)⇒ (ii) if B is non-unital and β is not strongly stable. However, condition

(ii) is clearly invariant under cocycle conjugacy. Since B is stable, β is therefore cocycle

conjugate to a strongly stable action by Proposition 1.4, so the above completes the circle

of implications.

Now let us assume that G is amenable. Then, the above applies in particular to

β=γ⊗∞ and yields the strong self-absorption of this action. In this case, the implica-

tion (ii)⇒ (i) follows from Theorem 1.16. Finally, let us assume that G is discrete and

amenable. By Remark 3.15, every outer G-action on a Kirchberg algebra is isometrically

shift-absorbing, so the claim follows from the fact that every faithful quasi-free action on

O∞ is outer; see Proposition 3.2.

Next, we verify another conjecture of Izumi, and hence generalize the main result of

[41] to infinite amenable groups.

(25) Whether this is true when G is non-discrete remains an open problem.
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Theorem 6.9. Let G be a countable discrete amenable group. Then, all faithful

quasi-free actions G↷O∞ are mutually very strongly cocycle conjugate.

Proof. We know by Proposition 3.2 that every faithful quasi-free action is outer.

Moreover, we know by Remark 3.3 that the canonical unital inclusion C⊂O∞ is a KKG-

equivalence with respect to any quasi-free action on O∞. In particular, we see that any

pair of faithful quasi-free actions G↷O∞ has a canonical KKG-equivalence between

them, as required by Theorem 6.2 (iii), which shows the claim.

As a consequence of our existence theorem, we can, via abstract means, construct

new examples of amenable actions of non-amenable groups with the Haagerup property,

which so far are only known for free groups; see [84, Corollary 6.4]. In particular, this

partially resolves an issue raised in the concluding remarks of [98]. We note that, shortly

before the submission of this article, Suzuki [99] has constructed such examples by a

different method.

Theorem 6.10. Let G be a second-countable, locally compact group. Suppose that

G is exact and satisfies the Haagerup property. Then, there exists an amenable and

isometrically shift-absorbing action α:G↷O∞ such that the unital inclusion C⊂O∞ is

a KKG-equivalence.

Proof. By [84, Corollary 6.3], we can find an amenable action β:G↷O∞⊗K and

an invertible element x∈KKG(idC, β). Due to Remark 3.14, we may assume β to be

isometrically shift-absorbing. With Theorem 5.5, we can find a proper cocycle embedding

(ψ, v): (C, idC)!(O∞⊗K, β) with KKG(ψ, v)=x. In particular, we have that p=ψ(1)

is a projection fixed by the action βv. We may hence define α to be the restriction of βv

to the corner spanned by p. Since ψ has to also induce an ordinary KK-equivalence, we

deduce that p must be a generator of the K0-group, which in this case means that

p(O∞⊗K)p∼=O∞.

By the stability properties of KKG, the inclusion map ι: (O∞, α)!(O∞⊗K, βv) is a

KKG-equivalence. If ι1:C!O∞ denotes the unital inclusion, then it fits into the obvious

equality of proper cocycle morphisms (id, v)�ι�ι1=(ψ, v). This implies(26) that

KKG(ι1)=x⊗KKG(id, v∗)⊗KKG(ι)−1 ∈KKG(idC, α)

is invertible. Since both amenability and isometric shift-absorption are properties pass-

ing to cocycle perturbations and hereditary subsystems (cf. Proposition 3.8 and [84,

Proposition 3.7]), α shares these properties with β.

(26) Keep in mind that Kasparov product is compatible with compositions in the reverse order.
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We also exhibit the following interesting phenomenon (along with some consequences),

which can be obtained from our main result in conjunction with the Baum–Connes ma-

chinery of Meyer–Nest [81]. It is rather striking that such a statement can be obtained

as a consequence of the deep homological algebra techniques that are applicable to the

structure of equivariantKK-groups, especially because it seems impossible to prove more

directly.

Theorem 6.11. Let G be a second-countable locally compact group with the Haagerup

property. Let α:G↷A and β:G↷B be two amenable and isometrically shift-absorbing

actions on Kirchberg algebras. Suppose that either both A and B are unital, or both α

and β are strongly stable. Let (φ,u): (A,α)!(B, β) be a proper cocycle morphism. Then,

(φ,u) is strongly asymptotically unitarily equivalent to a proper cocycle conjugacy if and

only if, for every compact subgroup H⊆G, the proper cocycle embedding of restricted

H-actions (φ,u|H): (A,α|H)!(B, β|H) is strongly asymptotically unitarily equivalent to

a proper cocycle conjugacy (of H-actions).

Proof. The “only if” part is tautological. For the “if” part, keep in mind that

the case H={1} already implies that φ must be an embedding, which is necessarily

unital, if A and B are unital. We are in a position to apply Theorem 6.2 and either

Theorem 5.7 or Theorem 5.8. Hence, we observe that (φ,u) is strongly asymptotically

unitarily equivalent to a proper cocycle conjugacy if and only if KKG(φ,u)∈KKG(α, β)

is invertible. Given any compact subgroup H⊆G, the same equivalence holds for the

restricted H-actions, if we insert H in place of G. In other words, the claim amounts to

saying that, if KKH(φ,u|H)∈KKH(α|H , β|H) is invertible for every compact subgroup

H⊆G, then KKG(φ,u)∈KKG(α, β) is invertible. But this follows directly from [81,

Theorem 8.5].

Corollary 6.12. Let G be a second-countable locally compact group satisfying the

Haagerup property. Let D be a separable unital simple nuclear C∗-algebra with actions

δ, δ(1), δ(2):G↷D. Let α:G↷A be an amenable and isometrically shift-absorbing action

on a Kirchberg algebra. Suppose that A is either unital or α is strongly stable.

(i) The action α very strongly absorbs δ if and only if, for every compact subgroup

H⊆G, the restricted H-action α|H very strongly absorbs δ|H .

(ii) Suppose that δ is amenable and isometrically shift-absorbing. Then, δ is strongly

self-absorbing if and only if, for every compact subgroup H⊆G, the restricted action δ|H
is strongly self-absorbing.

(iii) Suppose that δ(1) and δ(2) are amenable, isometrically shift-absorbing, and

strongly self-absorbing. Then, δ(1)≃ccδ
(2) if and only if, for every compact subgroup

H⊆G, one has δ(1)|H≃ccδ
(2)|H as H-actions.
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Proof. We first note that by Proposition 3.8, every amenable and isometrically shift-

absorbing action also absorbs the trivial action on O∞.

(i) This is a special case of Theorem 6.11 if we insert α⊗δ in place of β.

(ii) Since δ is equivariantly Jiang–Su stable, it follows from Theorem 1.16 that δ is

strongly self-absorbing if and only if δ very strongly absorbs δ. Hence, this becomes a

special case of (i).

(iii) Since we assume δ(1) and δ(2) to be strongly self-absorbing, they are cocycle

conjugate if and only if they absorb each other. Since they are both equivariantly Jiang–

Su stable, it follows from Theorem 1.16 that this is the case if and only if they absorb

each other very strongly. Hence, the claim follows from applying part (i) twice.

As a consequence, we can partially verify and extend on a conjecture by the second

author, which was originally posed for actions of amenable groups; see [100] or [104,

Conjecture A].

Corollary 6.13. Let G be a countable discrete torsion-free group with the Haagerup

property. Let D be a strongly self-absorbing Kirchberg algebra.

(i) An amenable action α:G↷A on a D-stable Kirchberg algebra is outer if and

only if α very strongly absorbs every action δ:G↷D.
(ii) Suppose G is exact. Then, up to (very strong) cocycle conjugacy, there exists a

unique amenable outer action δ:G↷D, which is automatically strongly self-absorbing.

Proof. (i) follows from Corollary 6.12 (i) for H={1}.
(ii) From Theorem 6.10, we can conclude that there exists such an action in the

first place. The fact that it is strongly self-absorbing and unique follows directly from

statements (ii) and (iii) in Corollary 6.12 for H={1}.

For the subsequent applications of our main results to flows, we recall the statement

below as a special case of [5, Theorem 20.7.3], which can be viewed as a strengthening

of the Connes–Thom isomorphism theorem [19], [35].

Theorem 6.14. Let k⩾1 be given and let α:Rk↷A and β:Rk↷B be two actions

on separable C∗-algebras. Then, the canonical forgetful map KKRk

(α, β)!KK(A,B),

which takes a KKRk

-class and sends it to the associated ordinary KK-class between

C∗-algebras, is an isomorphism of abelian groups.

For what follows, the reader should briefly recall the definition of the Rokhlin prop-

erty for actions of Rk; see [104, Definition 6.2]. The argument below provides an alter-

native proof of and generalizes [106, Theorem A].
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Corollary 6.15. Let γ:Rk↷O∞ be the canonical quasi-free action from Defini-

tion 3.4. Let β:Rk↷B be an action on a separable O∞-absorbing C∗-algebra.

(i) β has the Rokhlin property if and only if β is isometrically shift-absorbing.

(ii) Suppose B is a Kirchberg algebra. Then, β has the Rokhlin property if and only

if β is cocycle conjugate to idB ⊗γ⊗∞:Rk↷B⊗O⊗∞
∞ . If either B is unital or β is

strongly stable, then these two actions are in fact very strongly cocycle conjugate.

Proof. (i) Note that the existence of a Rokhlin action on O∞ is ensured by [105,

Example 6.8], which uses [6]. For the “only if” part, we note that γ⊗∞ is a strongly

self-absorbing action, by Corollary 6.8. Assuming that β has the Rokhlin property, it

follows by [105, Corollary B] that β≃ccβ⊗γ⊗∞, so in particular β is isometrically shift-

absorbing. Conversely, if we know that β is isometrically shift-absorbing, then it suffices

to show, by Proposition 3.8, that γ⊗∞ has the Rokhlin property. By Theorem 6.14 and

Theorem 6.2 (iii), we can obtain a cocycle conjugacy between γ⊗∞ and its tensor product

with any Rokhlin action on O∞, which shows the claim.

(ii) With (i), the “if” part is clear, so we show the “only if” part. By Theorem 6.14,

we have canonical (if B is unital, in particular unit-preserving) KKRk

-equivalences of

actions

β∼ idB ∼ idB ⊗γ⊗∞.

By (i), we know that β is isometrically shift-absorbing. So, with Theorem 6.2, it follows

that β and idB ⊗γ⊗∞ are indeed (very strongly) cocycle conjugate.
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[92] Rørdam, M., Classification of certain infinite simple C∗-algebras. J. Funct. Anal., 131
(1995), 415–458.

[93] — Classification of nuclear, simple C∗-algebras, in Classification of Nuclear C∗-Algebras.
Entropy in Operator Algebras, Encyclopaedia Math. Sci., 126, pp. 1–145. Springer,
Berlin–Heidelberg, 2002.
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[95] — The Künneth theorem and the universal coefficient theorem for Kasparov’s generalized
K-functor. Duke Math. J., 55 (1987), 431–474.

[96] Schafhauser, C., Subalgebras of simple AF-algebras. Ann. of Math., 192 (2020), 309–
352.

[97] Suzuki, Y., Simple equivariant C∗-algebras whose full and reduced crossed products
coincide. J. Noncommut. Geom., 13 (2019), 1577–1585.

[98] — Equivariant O2-absorption theorem for exact groups. Compos. Math., 157 (2021),
1492–1506.

[99] — Every countable group admits amenable actions on stably finite simple C∗-algebras.
To appear in Amer. J. Math.
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