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1. Introduction
1.1. The Alexandrov—Fenchel inequality and the extremal problem

Let C4,...,C,, be convex bodies (that is, non-empty compact convex sets) in R™. One
of the most basic facts of convex geometry, due to Minkowski [22], is that the volume of

convex bodies behaves as a homogeneous polynomial under addition
ANC+uC" ={dz+py:x€C,yecC'},

that is, for all Aq, ..., A, =0,

Vol (AMCr1+ A AmCrm) = > Vi (Ciyy ooy Ci )iy o Ny - (1.1)

i1, yin=1

The coefficients V,,(Cj,, ..., C;,, ) of this polynomial, called mized volumes, form a large
family of natural geometric parameters associated with convex bodies. For example,
the special cases V,,(C, ...,C, B, ..., B), called quermassintegrals, already capture familiar
notions such as the volume, surface area, and mean width of C, and the average volume
of the projections of C' onto a random k-dimensional subspace.(!) In view of these
and numerous other important examples, mixed volumes play a central role in convex
geometry [3], [5], [24], [30].

When the convex bodies are polytopes, mixed volumes may also be viewed as be-
longing to combinatorial geometry. In this setting, striking connections arise between
the theory of mixed volumes and other areas of mathematics. For example, in algebraic
geometry, mixed volumes compute the number of solutions to systems of polynomial
equations [5, §27] and intersection numbers of divisors on toric varieties [13], [9]; and
in combinatorics, mixed volumes compute quantities associated with objects such as
matroids, partial orders, and permanents [33], [17].

Given the central nature of mixed volumes, it is natural to expect that inequalities
between mixed volumes capture important mathematical phenomena. The most funda-
mental result of this kind is the Alexandrov—Fenchel inequality, which expresses the fact

that mixed volumes are log-concave.

THEOREM 1.1. (Alexandrov—Fenchel inequality) We have
Vn(K7 La Cla EE) Cn—2)2 P Vn(K7 Ka Cl> (a3} 077.—2)Vn(L7 L7 Cla ) Cn—2)

for any convex bodies K,L,C1,...,Cp_s in R™.

() Throughout this paper B denotes the Euclidean unit ball in R™.
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Theorem 1.1 was first proved by Minkowski in 1903 in dimension n=3 [22], and in
full generality by Alexandrov in 1937 [1], [2]. (Fenchel independently announced a proof
[12], but it was never published.) It lies at the heart of many applications of mixed
volumes in convexity and in other areas of mathematics. This paper is concerned with a
classical open problem surrounding the Alexandrov—Fenchel inequality that dates back
to Alexandrov’s original paper [2, p. 80].

To provide context for the problem studied in this paper, let us recall the original
setting of Minkowski [22]. He viewed Theorem 1.1 as a far-reaching generalization of the
isoperimetric inequality between volume and surface area, which are merely two special

cases of mixed volumes. For example, the special case
V3(Ba Ca 0)2 = V3(C7 Ca 0)V3(B7 B7 C)

states that the surface area of a 3-dimensional convex body C' is lower bounded by the
product of its volume and mean width, a kind of isoperimetric inequality involving three
geometric parameters. From this viewpoint, a complete understanding of Theorem 1.1
should capture not only the inequality but also the associated extremum problem: which
bodies minimize surface area when the volume and mean width are fixed? This question
is equivalent to the study of the cases of equality in the above inequality. Remarkably,
it turns out that the extremals in this example possess highly unusual properties: they
consist of cap bodies (“spiky balls”) which are both non-unique and non-smooth, in
sharp contrast with the situation in the classical isoperimetric problem (cf. [32] and the
references therein).

The above example suggests that the extremum problems associated with more gen-
eral cases of the Alexandrov—Fenchel inequality are likely to possess a rich and intricate
structure. The problem of characterizing these extremals was raised in the original pa-
pers of Minkowski [22] and Alexandrov [1], but progress toward the resolution of this
problem has proved to be elusive. None of the known proofs of the Alexandrov—Fenchel
inequality provides information on its cases of equality. The geometric proofs (cf. [2], [31])
impose restrictions, such as smooth bodies or polytopes with identical face directions,
under which only trivial extremals arise, and deduce the general result by approximation;
non-trivial extremals arise only in the limit, and are thus invisible in the proofs of the
inequality. The algebraic proofs (cf. [5], [13]) perform a reduction to a certain (non-toric)
algebraic surface, which causes the convex geometric structure of the problem to be lost.

It was long believed that the extremals of the Alexandrov—Fenchel inequality are
too numerous to admit a meaningful geometric characterization, cf. [5, §20.5] or [11,
p. 248]. However, detailed conjectures on the structure of the extremals (attributed in

part to Loritz) were published in 1985 by Schneider [26], breathing new life into the
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problem. Schneider’s conjectures need not hold when some of the bodies have empty
interior [8], and no conjectures have been formulated to date about this setting (which, as
we will see, is of special importance in applications). However, the validity of Schneider’s
conjectures for full-dimensional bodies has remained open, except in a few special cases
that are reviewed in [30, §7.6], [24]. Very recently, significant new progress was made
in [32], which enabled the proof of Schneider’s conjectures in the case that dates back
to Minkowski [22]. The general case is however much richer, and entirely new ideas are

needed.

1.2. Main result

In this paper, we completely settle the extremal problem in the combinatorial setting.

Our main result characterizes all equality cases
Vn(K7L7P1a (33} Pn—2)2 :Vn(K7 K7 P17 ] Pn—Q)Vn(L7L7P1a ceey Pn—Q)

when Py, ..., P,_5 are arbitrary convex polytopes in R"™ and K and L are convex bodies.
The characterization of the extremal bodies is described in §2. In particular, we will show
that the extremals of the Alexandrov—Fenchel inequality arise from the combination
of three distinct mechanisms: translation, support, and dimensionality. The first two
mechanisms were anticipated by Schneider’s conjectures, while the third is responsible
for the new extremals that arise when the polytopes P; may have empty interior. The
proof of our main result (Theorem 2.13), which is contained in §§5-12, will in fact give
considerably more precise information on the structure of the extremals than is provided
by the characterization in §2; the most detailed form of our main result will be formulated
in §13.

Aside from its intrinsic place in the foundation of convex geometry, the problem of
characterizing the extremals of the Alexandrov—Fenchel inequality may be thought of in
a broader context: the limited progress on this problem to date stems from major gaps
in the understanding of the geometry of mixed volumes of non-smooth convex bodies.
The fundamental issues that arise are both of a combinatorial and of an analytic nature,
as we will explain presently.

As will become clear in §2, the extremals of the Alexandrov—Fenchel inequality are
controlled by the boundary structure of the bodies C4,...,C,_2 in Theorem 1.1. In
the case that was settled in [32], only the boundary structure of a single body plays
a role. In general, however, each of the bodies Cfi,...,C,,_2 has an arbitrary boundary
structure, and the interactions between the different bodies conspire to give rise to the

extremals. This interaction already arises in its full complexity in the combinatorial
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setting considered in this paper. In settling the problem, we develop a theory that
explains these interactions: this includes, among other ingredients, a local Alexandrov—
Fenchel inequality for mixed area measures, strong gluing principles for projections from
limited data, and new geometric structures (“propellers”) of mixed area measures of
bodies with empty interior. An overview of the proof of our main result will be given
in §4.

The main contribution of this paper is the complete solution of these combinatorial
aspects of the problem. In contrast, the obstacle to going beyond polytopes stems from
unresolved analytic problems in the theory of mixed volumes, which are largely inde-
pendent of the problems studied in this paper. These analytic problems arise because
the boundary of a general convex body may be almost arbitrarily irregular (for exam-
ple, consider the convex hull of an arbitrary closed subset of the unit sphere), so that
mixed volumes of general convex bodies give rise to analytic objects that live on highly
irregular sets. The treatment of general bodies therefore requires the development of an
appropriate functional-analytic framework, which has only been partially accomplished
to date [32] (see §16 for discussion). The main ideas of this paper are not specific to
polytopes, however, and may be expected to apply more generally when placed in an

suitable analytic framework.

1.3. Extensions and applications

While this paper is primarily concerned with the combinatorial setting, our methods
already admit a number of extensions beyond the setting of convex polytopes. In partic-
ular, we will show in §14 that our main result extends to the setting where the convex
bodies C1, ...,Cp_o in Theorem 1.1 are a combination of polytopes, zonoids, and smooth
bodies. By combining the present methods with [32], we will also fully characterize the
extremals of the Alexandrov—Fenchel inequality for quermassintegrals of arbitrary convex
bodies, a special case that arises frequently in applications.

In §15 we develop an application in combinatorics. It was noticed long ago that var-
ious combinatorially defined sequences (NN;) appear to be log-concave, that is, they sat-
isfy Nf}NZ-,lNiH. Such phenomena have received much attention in recent years [17].
One of the earliest advances in this area is due to Stanley [33], who observed that if
one can represent the relevant combinatorial quantities in terms of mixed volumes, log-
concavity is explained by the Alexandrov—Fenchel inequality. Stanley further raises the
following question: in cases where (V;) is log-concave, can one characterize the asso-
ciated extremum problem, that is, explain what combinatorial objects achieve equality

NZ2:N¢—1Ni+1? As an illustration of our main result, we will settle this problem in one
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of the settings considered by Stanley, where N; is the number of linear extensions of a
partially ordered set for which a distinguished element has rank i. Such extremal prob-
lems appear to be inaccessible by currently known methods of enumerative or algebraic
combinatorics. This example highlights the significance of the questions considered in
this paper to extremal problems in other areas of mathematics, and hints at the possi-
bility that the structures developed here might have analogues outside convexity; a brief
discussion of algebraic analogues of our results is given in §16.

Let us note that, far from being esoteric, it is precisely the case of convex bodies with
empty interior (which is not covered by previous conjectures) that arises in combinatorial
applications [33]. This reinforces the importance of a complete characterization of the

extremals, whose formulation we turn to presently.

2. Three extremal mechanisms

The aim of this section is to formulate and explain the main result of this paper. We first
recall some key facts on mixed volumes and mixed area measures. We will subsequently
describe three distinct mechanisms that give rise to extremals of the Alexandrov—Fenchel
inequality, and state our main result. Here and throughout the paper, our standard

reference on convexity is the monograph [30].

2.1. Basic facts
2.1.1. Convex bodies, mixed volumes, mixed area measures

Fix n>3. A convex body is a non-empty compact convex set in R™. A (convex) polytope
is the convex hull of a finite number of points.

With each convex body K, we associate its support function

hi(u) := sup (y, u).
yeK
We think of hg either as a function on S™~! or as a 1-homogeneous function on R”.
Geometrically, if u€S"~ !, then hy(u) is the (signed) distance to the origin of the sup-
porting hyperplane of K with outer normal u; thus hg: S" ! =R uniquely determines K,
as any convex body is the intersection of its supporting half-spaces. The key property of

support functions is that they behave naturally under addition, that is,
hag 4L =AM +phg

for any bodies K and L and A, u>0.
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The mized volume V,(Ci,...,Cy) of n convex bodies Ci,...,C, in R™ is defined
by (1.1). Mixed volumes are non-negative, and are symmetric and multilinear in their

arguments. Moreover, there exists a non-negative measure Sc, ... ¢ on S"~1, called

yCn—1

the mized area measure of Cq,...,Cp_1, such that

1
Vo (K, Cl,...,C’n_l):E/hK(u) S o, (du). (2.1)

Like mixed volume, S¢, .. c

yon—1

is symmetric and multilinear in C,...,C,,_.

Consider a function f=hg —hy that is a difference of support functions. As mixed
volumes and mixed area measures are multilinear as functions of the underlying bodies
(and hence of their support functions), we may uniquely extend their definitions to

differences of support functions [30, §5.2]. That is, we will write

Vn(f, Cl, ceey Cn—l) = Vn(K, Cl, ceey C’n_l)—Vn(L, Cl, ceey Cn—l)a

Sf,Cl,...,Cn,z = SK7CI:~-~7C”72 _SL’ClwnaCn72'

We may analogously define V,,(f, g,C1, ...,Cr—2) when f and g are differences of support
functions, etc. The extended definitions are still symmetric and multilinear, but are not
necessarily non-negative. Differences of support functions form a large class of functions

on S"~1: in particular, we have the following [30, Lemma 1.7.8].

LEMMA 2.1. Any f€C?(S™71) is a difference of support functions.

2.1.2. Positivity

While mixed volumes and mixed area measures of convex bodies are always non-negative,
they need not be strictly positive. Positivity of mixed volumes and mixed area measures
will play an important role throughout this paper. We presently state two key facts
in this direction. First, we recall that positivity of mixed volumes is characterized by
dimensionality conditions [30, Theorem 5.1.8]. Throughout this paper, we denote by
[n]:={1,...,n}.

LEMMA 2.2. For conver bodies C1,...,C, in R™, the following are equivalent:

(a) Vn(Cy,...,Cp)>0;

(b) there are segments I; CC;, i€[n], with linearly independent directions;

(¢) dim(Cy, +...4+C;,) =k for all ke[n], 1<i1<...<ip<n.

Similarly, the mixed area measure Sc, .. c

yn—1

need not be supported on the entire
sphere S™~!. Unlike the positivity of mixed volumes, the problem of characterizing

geometrically the support of mixed area measures of arbitrary convex bodies is not yet
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fully settled, cf. [30, Conjecture 7.6.14]. However, for the present purposes we require

only the following special case. For any vector u€R", let
F(K,u):={x € K:(u,x)=hg(u)} (2.2)

be the unique face of K with outer normal direction u. The following result states that
when P, ..., P,_o are polytopes, the support of the mixed area measure Sp p,,. P, ,
is characterized by dimensionality conditions on faces of Pi,..., P,_o. This result is

essentially known; we will provide a proof in §5.2.

LEMMA 2.3. Let Py, ..., P,_o be any convex polytopes in R™, and let u€S™~*. Then,
the following conditions are equivalent:

(a) u€supp Sp,py,....P,

(b) there are segments I; CF(P;,u), i1€[n—2] with linearly independent directions;

(¢) dim(F(P;,,u)+...+ F(P;, ,u)) =k for all ken—2], 1<i; <...<ip<n—2.

When (a)—(c) hold, u€ S™1 is called a (B, Py, ..., P,_2)-extreme normal direction.

The appearance of the Euclidean ball B in Lemma 2.3 may appear rather arbitrary:
we did not assume that B appears as one of the bodies in Theorem 1.1. Its significance
is that the associated mixed area measure has maximal support [30, Lemma 7.6.15] (an

alternative proof may be given along the lines of Lemma 8.11 below).

LEMMA 2.4. For any convex bodies M,C,...,Cp_o, we have
Supp Sum,cy,....C—n SSUPP SB.C),....Cp_s-

Let us note that Lemma 2.4 remains valid if B is replaced by any sufficiently smooth
convex body; there is nothing uniquely special about B. However, the choice of the

Euclidean ball will prove to be particularly convenient in our proofs.

2.1.3. Equality

We finally recall a basic fact about equality in the Alexandrov—Fenchel inequality. It
is evident that there is equality in Theorem 1.1 if and only if the difference between
the left- and right-hand sides of the inequality is minimized. The first-order optimality
condition associated with this minimum problem gives rise to an equivalent formulation
of the equality cases of the Alexandrov—Fenchel inequality, due to Alexandrov [2, p. 80]
(cf. §3.3 or [30, Theorem 7.4.2]).
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LEMMA 2.5. Let K,L,Cq,...,Cy_o be convez bodies in R™ such that
Vo(K,L,Cq,...,Cpr_2)>0.

Then, the following are equivalent:
(a) Vn(K, L, Cl, ceey Cn_g)Q:Vn(K, K, Cl, ceey Cn_g)vn(L, L, Cl, ) Cn_g);
(b) Shx—ahy.ch,....0n_=0 for some a>0.

Let us emphasize that this result provides essentially no information on the geometry
of the extremal bodies K, L, C, ..., C, _o: it is merely a reformulation of the equality con-
dition. The main problem that will be addressed in this paper is to develop a geometric

characterization of the extremals.

Remark 2.6. When V,,(K,L,C,...,C,_2)=0, there is automatically equality in
Theorem 1.1. These trivial equality cases are fully characterized by Lemma 2.2. Non-
trivial equality cases arise only in the case where V,,(K, L, Cy, ..., Cy,—2) >0, as is assumed

in Lemma 2.5. This is the setting that will concern us in the rest of this paper.

2.2. Extremal mechanisms

What convex bodies yield equality in Theorem 1.17 We will now describe three mech-
anisms that yield extremals of the Alexandrov—Fenchel inequality, each capturing a dif-
ferent geometric phenomenon: translation (§2.2.1), support (§2.2.2), and dimensionality
(§2.2.3).

It is important to note that the bodies K, L, and C1, ..., C,,_o play very different roles
in Theorem 1.1: K and L vary, while C1, ..., C,,_5 are the same in each term. We therefore
consider the reference bodies Cf4,...,C,_2 as fixed, and aim to characterize which K
and L yield equality in Theorem 1.1. By Lemma 2.5, the problem can be formulated
equivalently as follows: given Cy,...,Cp_o, we aim to characterize what differences of

support functions f satisfy St.c,..c 0.

sUn—2 7

2.2.1. Translation

The simplest mechanism for equality in Theorem 1.1 stems from the most basic invariance
property of mixed volumes: as volume is translation-invariant, (1.1) implies that mixed

volumes are as well, that is,
Vn(K, Cl, ceey Cnfl) :Vn(K—H}, Cl, ceey Cnfl)

for all v€R™. In terms of support functions, we have hy i, (u)=hg(u)+(v,u), that is,
the support function of a convex body and its translate differ by a linear function. This

gives rise to the following equality case.
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LEMMA 2.7. S¢c,...c._,=0 whenever f=(v,-) is a linear function.

.

Proof. Let f=(v,-) be any linear function. Then, f=hg,—hx for any convex

body K. Therefore, by translation-invariance of mixed volumes,

1
ﬁ /gdsfyclv--anfZ :Vn(ga 1, Cr,eesy Cn—Z) =0
for any difference of support functions g, and thus a fortiori for any geC?(S"~1), by

Lemma 2.1. It follows immediately that Sfc, ... c,_,=0. O

Lemmas 2.7 and 2.5 imply, for example, that equality occurs in the Alexandrov—
Fenchel inequality whenever hx —ahy=(v, -) for some a>0 and v€R"™, which simply
means that K=aL+wv (that is, K and L are homothetic). Of course, this also follows

immediately from Theorem 1.1.

2.2.2. Support

A much more subtle invariance property of mixed volumes stems from the fact that
mixed area measures need not be supported on the entire sphere S"~!. Indeed, it follows

immediately from (2.1) that
Vo (K,C1,...;Cr1) =V (L, Ch, ..., Cr21)

whenever

hi(u)=hg(u) for all wuesupp Se,,. ¢

sbn—1"

That this phenomenon gives rise to new extremals of the Alexandrov—Fenchel inequality
dates back essentially to the work of Minkowski, and has been put forward systematically

by Schneider. Let us give a precise formulation [30, p.430].

LEMMA 2.8. Sfc,..c

Un—2

=0 whenever f(u)=0 for all u€supp Sp.c,,...c

n—2"°

Proof. Suppose that f vanishes on supp Sg.c;.,....c,_,- Then,

1 1
7/gdsf,clw-7cn—2:Vn(gvacla--~acn—2):E/de%Cl’,,,,Cn,z:0

n
for any difference of support functions g, where we used the symmetry of mixed volumes
and that supp Sy.c;,....c._o CSUPP Sp.cs,....c_o by Lemma 2.4. The conclusion follows

)

as we may choose any g€C?(S"~!) by Lemma 2.1. O
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Figure 2.1. Example of an equality case described by Lemma 2.8.

In the case that C4,...,C,_2 are polytopes, we have given a geometric character-
ization of the support of Sp ¢, . c, , in Lemma 2.3. This yields a fully geometric
interpretation of the situation described by Lemma 2.8: that f=hg —h; vanishes on
supp SB,c;,....c.,_, means precisely that the convex bodies K and L have the same sup-

porting hyperplanes in all (B, Cy, ..., C,,—2)-extreme normal directions.

Ezample 2.9. Let C=[0,1]3 be a cube in R3, and let the bodies K and L be derived
from C' by slicing off some of its corners. This construction is illustrated in Figure 2.1.

We claim that hx —hy vanishes on supp Sp ¢, so that in particular
VS(Ka L7 0)2 :V3(Ka K7 C)V?)(La La C)

in this example by Lemmas 2.8 and 2.5.

To verify the claim, note that, by part (c¢) of Lemma 2.3, we have u€supp Sp ¢ if
and only if u is a normal direction of a face of C' of dimension at least one, that is, if u
is the outer normal of a supporting hyperplane of one of the edges of the unit cube. But
it is readily seen in Figure 2.1 that any such hyperplane also supports both K and L, so
that hy(u)=hr(u) for every uesupp Sg,c. There are of course many other directions in
which the supporting hyperplanes of K and L differ, but these are all normal to a corner

of the cube C and are therefore not in supp S c.

2.2.3. Dimensionality

We now describe yet another mechanism that gives rise to extremals of the Alexandrov—
Fenchel inequality, which arises from the fact that mixed volumes may vanish for dimen-
sionality reasons (Lemma 2.2). To make this idea precise, we introduce the following

definition; recall that we are interested in extremals for given reference bodies

C:.= (Clv ceey Cn,Q).
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Definition 2.10. Let (M, N) be a pair of convex bodies, and let f: S" ' —R.
(a) (M, N) is called a C-degenerate pair if M is not a translate of N and

Vo (M,N,Cy,...,Cp_2)=0, (2.3)
Vo(M, B, CY, ...,Co2) =Vn(N, B,Cl, ..., Cn_s). (2.4)

(b) fis a C-degenerate function if f=hp—hy for some C-degenerate pair (M, N).

By Lemma 2.2, condition (2.3) is of a purely geometric nature: it is characterized
by the dimensions of the relevant bodies. Condition (2.4) should be viewed merely as
a normalization; for any pair (M, N) satisfying the first condition, the second condition
can always be made to hold by rescaling M or N. We assume that M is not a translate

of N to exclude the trivial case that f=hy;—hy is a linear function.
LeEMMA 2.11. Sy¢c,,...c._o.=0 whenever f is a C-degenerate function.

Proof. Let (M, N) be a C-degenerate pair. The main observation is that we obtain
equality in Theorem 1.1 for K=B+M and L=B+ N. Indeed, as

Vn(K7 K7 017 . 7071—2) :Vn(K7La Clv ey Cn—2)+vn(Ma Ma 017 ceey Cn—Q)a
- \Y

Vn(Lachla-“aCn 2): n(K,Laclv"'acn—2)+Vn(Na Na Cla"'acn—Q)
by (2.3) and (2.4), we obtain
Vo (K,L,Cy,...,Co2)* <V, (K, K,C,...,Cr_2)Vu(L, L,C4, ..., Cp_3).

As the reverse inequality holds by Theorem 1.1, we must in fact have equality.
Now note that if V,,(B, B, Ch,...,Cp—2)>0, then Sy _an,,c1.....C

y“n—2

=0 for some a

by Lemma 2.5. Integrating against hp and applying (2.1) and (2.4) yields a=1. Thus,
Sf»01,-~~7cn,—2 =0 for f=hxk—hr=hpy—hnN.

If V,,(B, B,Ch, ...,Ch_2)=0, however, then we have Sg¢,. . ¢

yUn—2

=0 by (2.1) as
hp=1 on S™ 1. Thus, in this case, Sy.ci,....Cno=0 for any f by Lemma 2.4. O

The geometric phenomena captured by Lemmas 2.8 and 2.11 are quite different:
the former captures the facial structure of the bodies in C, while the latter captures the

dimensions of the bodies. Let us illustrate the distinction in a concrete example.

Ezample 2.12. Let C1=[0,1]* be a cube in R*, and let Co=10,e1]+[0, e2] be a 2-
dimensional square in the plane spanned by the first two coordinate directions e; and es.

Let M =]0,e1] and N=[0, e3] be segments in the same plane.
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We claim that (M, N) is a degenerate pair. Indeed, as
dim(M+N+C3) =2,

Lemma 2.2 verifies (2.3). On the other hand, it is clear that (2.4) must hold, as this
example is symmetric under exchanging the e; and e; directions. This gives rise, for
example, to the following equality case of the Alexandrov—Fenchel inequality: if we choose
K=C14+M and L=C1+ N, then Lemmas 2.11 and 2.5 yield

V4(K,L,Cy,Cs)* =Vy4(K, K,C1,Co)Vy(L, L,Cy,Cs).

We now aim to show that the present example cannot be explained by a combina-
tion of Lemmas 2.7 and 2.8, confirming that Lemma 2.11 captures a genuinely distinct
phenomenon. That is, we aim to show that f=h,; —hy does not coincide with a linear

function on the support of Sg ¢, c,. To this end, note that
f(u) =max(u1,0) —max(usz,0).
On the other hand, for any u€ S®Nspan{ey,es} we have
dim F(Cy,u) =22 and dim F(Cs,u)>1,
so that

S3Nspan{er, e3} Csupp Sp,cy,cs

by Lemma 2.3. Thus f cannot coincide with any linear function on supp Sg c,,c,, as the

restriction of f to the unit circle in span{ej, ez} is not a smooth function.

2.3. Main result

In the previous section, we described three distinct mechanisms for equality in the
Alexandrov—Fenchel inequality in Lemmas 2.7, 2.8, and 2.11. However, these three mech-

anisms may all appear simultaneously by linearity: if

then

Sf4g,C1,sCrn =0

as well. Thus, any linear combination of the functions that appear in Lemmas 2.7, 2.8,

and 2.11 gives rise to an extremal case of the Alexandrov—Fenchel inequality.
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As no other mechanism for equality is known, one may conjecture that these are the
only extremal cases of the Alexandrov—Fenchel inequality. The main result of this paper
is a complete proof of this conjecture in the combinatorial setting. In geometric terms,
we prove the following. (Recall that P-degenerate pairs and (B, P)-extreme directions
are defined in Definition 2.10 and Lemma 2.3.)

THEOREM 2.13. Let P:=(Py,...,P,_2) be polytopes in R™, and let K and L be
convex bodies such that V., (K, L, P, ..., P,_2)>0.(3) Then,

Vn(K7L7P1a EE) Pn—2)2 :Vn(K7 Ka P17 "'7Pn—2)V7L(L7L7P1a EE) Pn—Q)

if and only if there exist a>0, veR"™, and a number 0<m<oo of P-degenerate pairs
(My,N1), oo, (M, Nip)y such that K+Ny+...4+ Ny, and aL+v+M;+...4+M,, have the

same supporting hyperplanes in all (B, P)-extreme normal directions.

The “if” direction of Theorem 2.13 follows from Lemmas 2.5, 2.7, 2.8, and 2.11, so
it is the “only if” part that requires proof. Some key ideas in the proof are described in
84; the proof itself is contained in §§5—12.

Schneider has conjectured [26] that equality in the Alexandrov—Fenchel inequality
holds if and only if K and aL-+wv have the same supporting hyperplanes in all (B, P)-
extreme normal directions. That this is not always the case was illustrated in Exam-
ple 2.12 (the existence of counterexamples was first noted in [8]). Nonetheless, no coun-
terexample has been found to Schneider’s conjecture in the case where all bodies in P are
full-dimensional. This suggests that in the full-dimensional situation, degenerate pairs
may not exist. Not only does this turn out to be the case, but in fact a much weaker

condition suffices.

Definition 2.14. A collection of convex bodies C=(CY,...,Cp—2) is supercritical if
dim(Cy, +...4C; ) =2 k+2 for all ke[n—2], 1<y <...<ip<n—2.

LEMMA 2.15. If C is supercritical, C-degenerate functions do not exist.

Proof. Suppose (M, N) is a C-degenerate pair. By Lemma 2.2 and the supercriti-
cality assumption, (2.3) implies that

dim(M)=0, dim(N)=0, or dim(M+N)<1.

Assume first that dim(M)=0. Then, V,,(N, B,C1, ...,C,,—2)=0 by (2.4). But then,

by Lemma 2.2 and the supercriticality assumption, dim(N)=0 as well.

(%) As was noted in Remark 2.6, the trivial extremals Vy, (K, L, P, ..., P,—2)=0 are already fully
characterized geometrically by Lemma 2.2, so we do not consider them further.
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Thus, there are two possibilities:
dim(M)=dim(N)=0 or dim(M)=dim(N)=dim(N+M)=1.

In the first case, M and N are singletons, while in the second case M and N are seg-
ments with parallel directions. Moreover, in the latter case, V,,(N, B, C1,...,C,_2)>0
by Lemma 2.2 and the supercriticality assumption, so (2.4) implies that M and N have
the same length. Thus, in either case, M and N are translates of one another, which

violates the definition of a degenerate pair. O
In other words, Lemma 2.15 yields the following.

COROLLARY 2.16. Let P:=(Py,...,P,_2) be a supercritical collection of polytopes
in R™, and let K and L be convez bodies such that V,,(K, L, Py, ..., P,_2)>0. Then,

Vo (K,L,Py,....Py_2)>=V,(K,K,Py, ... Py_2)Vy(L,L, Py, ..., P _5)

if and only if there exist a>0 and vER™ such that K and aL+v have the same supporting

hyperplanes in all (B, P)-extreme normal directions.

Corollary 2.16 highlights that even though Theorem 2.13 provides a complete char-
acterization of the extremals of the Alexandrov—Fenchel inequality for arbitrary poly-
topes P, its formulation leaves key questions open: it does not explain how many degen-
erate pairs can appear, what they look like, or whether the decomposition into degenerate
pairs is unique. A complete understanding of these questions will emerge from the proof
of Theorem 2.13. As the requisite notions will only be introduced as we progress through
the proof, we postpone formulating the definitive form of our main result until §13.

While we have presented Corollary 2.16 as a special case of Theorem 2.13, the
supercritical case will prove to be fundamental to the proof. We will first give a self-
contained proof of Corollary 2.16 in §§5-8, and then characterize the degenerate equality
cases in sections 9-12 by a separate argument that requires the introduction of additional
techniques. In particular, the proof of Corollary 2.16 may be read independently from
the rest of the paper.

2.4. Prior work

Let us briefly review what was known prior to this paper. Three cases of Corollary 2.16
were previously verified: when P consists of strongly isomorphic simple polytopes [30,
Theorem 7.6.21], when Py =...=PF,,_5 [28], [32] (in this case P; need not be simple), and

when P consists of full-dimensional zonotopes and K and L are symmetric [27]. All these
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results make crucial use of the special features that appear in these settings. In addition,
one very special example of a degenerate equality case was previously known, when all
the bodies P lie in a hyperplane [10], [29]. This example sheds little light on more general
cases, however, as it is essentially amenable to explicit computation, cf. [32, §8].

The characterization of lower-dimensional extremals in terms of degenerate pairs
was conjectured by the authors during initial work on this paper. We subsequently
realized, however, that an analogous phenomenon appears in work of Panov [23] on
Alexandrov’s mixed discriminant inequality, which may be viewed as an analogue of the
Alexandrov—Fenchel inequality in linear algebra. Despite tantalizing similarities between
these inequalities, the main feature of the Alexandrov—Fenchel inequality does not arise
here: dimensionality is the only extremal mechanism in the mixed discriminant inequality,
while the central difficulty in the analysis of the Alexandrov—Fenchel inequality stems
from degeneration of the support of mixed area measures. While most of our analysis
has little in common with [23], we will use a basic lemma of [23] to organize the collection

of degenerate pairs (Lemma 9.2).

3. Preliminaries

The aim of this section is to recall some general background from convex geometry that
will be needed in the remainder of the paper.

The following conventions will be in force throughout the paper. We always denote
by B the Euclidean unit ball in R™. For any collection C:=(C4, ..., Cy,—2) of convex bodies

in R™, we will often use the abbreviated notation
Vn(K, L, C) = Vn(K, L, Cl, ceey Cn,Q) and SL,C = SL,Cl,....,Cn_g-

For IC[n—2], we set Cr:=(C;)ier and C\7:=(Ci)icm—2)\1-
We will also encounter mixed volumes of convex bodies C1, ..., Cy, that lie in a sub-
space ECR"™ with dim(E)=m. Such mixed volumes will be denoted as Vg(Ci, ..., Cp,),

or as Vp,(Cq, ..., Cy,) when the subspace is clear from context.

3.1. Mixed volumes and mixed area measures

Mixed volumes and mixed area measures were introduced in §2.1. For future reference,
we begin by spelling out their basic properties more carefully.

Mixed volumes are defined by (1.1). They satisfy the following [30, §5.1]. (Here and
in the sequel, we use the notation [[A]]:=+/det A*A for a linear map A.)
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LEMMA 3.1. Let C,C’,C4,...,C, be convex bodies in R™.
) Vo (C, ...,C)=Vol, (C).

b) Vo (C1,...,Cy) is symmetric and multilinear in its arguments.
¢) Vp(Ch,...,Cp)=0.

d) V,(C,Csq,...;C) 2V, (C',Cy, ..., Cy) if CDC".

e)
)

The identity (2.1) may be viewed as the definition of mixed area measures. The

(a
(
(
(
( n(C1, ..., Cp) is invariant under translation C;<C;+v; for v;€R™.

(f) Vi (ACY, ..., AC,)=[[A]]Vn(CY, ..., Cy) for any linear map A:R™—R".

following basic properties are analogous to those of mixed volumes [30, §5.1].

LEMMA 3.2. Let C,C4,...,C,_1 be convex bodies in R™.

(a) Scy...c,_, is symmetric and multilinear in its arguments.
(b) Sey,....cny 20.

(¢) Scy.....c._, is invariant under translation C;<C;+v;.

(d) [(v,z)Sey,..c, . (dz)=0 for all vER™.

We now recall the basic continuity property of mixed volumes and mixed area mea-
sures. Recall that convex bodies C'!) converge to a convex body C' in the sense of
Hausdorff convergence if and only if ||hcwy —he|loo—0, cf. [30, Lemma 1.8.14]. Then, we
have the following result [30, pp. 280-281].

LEMMA 3.3. Suppose that C’{l), e C’,(zl) are convex bodies in R™ such that C’f”—)C’i
as l— o0 in the sense of Hausdorff convergence. Then,

Vn(Cil), s 07(11)) =V, (Cy,...,C,) and SC{”,-H,C'Sll

as |—o00, where the limit of measures is in the sense of weak convergence.

In the case that all the convex bodies are polytopes, mixed area measures take a
particularly simple form [30, p. 279].

LEMMA 3.4. Let Pi,...,P,_1 be polytopes in R™. Then, Sp, . p, , is atomic, that
is, supp Spy ... ={ueS" :Sp, .p,_,({u})>0}, with

Pp_1

SPl, Py, 1({u}) ( (P17 )""’F(Pn—lvu))'

Remark 3.5. In Lemma 3.4 we have made a slight abuse of notation: the faces
F(P;,u), i=1,...,n—1, need not lie in a single (n—1)-dimensional subspace. However,
by definition, all these faces have u as a normal direction, so that each face may be
translated to lie in ut. We implicitly define V,,_1(F(Py,u), ..., F(P,_1,u)) as the mixed
volume in ul of the translated faces; this convenient notation is consistent with the

translation-invariance of mixed volumes.
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As the faces F(P,u) play a fundamental role in what follows, let us briefly recall
at this stage some associated notions. A facet of a convex body C in R" is an (n—1)-
dimensional face of C'. We recall that every polytope has a finite number of facets. We

also recall the following basic property [30, §1.7].

LEMMA 3.6. Let C and C’ be any convex bodies in R™ and u,z€R™. Then,
hrcw (@) =Vihe(u),
where V, denotes the directional derivative in direction x. In particular,
F(C+C' u)=F(C,u)+F(C', u).

Consequently, we may observe that the mixed area measure in Lemma 3.4 is in fact
supported on a finite number of points. Indeed, Lemmas 3.4 and 2.2 imply that every
uesupp Sp, ... p,_, must satisfy dim F'(P1+...+P,,_1,u) >n—1, that is, each such u must
be a facet normal of P;+...+P,_1. As the Minkowski sum of polytopes is a polytope,
supp Sp, ,....p,_, must be finite.

Finally, the following basic property of faces will be useful. Here and in the sequel,

we denote by Pg the orthogonal projection onto a subspace E of R"™.
LEMMA 3.7. For any convex body C in R", linear subspace ECR™, and ueR"™,
F(PgC,u)=PgF(C,Pgu).
Proof. Using Lemma 3.6, we can compute
heepow (@) =Vahpyo(u) =Veyhe(Peu)
=hppeuw)(PET) =hp,roPLu) (T)

for every z€R™, where we used hp,c(u)=hc(Pgu). O

3.2. Projection formulae

The relation between mixed volumes of convex bodies and their projections will play a
recurring role in this paper. The following result captures this connection in a general
setting [30, Theorem 5.3.1].

LEMMA 3.8. Let E be an m-dimensional subspace of R™, let Cq,...,Cy, be convex

bodies in E, and let Cpy41, ..., Cr, be convex bodies in R™. Then,

<:l> Vo (Ciy ey C) =VE(Chy ooy Co )V gt (Pt Cos 1 oo P O
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We will use Lemma 3.8 in its full force many times. The special case m=1 is

particularly important, however, so we highlight it separately.

COROLLARY 3.9. Let C4,...,Cr_1 be convex bodies in R™, and let u€S™~'. Then,
nVn([O, U], 01, ceey Cn—l) :Vn_l(PuL01, veey PuLC'n_l).

When combined with Corollary 3.9, the following observation expresses certain n-

dimensional mixed volumes in terms of (n—1)-dimensional projections.

LEMMA 3.10. Let C4,...,C,_1 be convex bodies in R™. Then,
/ Vn([O, ’LL], Cl, ceey Cnfl) w(du) = /sn,lvn(B, Cl, ceey Cnfl),
Sn—l
where w denotes the Lebesque measure on S™~ ' and k,_1 denotes the volume of the

Euclidean unit ball in R 1.

Proof. Apply (2.1) and

[ (@) tdn) = [ ) wldn) =5 (). O

3.3. Alexandrov—Fenchel inequality and equality

The classical formulation of the Alexandrov—Fenchel inequality given in Theorem 1.1 is
not the most general one: as was emphasized by Alexandrov [1], [2], the convex body K
may be replaced by any difference of support functions f. We will often require this
more general inequality and its equality cases. We presently make precise the connection
between these formulations. The results of this section could be deduced from [30, §7.4],
but we find it more insightful to give direct proofs.

We begin by spelling out three equivalent formulations of Theorem 1.1.

LEMMA 3.11. Let C=(CY4, ..., Cr—2) be convez bodies in R™. The following are three
equivalent formulations of the Alexandrov—Fenchel inequality:

(a) For any convez bodies K and L,
V,(K,L,C)*>V,(K,K,C)\V,(L, L,C).
(b) For any difference of support functions g and convez body L,
Vi(g, L,C)* 2 Va(g,9,C)Vu(L, L,C).
(¢) For any difference of support functions f and convex body L with V,, (L, L,C)>0,

Vo(f,L,C)=0 implies V,(f, f,C)<0.
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Moreover, if V,,(L,L,C)>0, then equality holds in part (b) if and only if there exists
a€R such that equality holds in part (c) with f=g—ahy,.

Proof. The implications (b) = (a), (b) = (¢), and (c) = (b) follow readily by choos-
ing, respectively, g=hg, g=f, and f=g—ah with a=V, (g, L,C)/V,(L,L,C) (we may
assume that V,,(L, L,C)>0 in the latter case, as otherwise (b) is trivial.)

To prove (a) = (b), note first that if g=hx —ahy, for some a€R, the ahr, term cancels
on both sides of the inequality in (b) by expanding the square, so that (a)=-(b) follows
trivially. But if g and L are sufficiently smooth, then we may always write g=hx —ahy, for
some a>0 and convex body K [31, Corollary 2.2]; thus, the implication (a) = (b) follows
under smoothness assumptions, and consequently in general by a standard approximation
argument [30, §3.4].

Finally, suppose V,,(L, L,C)>0. Then it is immediate that (b) holds with equality
if and only if (c) holds with equality with f=g—ahy and a=V, (g, L,C)/Vn(L,L,C). Tt
remains to note that, if (¢) holds with equality with f=g—ahy for some a€R, then it
follows from V,,(f, L,C)=0 that necessarily a=V,,(g, L,C)/V,(L, L,C). O

In view of Lemma 3.11, to study the equality cases of the Alexandrov—Fenchel in-
equality it suffices to consider the formulation of part (c) of Lemma 3.11. We presently

reformulate the equality condition
Vo(f,L,C)=0 and V,(f,f,C)=0 (3.1)

using the first-order condition of optimality, following [2, p. 80]. For future reference, we

consider a slightly more general situation than arises in Lemma 3.11.

LEMMA 3.12. Let f be a difference of support functions, and let C=(Ch,...,Cp—_2)
and L be convex bodies in R™.

(a) Suppose that V,(L,L,C)>0. Then, (3.1) holds if and only if Sfc=0.

(b) Suppose that V,,(L, L,C)=0 and Sp c#0. Then, (3.1) holds if and only if there
exists a€R such that Sy_qn, c=0.

Proof. We first prove part (a). If S; =0, then

/ hp dSpc= / fdSpe=0,

and (2.1) yields (3.1). Conversely, suppose that (3.1) holds, and let g be any difference
of support functions. As V, (L, L,C)>0, we can choose a so that V,,(¢—ahr, L,C)=0.
Then,

©(A):==Vo(f+A(g—ahr), f+A(g—ahr),C)



110 Y. SHENFELD AND R. VAN HANDEL

satisfies p(A)<0 by Lemma 3.11 (c), and ¢(0)=0 by (3.1). Thus, ¢ is a quadratic function
with maximum at 0, so ¢'(0)=0. Using V,(f, L,C)=0, this yields

1

As we may choose g to be any C? function by Lemma 2.1, we have Sy c=0.
We now prove part (b). If Sy_qpn, c=0, then

Vo (f, L,C) = / hi dSs—an, =0

as V., (L, L,C)=0; consequently,

W2 1,0) /fdsf =0,

proving (3.1). Conversely, suppose (3.1) holds. Since Sy ¢#0, we have V,,(B, L,C)>0
Therefore, the following statements hold:
e we may choose a€R so that V,,(f—ahr, B,C)=0;
V,(f—ahr, f—ahr,C)=0 by (3.1) and V,, (L, L,C)=0;
o V,(B,B,C)>0as V,(B,L,C)>0 and LCc¢B for some ¢>0.
We can now apply part (a) with L« B, f< f—ahy, to conclude. O

For completeness, we conclude with a proof of Lemma 2.5.

Proof of Lemma 2.5. Let K, L, and C=(C1,...,Cp—2) be as in the statement of
Lemma 2.5. To prove (b) = (a), it suffices to note that integrating condition (b) against
hx and hyp, yields V,, (K, K,C)=aV, (K, L,C)=a*V, (L, L,C) by (2.1). To prove (a) = (b),
note that the assumption V,, (K, L,C)>0 and condition (a) imply V,, (L, L,C)>0. Thus,
Lemmas 3.11 and 3.12 imply Sh, —an,,c=0 for some a€R. But integrating against hp,
yields V,, (K, L,C)=aV, (L, L,C) by (2.1), so a>0. O

4. Overview of the proof

The main result of this paper, Theorem 2.13, is proved in §§5-12 below. Before we
proceed to the details, however, we aim to give a high-level overview of the proof in
order to help the reader navigate the following sections. At the most basic level, the
proof proceeds by induction on the dimension n. The argument splits into two parts
that require completely different ideas and techniques.

Throughout the proof of Theorem 2.13, we will fix n>3 and polytopes
P = (Plv ceny Pn,Q)

in R™. Let us introduce at the outset a minimal dimensionality condition that will be

assumed throughout most of this paper.
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Definition 4.1. A collection of convex bodies C=(C1,...,Cy—2) is critical if

dim(Cj, +...+Cy, ) =2 k+1

for all k€[n—2] and all 1<i;<...<ip<n—2.

Note that if there exist 71 <...<i, with

then the bodies (P;
by Lemma 3.8, and the problem reduces to a lower-dimensional one. For this reason, we

17

P,,) factor on both sides of the Alexandrov—Fenchel inequality

may focus our attention on the case where P is critical, and the remaining cases will be
easily dispensed with at the very end of the proof.

4.1. The local Alexandrov—Fenchel inequality

In order to perform induction on the dimension, we must understand how the extremals
of the Alexandrov—Fenchel inequality in dimensions n and n—1 are related. The purpose
of the first part of the proof of Theorem 2.13 is to make this connection. To explain how
this is done, we begin by discussing an apparently unrelated question.

In view of their definition (2.1), it is natural to think of mixed area measures as local
analogues of mixed volumes: they describe the behavior of mixed volumes in different
normal directions. The analogy is even more explicit in the polytope case, cf. Lemma 3.4.
One might therefore wonder whether there exists an analogue of the Alexandrov—Fenchel
inequality for mixed area measures. This question makes little sense in the formulation
of Theorem 1.1, of course, as one cannot square a measure. However, the question can
be meaningfully formulated in the form of Lemma 3.11 (c): given convex bodies L and
Cy,...,Cph_3, is it true that

Sf,L,Cl,...,Cn,;;:O implies Sﬁf,cl,___’cnfsgo (4.1)

for any difference of support functions f? We will refer to any statement of the form
(4.1) as a local Alexandrov-Fenchel inequality.
Let us first explain why such an inequality would enable an induction argument, at

least in the full-dimensional case. To this end, we make a simple observation.
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LEMMA 4.2. Let C=(C4,...,Cp_2) be convex bodies in R™, let r€[n—2], and suppose
that Cy is full-dimensional. If Syc=0 and Sy yc,, <0, then Sy e, =0.

Proof. By translation-invariance, we may assume that 0€int C,, so that hc, >0.

Now note that, as Sy ¢=0, using (2.1) and the symmetry of mixed volumes yields

O:/def,C:/hcv de»fvc\T'

The conclusion follows as Sy rc . <0 and he, >0. O

Now, suppose that we have equality in Theorem 1.1, and assume for simplicity that

C, is full-dimensional for some r€[n—2]. Then, by Lemma 2.5, we have
Sfﬁc =0 with f=hg—ahp

for some a>0. If the local Alexandrov—Fenchel inequality (4.1) were to hold, we would ob-
tain Sy f.c,, <0, and thus Sy ¢, =0, by Lemma 4.2. Integrating both measures against
hio,u (for any ueS™!) yields, by (2.1) and Corollary 3.9,

anl(PuJ_ f, PuJ_C) =0 and anl(PuL f, PuJ_ f, PuJ_C\T> = 07

where
PEf SZhPEKfahpEL and PEC = (PECl, ceey PECn_Q).

But this is nothing other than an equality case (3.1) of the Alexandrov—Fenchel inequality
in ut. Thus, a local Alezandrov-Fenchel inequality would imply that extremality for the
Alezandrov—Fenchel inequality in dimension n is inherited by projection onto any (n—1)-
dimensional subspace, opening the door to induction.

Unfortunately, it turns out that this approach breaks down precisely when the
Alexandrov—Fenchel inequality has non-trivial extremals. That the above conclusion
must fail in this case is immediately evident from the classical fact that equality

V2(K’ L)2 :V2(K7 K)V2(L’L>

holds in dimension n=2 if and only if K and L are homothetic (cf. Remark 8.2 and the
proof of Theorem 8.1). Thus, it cannot be the case that the projections of a non-trivial
equality case of the Alexandrov—Fenchel inequality in dimension n>3 yield equality in
dimension 2, as convex bodies in dimension n >3 whose projections onto every hyperplane
are homothetic must themselves be homothetic [36] (this is illustrated, for example, by
Figure 2.1). In particular, it follows that the validity of the local Alexandrov—Fenchel

inequality (4.1) is contradicted by the presence of non-trivial extremals.
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At first sight, the failure of (4.1) appears to render the above approach useless for the
study of the extremals. Remarkably, however, this turns out not to be the case. Recall
that, by Lemma 2.8, the measure Sy ¢ is unchanged if we modify f outside the support
of Spc; in particular, as we characterize extremals only up to Spc-a.e. equivalence,
we are free to modify f outside supp Sp ¢ in the proof. On the other hand, the same
property does not hold for Sy s c: this measure may change drastically if we modify f
outside the support of Sg ¢. One of the central ideas of this paper is that we can exploit
the resulting degrees of freedom to force the validity of (4.1). More precisely, we will

prove the following result.

THEOREM 4.3. (Local Alexandrov—Fenchel inequality) Let P=(Pi, ..., P,_2) be a
eritical collection of polytopes in R™, and fix r€[n—2]. Then, for any difference of
support functions f such that Syp=0, there exists a difference of support functions g
such that Sy p=0, Sy 4p,, <0, and g(z)=f(z) for all x€supp Sp p.

The proof of this result is the main part of this paper in which we exploit the assump-
tion that the reference bodies are polytopes (see §16 for discussion). The simplification
provided by this setting is that it enables us to reduce Theorem 4.3 to a finite-dimensional
problem, which will be accomplished in §5 and §6 by adapting ideas from Alexandrov’s
original proof of the Alexandrov—Fenchel inequality using strongly isomorphic polytopes
[1] to the setting of arbitrary polytopes. It should be emphasized, however, that this
reduction is merely a technical device: the entire difficulty of the proof lies in §7, where
we prove the existence of a function g with the requisite properties. We will ultimately
reduce this problem to a system of linear equations, and the heart of the matter is to

rule out the presence of degeneracies that would obstruct the existence of a solution.

Remark 4.4. The simple argument in the proof of Lemma 4.2 is due to Weyl [40]. Tt
is used in classical proofs of the Alexandrov—Fenchel inequality precisely to rule out the
existence of non-trivial extremals; see, e.g., [3, p. 110] or [30, p. 396]. It therefore appears
rather surprising that such an argument provides a starting point for the study of non-
trivial extremals. That this is in fact the case relies crucially on Theorem 4.3, which is
a central new idea of this paper that opens the door to the analysis of the extremals by
induction on the dimension.

A different induction argument was exploited by Schneider [27] to investigate ex-
tremals of the Alexandrov—Fenchel inequality for zonoids, that is, limits of Minkowski
sums of segments. In this setting, the relation between the extremals and their projec-
tions arises from Corollary 3.9, but this appears as a very special property of this class
of bodies. A notable aspect of our approach is that we are able to perform induction by

projection in the absence of such special structure.
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4.2. The gluing argument

Once we have shown that extremality is preserved by projection onto hyperplanes, we
must combine the information contained in the (n—1)-dimensional projections in order
to characterize the n-dimensional extremals. This is the purpose of the second part of
the proof of Theorem 2.13.

At first sight, it seems evident that we may reconstruct a convex body from its pro-
jections, as hp,k(z)=hk (Pgz) for all by the definition of support functions. Thus, if
the function P, . f were known for every u, the function f would be uniquely determined.
The situation we encounter is much more delicate, however, as only very limited informa-
tion about the projections will follow from the induction hypothesis that Theorem 2.13
holds in dimension n—1.

To illustrate the difficulty, suppose for simplicity that all polytopes in P are full-
dimensional, and let f be an equality case of the Alexandrov—Fenchel inequality in di-
mension n, that is, Syp»=0. We aim to prove the conclusion of Corollary 2.16, that is,
there exists s€R™ such that f(x)=(s,z) for x€supp Sp p. If we assume Corollary 2.16
holds in dimension n—1, then Theorem 4.3 and the arguments of the previous section
show that, for every u€S™"~!, there exists s(u) ER™ such that

f(z)=(s(u),z) forallz€suppSp , pp , P NSUppSpp.

We now face two problems: the linear function (s(u), ) may a priori depend on u; and
we have only very limited information for any given u, as supp Sp_, B,p , »,,MSupp Sg»
may only cover a very small part of S"~'NuL. We must therefore rule out, for example,
that f is piecewise linear on disjoint parts of the supports of the mixed area measures
that arise for different w.

In the supercritical case (Definition 2.14), these issues will be resolved in §8, where
we will glue together the linear functions (s(u), z) to form a single linear function (s, x).
The idea behind the gluing argument is to show that there is sufficient overlap between
the supports of the measures Sp_, pp_, p,, for different u, so that all the vectors s(u)
must be consistent with a single vector s. It will turn out that the supercriticality
assumption is preserved by the induction, so that a self-contained proof of Corollary 2.16
will already be achieved in §8.

To complete the proof of Theorem 2.13 it remains to consider the critical case, that
is, when dim(Cy, +...+C;, )=k+1 for some critical set i1 <...<ip. It is in this situation
that non-trivial degenerate functions (Definition 2.10) appear. The problem of gluing
together these degenerate functions in dimension n—1 to form degenerate functions in
dimension n gives rise to numerous complications. We begin in §9 by characterizing

what degenerate functions look like; they will turn out to be intimately connected to the
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critical sets. In §10, we will show that, in the critical case, the supports of the relevant
mixed area measures exhibit a striking phenomenon: they form geometric structures that
we call propellers, which are responsible for the formation of the degenerate extremals.
We exploit these insights in §11 to solve the gluing problem for degenerate functions.

The proof of Theorem 2.13 is finally completed in §12.

Part 1. The local Alexandrov—Fenchel inequality
5. Polytopes, graphs, and extremals

The aim of this section is to give a concrete formulation of the equality condition Sy p=0
in the case where P=(P,..., P,_2) are polytopes. In particular, we will describe the
underlying combinatorial structure, and introduce the basic objects and notation that

will be used in the following sections.

5.1. Basic constructions

We fix at the outset n>>3 and an arbitrary collection of polytopes P= (P, ..., P,—2) in R™.
The notation and definitions that are introduced below will be used throughout §§5-7.

5.1.1. The background polytope

We begin by introducing a certain background polytope P that will be fixed throughout
the following constructions.
Recall that a polytope in R™ is called simple if it has non-empty interior and each

of its extreme points meets exactly n facets.
LEMMA 5.1. There exists a polytope Py in R™ such that Py+P1+...+ P, is simple.

Proof. Let R be any polytope in R"™ with non-empty interior, and define
Q:=R+P+..+P,.

Then, by [30, Lemma 2.4.14], there exists a simple polytope @’ such that each normal
cone of an extreme point of @’ is contained in the normal cone of an extreme point
of . As the normal cones of Q' +Q are intersections of normal cones of Q" and of @ [30,
Theorem 2.2.1], it follows that the normal cones of the extreme points of Q'+@Q coincide
with the normal cones of the extreme points of @’. Thus, Q' +Q is also simple. The
proof is concluded by choosing Py=Q’+ R. O
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In the sequel, we fix a polytope Py as in Lemma 5.1, and define
PZ: P0+P1+...+Pn,2.

We will use P to construct a certain graph structure, on which the various objects that

will be encountered in the sequel are defined.

Remark 5.2. In this section we will only use the fact that P is full-dimensional. The

reason for choosing P to be simple will become apparent in §6.

5.1.2. The background graph

Let P!, ..., PN be the facets of P. We will frequently identify a facet P? by its index i.
For each i€[N], we denote by u;€S™" ! the outer unit normal vector of the facet P*.
Two facets i, j€[N] of P are said to be neighboring if they intersect in an (n—2)-

dimensional face of P. We denote the set of such pairs as
Ep:={(i,j) € [N]?:dim(P'NP7) =n—2}.
For any i€[N], we will denote by
Ep:={j €[N]:(i,j) € Ep}

the set of facets that are neighbors of facet . One should view ([N], Ep) as a graph
whose vertices are facets of P and whose edges are neighboring facets.

As P is full-dimensional, the angle 6;; between the vectors u; and u; must satisfy
0<b;;<7 for any (i,j)€Ep. Thus, there is a unique shortest geodesic in the sphere
between u; and u;, which we denote by eijCS”_l; note that the length of e;; is pre-
cisely 0;;. Geometrically, e;; is precisely the set of outer unit normal vectors of the
(n—2)-dimensional face P'NP7 of P.

We further define, for each (i, j)€Ep, a vector vijES”_l such that v;; Lu; by

Uj =:U; COS Hij +’U7;j sin 9”

Then, v;; is the unit tangent vector to e;; at u;, pointing toward u;. Geometrically, if we
view P! as an (n—1)-dimensional convex body in aff P?, then v;; is precisely the outer
unit normal vector of its facet P‘NPI=F(P?, v;;).

The above definitions are illustrated in Figure 5.1. As is evident from the figure, one
may naturally view these definitions as a geometric realization of the combinatorial graph
([N], Ep), whose vertices are the vectors {u;};c;n] and whose edges are the geodesics
{eij},j)epp- We will often implicitly identify these viewpoints: we refer to both i€[N]
and the associated vector w; as a vertex, and to (i,7)€Ep and the associated geodesic

e;; as an edge, of the graph defined by P.
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PinpI

Figure 5.1. A polytope P in R? and the associated geometric graph.

5.1.3. Faces

For any convex body C in R" and i€[N], j€EL, we will denote
C':=F(C,u;) and C%:=F(C" v;j).
We will frequently write
Pi=(Pi,..,P._,) and PY:.=(P7, ., P7,),

and analogously for other collections of bodies.
The notation C? is consistent with the notation P? for the facets of P, and we have
P =PNPJ. In particular, it follows from Lemma 3.6 that we can express the facets

and (n—2)-faces of P in terms of faces of the polytopes P,, as
Pi=Pit.. +P. , and PY=PJ+.+P7,.

In the sequel, we will apply these and similar consequences of the linearity of faces under
Minkowski addition (Lemma 3.6) without further comment.

Note that P! and P are faces of the polytope P, by definition. However, in contrast
to the analogous faces of P, it is not necessarily the case that P! is a facet and P¥ is an
(n—2)-face of P,. Nonetheless, the following lemma shows that the normal cone of the
face P¥ of P, always contains e;j. In particular, it follows that P¥=PJ¢ which is not

entirely obvious from the definition.

LEMMA 5.3. For every r, i€[N], j€E%, and u€relint e;;, we have
P9 =F(P,,u).

Proof. Recall that e;; is the set of outer unit normal vectors of the face P'NPJ

of P. But as any normal cone of a Minkowski sum P=PFy+...+PF,_o of polytopes is
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contained in some normal cone of P, for each r [30, Theorem 2.2.1], it follows that
F(P.,u)=F(P;,v)CF(P,;,w) for all u,verelinte;; and wee;;.

Choosing w=u;, it follows that F(P,,u)CF(P,,u;)=P!. Thus, F(P,,u) must be
a face of P! that has u as an outer normal vector, so that F(P,,u)CF(P! u). On
the other hand, as F(P!, u) is a face of P, with outer normal vector u, we must have
F(P!,u)CF(P,,u) as well. Thus, we have shown that F(P,,u)=F(P!, u).

To conclude, note that, as u€relint e;;, we may write u=au; +bu; for some a,b>0,

so that Pu# u=cv;; with c=bsin;;>0. It therefore follows from Lemma 3.7 that
F(PZ,U):F(PZ,U”’) :Pvfj7

concluding the proof. O

5.2. The quantum graph

The aim of this section is to describe the structure of the mixed area measure Sp p; this
will be used in the next section to describe the extremal functions f such that Sy p=0.
It turns out that these objects are supported on a certain subgraph of the background
graph defined by P in the previous section. We will rely on the formulation developed in
our paper [32], where the construction that arises here was called the “quantum graph”.
Related representations of mixed volumes and mixed area measures may be found in [8]
and [30, p.437].
Let us begin by describing the measure S p.

LEMMA 5.4. For every continuous function f:S" '—R, we have
1 iy iy
_ 1] 1] 1
/fdsB,p_m Z V(P 7...,Pn,2)/enfdﬂ :
(i.7)€EP i
1<j
where H' is the 1-dimensional Hausdorff measure.
Proof. This is an immediate consequence of [32, Remark 5.11]. O

Lemma 5.4 shows that Sp p is supported on the edges {ei;}(; j)cp, of the geometric
graph defined in the previous section. However, not every edge appears in the support:
some of the weights V,,_2(P%¥) may be zero. Thus, the collection of reference polytopes
‘P defines a subgraph of the graph defined by P. Let us define some notation to describe

this subgraph. In the sequel, we will write

wij = Vn_g(Plij, ceey P;L]72)
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The active edges of the graph defined by P are
FE .= {(Z,]) €EEp:iwi > 0}

Similarly, the active vertices of the graph defined by P are

N
V= {ie IN]: > wi >0},
j=1
that is, €V when ¢ is incident to at least one active edge (i, 7)€ E. Denote by
E':={jeV:(i,j)eE}

the neighbors of i€V in the graph defined by P.

We can now characterize the support of S p as announced in Lemma 2.3.

LEMMA 5.5. The following are equivalent for any u€S™ 1:

(a) u€supp Sp,p;

(b) uce;; for some (i,j)€E;

(c) there are segments I; CF(P;, u), i€[n—2|, with linearly independent directions;
(d) for all ke[n—2] and all 1<i1<...<ip<n—2,

dim(F (P, ,u)+...+ F(P;,,u)) > k.

Proof. That (a) < (b) is immediate by Lemma 5.4, while (¢) = (d) is trivial.
We now prove (b) = (c). Suppose first that uerelinte;; for (i,7)€E. Then,

Vn—2(F<P17u)7 ) F(Pn—27u)) >0

by the definition of F and Lemma 5.3, which implies (c) by Lemma 2.2. It remains to
consider the case where u=u; for some i€V, so that F(P,,u)=P. But, by the definition
of V, there exists j such that

Vo o(P, ..., P7 ,)>0,

so (c) follows by Lemma 2.2 and P C P!,

It remains to prove (d) = (a). To this end, suppose that (d) holds, and let @ be any
polytope in R™ that has a facet with outer normal direction u. Then, by Lemma 2.2, we
have

Va1 (F(Q,u), F(P1,w), ... F(Pa_s, 1)) > 0.

Thus (a) follows as u€supp Sg,» Csupp Sp,p by Lemmas 3.4 and 2.4. O
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We now provide a useful description of the active vertices.

LEMMA 5.6. Let i€[N]. Then, the following statements hold:
(a) i€V if and only if Vy_1(P?, P}, ..., Pi_5)>0;
(b) if i€V, then V,_1(Q%, P}, ..., P._5)=0 for every polytope Q.

Proof. We may assume without loss of generality (by translation) that Pf,..., P!_,
are convex bodies in uj and that Ocrelint P'. As the facet normals of P! in u;- are
precisely {vi;}jepp,, it follows from Lemma 3.4 that the mixed area measure Spi _ ps

Y n—2
i)

(computed in u;-) is supported on {v;;}jer,, and that

SP17 P, ({’U,J}) ( (P17UZJ) F(PT’LL 2?1}7])):(")1'1'-

Thus, (2.1) implies

Vi-1(Q ,P1,-~-7Pn_2)=m hqi (vij) wij
JEED

for any polytope @, from which part (b) follows immediately. To prove part (a), recall
that P’ is a facet of P by definition, so our assumptions imply that P? is a full-dimensional

1

polytope in ui- containing the origin in its interior. Thus, hpi(v;;)>0 for all j€ E%, and

the conclusion of part (a) follows. O

5.3. The Alexandrov matrix

The aim of this section is to give a combinatorial description of the equality cases of the
Alexandrov-Fenchel inequality: we will show that the equality condition St =0 can be
equivalently formulated in terms of separate conditions on the edges and vertices of the
graph defined by P. Such a characterization appears in the proof of [30, Theorem 7.6.21]
for the special case that P, ..., P,_o are strongly isomorphic, which we do not assume
here.

Define a symmetric matrix AcRNV*N by

Aiji=1( j)epp wij cscOij—1i—; Z wik cot 0.
kEEL
We will refer to A as the Alezandrov matriz, as a special case of this matrix arises in a
much more restrictive setting (of strongly isomorphic polytopes) in Alexandrov’s original
proof of the Alexandrov-Fenchel inequality [1]. We now show that Sy »=0 is equivalent
to two conditions: f is (piecewise) linear on each edge in F, and the values of f on the

vertices define a vector in the kernel of A.
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PROPOSITION 5.7. Let f: S"~1 =R be a difference of support functions. Then,
Sip=0

if and only if the following two conditions both hold:
(1) for every (i,j)€E, there exists t;; ER™ such that f(x)=(tij,z) for x€e;j;
(2) the vector z:=(f(u;))ie;n ERY satisfies z€ker A.

Proof. That S¢p=0may be equivalently stated as V,, (g, f, P)=0 for every difference
of support functions g. By [32, Theorem 5.1], this is equivalent to the statement that f
lies in the kernel of the self-adjoint operator defined in [32, Theorem 5.7 and Remark 5.11],
which is characterized by the following two conditions:
(1) fis (piecewise) linear on each edge e;; for (i,j)€E;
(2) f satisfies
Z wij Vo, f(ui) =0 for every icV.
JEED
It remains to show that the second condition is equivalent to z€ker A. To this end,

let us parameterize the edge e;; as
ei; ={x(0):0<60<¥6,;}, where x(0):=u,cosf+uv;;sinb.

By the first condition, we can write f(z)=(t,z) on e;; for some vector t, so

Flug) = f(ui) cos 0y

f(z(8)) = (t,u;) cos 0+ (t, v;;) sin @ = f(u;) cos 6+ : inf.
S 91‘]‘
Consequently,
d fug) = f(us) cos 0
v f (W) = — 0 = 1 1,
Ve J() = IO N
Thus the second condition may be expressed equivalently as
f(ug) = f(u;) cos 0 -
— g =(Az); forall :
0 Z Wij Sin (Az); forallieV.

JEED

But (Az);=0 always holds for i¢V by the definition of V', so we have shown that the
second condition above is equivalent to z€ker A. O

Remark 5.8. Instead of using the analytic theory of [32] as we have done here, one
can give a more geometric proof by adapting the first part of the proof of [30, Theo-
rem 7.6.21] to the present setting. Conditions (1) and (2) in the proof of Proposition 5.7
appear in [30] as (7.177) and (7.178), respectively.
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Let us emphasize that the ith row and column of A are zero for every i¢V. Thus,
the values f(u;) for ¢¢V never actually appear in Proposition 5.7. This simply reflects
the fact that {u;};¢v lie outside the support of Spp, so these points play no role in
the equality condition. Recall, however, that our ultimate aim is to prove the local
Alexandrov—Fenchel inequality of Theorem 4.3, in which points outside the support of
Sp,p play a crucial role. We therefore resist the temptation to simply remove the zero

rows and columns from the definition of A at this stage.

6. Finite-dimensional reduction

The previous section introduced a combinatorial formulation of the equality condition
S¢p=0. In particular, Proposition 5.7 shows that an extremal function f is fully specified
by its values f(u;) on the vertices u; of the graph defined by P: its values on the rest of
the support of Sp p are then uniquely determined by linearity. In order to prove the local
Alexandrov—Fenchel inequality, however, we will also need to reason about the measure
St,f,p,,» and there is no reason to expect that only the directions {ui}ieiv) will appear
in its description.

The aim of this section is to introduce a basic geometric construction that will enable
us to surmount this issue. This construction will simultaneously serve two purposes: it
will enable us to reduce the local Alexandrov—Fenchel inequality to a finite-dimensional
problem, and it will furnish the objects that appear in Proposition 5.7 with a geometric
interpretation that will be key to their analysis.

In this section, all assumptions and definitions of §5 will be in force.

6.1. Strongly isomorphic polytopes
We begin by recalling the definition.

Definition 6.1. Two polytopes Q and Q' are said to be strongly isomorphic if
dim F(Q,u) =dim F(Q’,u) for all ue S"1.

The key feature of strongly isomorphic polytopes ) and @’ is that they have identical
facial structures: there is a bijection between the faces of @Q and @’ such that each pair
of identified faces has the same normal cone [30, §2.4]. Consequently, no new faces are
created when one takes Minkowski sums of strongly isomorphic polytopes. Let us record

this basic fact for future reference [30, Corollary 2.4.12].
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LEMMA 6.2. Let Q and Q' be polytopes. Then, all the polytopes AQ+ N Q' with
A\, N >0 are strongly isomorphic. If Q and Q' are themselves strongly isomorphic, then
all the polytopes AQ+ N Q' with A, X' >0 are strongly isomorphic.

The following simple observation will play an important role in the sequel.

LEMMA 6.3. Let @ be a polytope that is strongly isomorphic to P. Then, for every
(1,7)€Ep, there exists t;; ER™ such that hg(xz)=(t;;, ) for xce;;.

Proof. Let (i,j)€Ep. As @ and P are strongly isomorphic, e;; is the set of unit
normal vectors to the face Q™ of Q. Thus, Q¥ =F(Q,u) for any u€relint e;;. If we there-
fore fix any ¢;;€Q%, then hg(u)=(t;;,u) for all ucrelint e;; by (2.2), and the conclusion

extends to the endpoints of e;; by continuity. O

The significance of Lemma 6.3 is immediately evident from Proposition 5.7: when

@ is strongly isomorphic to P, the function
f=hg—hp

automatically satisfies the piecewise linearity condition that characterizes the extremals
of the Alexandrov—Fenchel inequality on the edges of the graph defined by P (note that as
P is strongly isomorphic to itself, Lemma 6.3 also applies to Q=P). We will shortly prove
a strong converse to this statement: any extremal function f of the Alexandrov—Fenchel

inequality may be represented in such a form.

6.2. Support vectors

As is already anticipated by Proposition 5.7, we will frequently work with the restriction
of support functions of convex bodies to the finite collection of directions {u;};cny. It
will be convenient to introduce the following notation: for any convex body C' in R", we

define its support vector ho €RY by
(hc)iZ:hC(ui), ZG[N]

The following result shows that any vector z€R™ can be expressed in terms of the
support vector of a polytope that is strongly isomorphic to P. It is here that we make

crucial use of the fact that P was chosen to be a simple polytope.

LEMMA 6.4. For any vector z€RYN, there exists a polytope @ that is strongly iso-
morphic to P and a scalar a€R such that z=hg—ahp.
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Proof. For any y€R", define

Qy = ﬂ {z €R": {(u;,z) <hp(us)+yi}-
i€[N]

As P is a simple polytope, it follows from [30, Lemma 2.4.13] that there exists €>0
such that @, is strongly isomorphic to P whenever |y|o<e. In particular, we then
have hg,=hp+y, as Q, and P have the same facet normals. The conclusion follows by
choosing Q:=aQ. /, with a:=e~ (14 z||o0)- O

We can now explain a key implication of the above construction: it enables us to
modify any equality case of the Alexandrov—Fenchel inequality outside the support of
Sp,p in such a way that the relevant mixed area measures are supported in the finite set
{ui}iein). Tt is by virtue of this procedure that we will be able to reduce Theorem 4.3

to a finite-dimensional problem.

COROLLARY 6.5. Let f be a difference of support functions such that Sy p=0. Then,
there is a polytope @ that is strongly isomorphic to P and a€R such that

g=hg—ahp

satisfies g=f Spp-a.e., Sgp=0, and Sy 4 p,, is supported on {u;}ic;ny for all r.

Proof. Choose any z€RY such that z;=f(u;) for i€V. Applying Lemma 6.4, we
find a polytope () that is strongly isomorphic to P and a€R such that g=hg—ahp
satisfies g(u;)=f(u;) for all i€V. Moreover, f is linear on e;; for every (i,j)€E by
Proposition 5.7, while g satisfies the same property by Lemma 6.3. Thus, f=g Sp p-a.e.
by Lemma 5.5. That S;p=S5¢p=0 now follows by Lemma 2.8. Finally, as the facet
normals of @+ P are {u; };c|n) by Lemma 6.2, we can conclude that Sg,g,P,, 1s supported

in this set for any r by Lemma 3.4. O

It should be emphasized that Corollary 6.5 does not in itself capture any aspect of the
phenomenon described by Theorem 4.3: it merely reduces the problem to a finite universe
{ui}icin) of normal directions, but does not otherwise guarantee any properties of the
measure Sg gp,,. On the other hand, we have considerable freedom in the construction
of g in Corollary 6.5: we have only specified g(u;) for i€V in the proof, and we are
therefore free to choose arbitrary values of g(u;) for i¢V. What we must show in the
proof of the local Alexandrov—Fenchel inequality is that there exists a choice of the latter

values which ensures that nggv'p\r <0.
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6.3. The Alexandrov matrix revisited

We now show that strongly isomorphic polytopes enable us to furnish the Alexandrov
matrix of Proposition 5.7 with a geometric interpretation. To this end, it will be useful
to introduce the following notation. For any i€[N], define a linear map D;:RY —REP
by

(Djz)j:=zjcscb;j—zicotb;;, j€ EL, i€[N], z€ RN,

The significance of this definition is the following.

LEMMA 6.6. Let Q be a polytope that is strongly isomorphic to P. Then,
(Dth)j:th(’U”) f07” all (Z,])GEP

Proof. Fix (i,j)€Ep. As @ is strongly isomorphic to P, it must be the case that
F(Q,v;;)=Q'NQ?. Thus, for fixed z€Q'NQ’, we have

(m,ui) =hq(ui), (z,u5) =hq(u;), (2,vi)="hgi(vij).
Taking the inner product with  in the definition of v;; yields
hQ (uj) = hQ (uz) cos 91']' +hQi (Uij) sin Hij,

and the conclusion follows by rearranging this expression. O
As a consequence, we obtain the following geometric interpretation.

COROLLARY 6.7. Let @ be strongly isomorphic to P and let a€R. Denote
z:i=hg—ahp, fi=hg—ahp, f':=hgi—ahp:.
Then, for every i€[N],
(A2)i = (n=1)Vouur (f', P}, e Py ),
and for any convez body C,
(hey Az) =n(n—1)V,(C, f, P, ..., Ph_2).

Proof. 1t was shown in the proof of Lemma 5.6 that w;;=Spi  pi  ({vij}). We

may therefore rewrite the definition of A as

(Az);= Z (Diz)jwij = Z F(vig) Spy....pi_,({vij})

JEEL JjEEL
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using Lemma 6.6. But as {v;;};c g, are the facet normals of P in aff P!, we obtain

(Az)l = / fl dSPli’-~wPriL—2 = (n—l)Vn_l(fi, Pli, ceey Priz—2)

by Lemma 3.4 and (2.1). Now, note that as @ is strongly isomorphic to P, the facet
normals of @+ P are {u;};c;n) by Lemma 6.2. Thus,

<hc,AZ>:(TL71) Z h’c(ui)vn—l(fi,Plia"';P£—2)
€[N

:(nfl)/hc dSs.py,...Py_s
=n(n—1)V,(C, f, P1, ..., Ph_2)

by Lemma 3.4 and (2.1). O

7. Proof of the local Alexandrov—Fenchel inequality

Now that the requisite machinery is in place, we proceed to the main part of the proof
of Theorem 4.3. Throughout this section, all assumptions and definitions of §5 and §6
will be assumed without further comment.

Let us begin by reformulating Theorem 4.3 in a more combinatorial manner.

THEOREM 7.1. Assume that P=(Pi, ..., Pn_2) is a critical collection of polytopes.
Fix re[n—2] and z€ker A. Then, there exist a polytope Q that is strongly isomorphic
to P and a€R such that the following hold:

(1) (hg—ahp);=2; for every i€V;

(2) Vp—1(hgi—ahp:, hQi—ahPi,P<T)<O for every i€[N].

With this result in hand, the conclusion of Theorem 4.3 follows readily:

Proof of Theorem 4.3. Fix r€[n—2] and a difference of support functions f such
that Sy p=0. Then, z:=(f(u;));c|n] satisfies z€ker A by Proposition 5.7. We can there-
fore apply Theorem 7.1 to construct an associated polytope @Q and a€R. We claim that
g:=hg—ahp satisfies the conclusion of Theorem 4.3.

To show this, note first that it follows exactly as in the proof of Corollary 6.5 that
g=f Sp p-ae., that Sy p=0, and that Sy, p,, is supported on {u;};c(n]. On the other
hand, Lemma 3.4 implies that

Sg.g.p, ({1i}) =Va_1(hgi —ahpi, hgi —ahp:, P(T).

Thus, the second property of Theorem 7.1 implies Sg ¢, , <O0. O
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The rest of this section is devoted to the proof of Theorem 7.1. The proof consists
of two parts. First, we will show that the second property of Theorem 7.1 holds auto-
matically for i€V by the Alexandrov—Fenchel inequality. We then show that @ and a
can be chosen in such a way that this property holds also for i¢ V.

7.1. The active vertices

The first observation of the proof of Theorem 7.1 is that its second condition is auto-
matically satisfied for the active vertices :€V whenever the first condition is satisfied,
regardless of how @ is chosen.

LEMMA 7.2. Let Q be a polytope that is strongly isomorphic to P, and let a€R.
Suppose that hg—ahp€ker A. Then, for any re€[n—2], we have

Voo1(hqi —ahpi, hgi—ahpi, P{,) <0 for all i€ V.
Proof. By Corollary 6.7, the assumption hg —ahp €ker A implies that
Vi—1(hgi—ahpi, P*)=0 for all i€ [N].
By the Alexandrov—Fenchel inequality, we have
0> Vy_1(hqi —ahpi, hgi —ahpi, PL,)Va 1(P}, BLPL).

The conclusion follows immediately for any i such that V,,_;(P?, PZ, P{T) >0.

Now, suppose i€V but V,,_1 (P, P, P{T):O‘ Then, we can argue in a similar man-
ner as in the proof of the second part of Lemma 3.12. As i€V, Lemma 5.6 states that
V,_1(P% P, P<T)>0. Thus, we may choose b€R so that

Vi1 (hgi —ahp: —bhp:, P, P{.) =0.
The Alexandrov—Fenchel inequality now yields
0> Vy—1(hqgi —ahpi—bhpi, hgi —ahpi —bhpi, 73<T)Vn_1(Pi7 P P(T).
But i€V implies V,,_1(P?, Pi,P<T)>Vn_1(Pi,Pi)>O by Lemma 5.6. Thus,

02> Vp1(hqi —ahp: —bhps, hgi —ahpi —bhp:, P,)
= Vn_l(hQi —ahpri y hQi —ahpi s P{r)’

where we used that V,,—1(hq: —ahpi, P)=Vu_1(P}, P{, P{,)=0. O
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Now consider the setting of Theorem 7.1 for a given z€ker A. As the ith row and
column of A are zero for i¢V, we have 2z’ €ker A whenever z;=z] for i€V. To any such
choice of 2/, we can apply Lemma 6.4 to obtain a polytope @ that is strongly isomorphic
to P and a€R such that z’=hg—ahp. Then, the following statements hold:

(1) (hg—ahp);=z for every i€V (as z;=z, for ieV);

(2) Vi—1(hgi—ahpi, hgi —ahpi,,])<r)<0 for every i€V (by Lemma 7.2).

Thus, the only part of the proof of Theorem 7.1 that remains is to ensure that the
second condition holds for i¢ V. On the other hand, in the above construction, the choice
of z{ for i¢V is completely arbitrary.

This discussion provides us with a key intuition about why the local Alexandrov—
Fenchel inequality has any hope of being true: we aim to satisfy N —|V| non-trivial
equations, but we are free to choose N —|V| parameters. In other words, the number of
degrees of freedom equals the number of equations we aim to satisfy. This fact is not at
all obvious from the formulation of Theorem 4.3.

On the other hand, this idea alone cannot suffice to complete the proof: it is possible
that the system of equations we aim to solve is degenerate, in which case no solution may
exist. It is far from obvious, a priori, why this situation cannot occur for some special
choices of polytopes: had that been the case, there would have likely existed additional
extremals of the Alexandrov—Fenchel inequality beyond the ones discussed in §2. The
main difficulty in the remainder of the proof of Theorem 7.1 is to rule out the existence

of such degeneracies.

7.2. Reduction to a linear system

As was explained above, we now aim to choose the polytope @ in such a way that the
second condition of Theorem 7.1 holds for ¢¢V. In essence, this requires us to find a
solution to a system of quadratic inequalities. The manipulation of these inequalities is
somewhat awkward, however, so we begin by introducing a simplification: we will reduce
the problem to solving a system of linear equations, which are formulated in the following

result.

PROPOSITION 7.3. Assume that P=(Pi, ..., P,_2) is a critical collection of polytopes.
Fiz re[n—2] and z€RYN. Then, there exist a polytope Q that is strongly isomorphic to
P and a€R such that the following hold:

(1) (hg—ahp);=2; for every i€V;

(2) Vn,l(hQi—ahpi,Pi,’P<r):O for every i¢V.
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Proposition 7.3 will be proved in the next section. Before we do so, let us show
that it implies Theorem 7.1. As in Lemma 7.2, the transition from linear equations to

quadratic inequalities is a consequence of the Alexandrov—Fenchel inequality.

Proof of Theorem 7.1. Fix re[n—2] and z€ker A, and construct the polytope Q
as in Proposition 7.3. Then, the first condition of Theorem 7.1 holds by construction.
Moreover, as the ith column of A vanishes for ¢¢V, it follows that hg —ahp€ker A. Thus,
the second condition of Theorem 7.1 holds for €V by Lemma 7.2.

Now, let i¢V. Then by Proposition 7.3 and the Alexandrov—Fenchel inequality

0=V 1(hgi—ahpi, P',P,)’
>V, 1(hgi—ahpi, hgi —ahpi, P{, )V 1 (P, P',PL).

Thus the second condition of Theorem 7.1 holds provided
Vo1 (P, P P) > 0.

It remains to consider i€ [N] such that V,,_i (P, P*,P{,)=0. By definition, P’ are
the facets of P, so dim P=n—1. It therefore follows from Lemma 2.2 that

Vo1 (K L PL) =0
for any convex bodies K and L. In particular, for such i,
anl(hQi —ahpi s th —(lhpz‘ s P<r> =0.

Thus, the second condition of Theorem 7.1 is established for every i€[N]. O

To clarify the computations in the next section, let us further express the linear
system of Proposition 7.3 explicitly in a finite-dimensional form. To this end, we would
like to represent the mixed volume V,,_1(hgi —ahpi, P', P(r) in terms of an Alexandrov
matrix. In the present setting, however, the reference body P, has been replaced by P,
so that Corollary 6.7 does not directly apply.

Note, however, that P+Zi¢r P; is strongly isomorphic to P by Lemma 6.2. There-
fore, if we replace the reference bodies P by (P, P\,), then the background graph defined
in §5.1 remains unchanged, and all the subsequent constructions in §5 and §6 extend wver-
batim to this setting up to a change of notation. In particular, if we define the Alexandrov
matrix associated with (P, P\,) as

Aij = 1(i,j)eEan—2(Pija P{z) CSC Hij — 11':]‘ Z Vn_2(Pik, P({f) cot Gik,
keEY,
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then Corollary 6.7 extends immediately to show that, whenever z’=hg—ahp for a poly-

tope @ that is strongly isomorphic to P and a€R, we have

(AZ/)Z = (’Il* ].)Vn_l(thz 7ahpi, Pi, P<r)7
<hc, AZ’) :n(n—l)Vn(C, hQ—ahp, P, 'P\T)

for any i€[N] and convex body C. If we can therefore show that the linear system

{ 2=z forieV, (71)
)i=0

(A2 forig¢gV

has a solution 2z’ €R", the proof of Proposition 7.3 would follow from Lemma 6.4.

7.3. The Fredholm alternative

We are now ready to complete the proof of Proposition 7.3. To show that the linear
system (7.1) has a solution, we will verify the dual condition provided by the Fredholm
alternative ran M= (ker M*)* of linear algebra. Surprisingly, it will turn out that the
validity of this dual condition is itself a consequence of the equality condition of the

Alexandrov-Fenchel inequality.

Proof of Proposition 7.3. We fix 7€[n—2] and 2€R” throughout the proof. Let us
begin by rewriting the linear system (7.1) as a single equation. Let V¢:=[N]\V, and
denote by Py and Py the orthogonal projections onto the subspaces of vectors supported
on the coordinates V and V¢, respectively. Then clearly (7.1) has a solution 2z’ €R¥ if
and only if there exists y€R" such that

PVcAPch: *PVcAPVz (72)

(as then z’=Pyey+Pyz is a solution to (7.1)).
To show there exists a solution to (7.2), we will prove the following claim:

Pycw€ker A for every w € ker Pyre APye. (7.3)

Let us first argue that this suffices to conclude the proof. If (7.3) holds, then we clearly
have (w,PycAPy2)=(APycw,Py2)=0 for every wcker PycAPyec. The latter is pre-
cisely the dual condition for the existence of a solution y to (7.2). It therefore follows
that there exists 2/ €RY satisfying (7.1), and the proof of Proposition 7.3 is concluded

as explained at the end of the previous section.
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It therefore remains to prove (7.3). To this end, let us fix weker PycAPy.. By
Lemma 6.4, there exists a polytope R that is strongly isomorphic to P and b€R such
that Pycw=hgr—bhp. We can therefore compute

<PVC w, APVC ’lU>

V,(hr—bhp,hg—bhp, P,P\,)= =0.
(hr p,hr p, P,P\,) nln—1)
On the other hand, we have
1 i pi i
Vn(hbehPaPTapv P\T) = E Z (hR*th)iVn—l(Prvp 7P\r)
i€[N]

1 o
= > (hg—bhp)Vp_1(P*, P') =0,

where the first equality follows from Lemma 3.4 and (2.1), the second equality follows as
(hg—bhp);=(Pycw);=0 for i€V, and the third equality follows as V,,_1(P? P*)=0 for
1€V by Lemma 5.6. Finally, we have

Vn(Pra P, P, P\’l") >0

using that P is critical (Definition 4.1) and Lemma 2.2. Thus, Lemma 3.12 yields

n—1

0="Shp—thp.pr, ({ui}) =Vo1(hp: —bhpi, P, P{,) =

for every i€[N], where we used Lemma 3.4 in the second equality. In other words, we
have shown that Py.w¢cker A, concluding the proof of (7.3). O

Remark 7.4. Let us emphasize that the definition of the matrix A depends on the
choice of r, so that the polytope @ and a€R that are constructed in the proof of Proposi-
tion 7.3 will generally depend on 7. This will not be a problem for our purposes, however,

as we will fix 7 when we implement the induction argument.

Part 2. Gluing
8. The supercritical case

The aim of this section is to complete our characterization of the extremals of the

Alexandrov—Fenchel inequality in the supercritical case (Definition 2.14).

THEOREM 8.1. Let P:=(Px, ..., Ph_2) be a supercritical collection of polytopes in R™
(n>2). For any difference of support functions f: S"~1 =R, we have Stp=0 if and only
if there exists s€R™ such that f(x)=(s,x) for all x€supp Sp p.
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Let us note that Theorem 8.1 is simply a reformulation of Corollary 2.16.

Proof of Corollary 2.16. By Lemma 2.5, the equality condition in Corollary 2.16
holds if and only if there exists a>0 such that S¢p=0 for f=hg—ahr. The conclusion
now follows immediately from Theorem 8.1. O

Remark 8.2. We fixed at the beginning of this paper (§2.1) n>3, which has been
assumed throughout without further comment. In dimension n=2, the collection P is
empty and the Alexandrov—Fenchel inequality reduces to Minkowski’s first inequality [30,
Theorem 7.2.1] whose equality cases are elementary. The case n=2 does play a role in
this paper, however, as it will be used as the base case for our induction arguments. For
this reason, we have formulated Theorem 8.1 for n>2. Note that the n=2 case is always

supercritical by definition.

Most of this section will be devoted to the proof of the induction step. We there-
fore fix until further notice n>3 and a supercritical collection of polytopes in R™. By
translation-invariance of mixed area measures, the equality condition Sf »=0 is invariant
under translation of the polytopes in P, so there is no loss of generality in assuming that
P; contains the origin in its relative interior for every i€[n—2]. Consequently, if we

define, for every aC[n—2], the linear space

Lo :=span{P; :i € a} =span Z P,
216
then dim ), P;=dim L, for any aC[n—2]. We will denote by B, the Euclidean unit
ball in L., and we write L,:=Ly,y and B,.:=By,y.
The above assumptions and notation will be assumed in the sequel without further
comment. In particular, note that the supercriticality assumption may now be formulated

as dim L, >|a|+2 for every aC[n—2], a#@. Let us also note the simple identity
ﬂauﬁ =L, +£5

that will be used many times.

8.1. The induction hypothesis

The proof of Theorem 8.1 proceeds by induction on n: in the induction step, we will
assume the theorem has been proved in dimension n—1, and deduce its validity in di-
mension n. The aim of this section is to formulate the resulting induction hypothesis. To

this end, let us begin by stating a consequence of the local Alexandrov—Fenchel inequality.
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LEMMA 8.3. Fiz re[n—2] and a difference of support functions f with Syp=0.
Then, there exists a difference of support functions g with the following properties:
1) g(z)=f(x) for all x€supp Sp p;
2) Vi1(Pyrg, Pyr P PPy, )=0 for all ueS™1;
3) Vno1(Pyrg,Pyrg, Py P\, )=0 for all ueS"INL,;
4) Vo1 (Pyr PPy P Pyi Py ) >0 for all ueS™1.
Here the projections P,.g and P . P\, are as defined in §4.1.

—~ ~ —~

Proof. By Theorem 4.3, there exists g, with g=f Sp p-a.e., such that S, »=0 and
Sg,g,P,<0. Let us check that each of the claimed properties holds for g. The first
property holds by construction. To prove the second property, note that

O:/h[&u] ds P :Vn—l(PuL.%PuiPmPuLp\r),

where we have used Corollary 3.9 and (2.1).
The third property is analogous to Lemma 4.2, but in the present case we cannot
assume that P, is full-dimensional. We first note that, as S, »=0, we have

Oz/gng,p:/hpr nga!LP\M

using (2.1) and the symmetry of mixed volumes. On the other hand, as Sy ,p , <0
by construction, it follows that 1z, ~0dSy 4, ,=0. Now note that, as we assumed
O€relint P,, there exists £>0 such that [0, u]C P, for every u€S" 1NL,. In particular,
this implies €h[g,,) <hp,., and thus

{z:hpu(z) >0} C{z:hp (x)>0}

whenever ueS" 1NL,.. We can therefore conclude that
0= / h[()’u] ngﬂgxp\T :anl(PuJ-ga Pulga PuJ—P\r)

for any u€S"~tNL, using Corollary 3.9 and (2.1).

It remains to verify the fourth property, which is a consequence of the super-
criticality assumption. As dim(}_,;., Pi)>|a|+2 for all a#@, it follows readily that
dim(} ;¢ Pyr Ps)=]al+1 for a#@, and thus also dim(P,. P+, Py1 P;) >|al+1 for
all a. The fourth property now follows from Lemma 2.2. 0

From now on, we will fix r€[n—2] and a difference of support functions f with

S¢p=0, and construct the difference of support functions g as in Lemma 8.3. In par-

ticular, Lemma 8.3 ensures that the projection P, .1 g yields an equality case (3.1) of the
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Alexandrov-Fenchel inequality in dimension n—1 for any u€S" 'NL,. If we now as-
sume that the conclusion of Theorem 8.1 is valid in dimension n—1, this will yield an
explicit characterization of P, g that will serve as the induction hypothesis for the proof
of Theorem 8.1 in dimension n.

Theorem 8.1 is only valid, however, if the supercriticality assumption is satisfied. In
order to implement the above program, we must therefore show that the supercriticality
assumption on P is inherited by P, P\,. We will presently show that this is in fact the
case for almost all directions u, which will suffice for our purposes. More precisely, let us
define the sets

N:= |J §"7'nLnLe and U:=(S""'nL,)\N.
aCn—2]\{r}
dim Lo =|a|+2
Then, we have the following lemma. Here and in the remainder of this paper, we will
frequently use the following simple linear algebra fact without further comment: for
any linear subspace ECR"™ and u€S™" "1, we have dim(P,. E)=dim E if u¢ E, whereas
dim(P,. E)=dim E—-1 if uekE.

LEMMA 8.4. The following hold:
(a) Py1P\, is supercritical for every ueU;

(b) U has full measure with respect to the uniform measure on S"~*NL,.

Proof. To prove part (a), consider u€ S"~tNL, such that P, P\ is not supercritical.
Then, dim(> ... P,1 P;)<|a|+2 for some aC[n—2]\{r}, a#@. On the other hand, as
P is supercritical, we have dim(} .., P;)>|a|+2. By the above linear algebra fact, this
can only occur if dim(},., Pi)=|a[+2 and u€L,, so that u€N. Thus if ucU, then
P, P\, must be supercritical.

For part (b), it suffices to show that N is the intersection of S*"'NL, with hyper-
planes of codimension at least 1. That is, for any a C [n—2]\{r} such that dim £, =|a|+2,
we claim that dim(L,NL,)<dim £,.. Indeed, if this is not the case, we must have £, CL,,.
But that would imply that dim L,y =dim £, =|a[+2, contradicting the supercritical-

1€

ity assumption on P. [

Combining the above observations, we can now formally state the induction hypoth-

esis (recall that r, f, and g have been fixed in the remainder of this section).

COROLLARY 8.5. Suppose that Theorem 8.1 has been proved in dimension n—1.
Then, for any u€U, there exists s(u)Eut such that

g(x)={(s(u),z) for all x €supp S[o7u]7B7p\r.
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Proof. Applying Lemma 3.12 in u* and Lemma 8.3, we obtain S gp, P, =0. As
P, P\, is supercritical by Lemma 8.4, applying Theorem 8.1 in ut yields

Purg(z)=(s(u),z) forallzesuppSe P, P,

But, as P,1g(z)=g(P,.7) and as Sp_, pp_, p,, is supported in u't by definition, we may

remove P, on the left-hand side. The conclusion now follows, as

supp SPul B,PuL P\r = Ssupp S[O,uLB,P\T
by Corollary 3.9 (see Remark 8.6 below). O

Remark 8.6. In the proof of Corollary 8.5, we encountered a mixed area measure
of the form S’pul CiyooiP L Cos for convex bodies C1,...,Cp_o in R™. By convention, this
notation will be taken to mean that P,.C1,...,P,.C,_o are viewed as convex bodies
in w', and that the mixed area measure is computed in this space. Even though we
do not specify explicitly in the notation in which space the mixed area measure is com-
puted, this will always be clear from context. For example, note that the collection
P.,.C1,...,P,1C,_2 consists of n—2 bodies, so its mixed area measure only makes sense
in an (n—1)-dimensional space.

Projected mixed area measures may be equivalently expressed as mixed area mea-

sures in R™ by Corollary 3.9. Indeed, note that

1
/hds[o,u],cl,...,Cn,Q:E/hdspuL01,...,PulCn—2

for any convex bodies C1,...,C,,_2 in R™ and any difference of support functions h by
Corollary 3.9 and (2.1), where we used again that P, h(z)=h(P,.x). As we may choose
h to be any C? function by Lemma 2.1, it follows that

(n—1) S[0,u,C1,....C s =P, 1 C1p0 Pyt Crs

This is, of course, the direct counterpart of Corollary 3.9 for mixed area measures. Let

us note, in particular, that supp S u),c1,....Ch_s Cu't.

8.2. The gluing argument

We now aim to show that the induction hypothesis of Corollary 8.5 implies the conclusion
of Theorem 8.1 in dimension n. To this end, the main issue we encounter is to show that
s(u) may be replaced by a single vector s€ R™ that is independent of u. That is, we must
“olue” together the linear functions obtained for different ©€U to obtain a single linear
function.

As a first step, we observe that supports of the measures Sjg ), BP\, for different

uw€U have a small but non-trivial overlap.
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LEmMA 8.7. Let u,veU be linearly independent. Then,

Supp S0}, [0,0], Py, S SUPP S[0,u),B,P,,.1SUPP S[O,v],B,'P\,J

and
span supp S(o,u],(0,0], P, = {, it

Proof. The first claim is immediate by Lemma 2.4. To prove the second claim, note
first that spansupp Sio ), 0,0], 7., C{u,v}*, by Remark 8.6. Now suppose the inclusion is
strict. Then supp Sjg,u],j0,u],7,, Cw™ for some weS™ 1N {u, v}*, so

0= /<w7 ZL’>+ S[O,u],[O,v],P\T, (d.’b) = ﬂVn([O, ’LU], [07 U], [01 'U]v P\r)

using hjo,](7)=(w, ), and (2.1). Now note that

dim(ZPi) |a]+2 and dlm( +ZP>Z|O¢|+3

[2<teY i€x

for every aCn—2]\{r}, a#2, by the supercriticality assumption and the definition of

U. As u, v, and w are linearly independent, it follows from Lemma 2.2 that
Vn([oa w]7 [Ov u]v [07 'U]v P\r) >0,
which entails a contradiction. O

We can now conclude the following.

COROLLARY 8.8. Suppose the conclusion of Corollary 8.5 holds. Then, there exists
a function a:U xU —R such that

s(u)—s(v) =a(u,v)u—a(v,u)v
whenever u,velU are linearly independent.

Proof. Let u,veU be linearly independent. By Corollary 8.5 and Lemma 8.7,
(s(u),x) =g(x) =(s(v),x) for all z €supp Spo.u],[0,0],P,,-
Thus, Lemma 8.7 implies that s(u)—s(v) L {u,v}*, so that
s(u)—s(v) =alu, v)u+b(u,v)v
for some functions a and b. But exchanging the roles of u and v, we obtain
a(u, v)u+b(u,v)v=s(u)—s(v) =—(s(v)—s(u)) = —a(v,u)v—b(v, u)u,

which implies b(u,v)=—a(v,u) as u and v are linearly independent. O
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Next, we show that the function a(u,v) may be chosen to be independent of v.
LEMMA 8.9. Suppose the conclusion of Corollary 8.5 holds, and let v,weU be lin-
early independent. Then, there is a function b:U—R such that the function

ur— s(u) —b(u)u

is constant on U\span{v,w}.
Proof. Let the function a be as in Corollary 8.8. Consider first any linearly inde-
pendent u, v, weU. Then, by Corollary, we obtain 8.8
0=s(u)—s(v)+s(v)—s(w)+s(w)—s(u)
= (a(u,v)—a(u, w))u+(a(v, w) —a(v,u))v+(a(w, v) —a(w, v))w.
Thus a(u,v)=a(u,w), by linear independence of u, v, and w.
Let us now fix any linearly independent v, weU, and let b(u):=a(u,v) for uelU. As

u, v, and w are linearly independent for any uw€U\span{v,w}, we have b(u)=a(u,v)=

a(u, w) and b(w)=a(w,v)=a(w,u) for all such u. Therefore,
s(u)—b(u)u = s(w)+s(u)—s(w)—blu)u = s(w) —b(w)w

for every ueU \span{v, w}, by Corollary 8.8. O
Putting together the preceding arguments, we obtain the following.
LEMMA 8.10. Suppose that Theorem 8.1 has been proved in dimension n—1. Then,
there exists s€R™ such that

g(x)=(s,z) for all x €supp Sp B, P,

Proof. We begin by noting that dim P, >3, by the supercriticality assumption. Thus,
as U has full measure in S"'NL, by Lemma 8.4, we may choose linearly independent
v,weU. Also, as dim P, >3 and dim span{u, v}=2, it follows that U\span{v, w} still has
full measure.

By Corollary 8.5 and Lemma 8.9, there exists a function b: U—R and s€R" such
that s(u)—b(u)u=s for all ueU\span{v,w}. Thus, Corollary 8.5 yields

g(z)=(s,x) for all z €supp Spu),5p,, and u€ U\span{v, w},

where we used the fact that (s, z)=(s(u),z) for z€u=.
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Now note that it follows, as in the proof of Lemma 3.10 and Remark 8.6, that
/ Sio,u),B,P,, wr(du) = Kdim P.—1 SB,,B, P\,

where w, denotes the uniform measure on S"~'NL,.. Since U\span{v,w} has full w,-

measure, we can compute

o= [ ( / 9065, S, (02) ) s )
U\span{v,w}
= Kdim P, -1 / lg(x)—(s,2)| SB,.B.P,, (dz).

The conclusion follows by the continuity of g(z)— (s, x). O

We have now almost concluded the induction step in the proof of Theorem 8.1,
but there is a remaining subtlety: in Lemma 8.10 we have shown that g(z)=(s,z) for
TEsupp SB,B,,P,,, while the conclusion of Theorem 8.1 states that this holds for z€
supp Sg,p,,p,,.- That the latter follows from the former is an immediate consequence of

the following lower-dimensional analogue of Lemma 2.4.
LEMMA 8.11. For any convex bodies C=(C1,...,Cp_2) in R™, we have
supp Sp, ¢ Csupp Sg, c-

Proof. Let K be any convex body in R” such that hg is a C? function on S"~1. It

is shown in [32, Lemma 5.4] that we have

/hdS]chHVQhKHLoo(Sn—l)/hdSB,C

for any difference of support functions h: S"~! —R,. Let us now define II.:=P/_ +ePpL.
Replacing C+TIZ1C and h<hoIIZ! in the above inequality yields

/hdSHEKpg||V2hK||Loc(Sn—1)/hdSr[EB,c,

where we have used (2.1) and part (f) of Lemma 3.1. Letting e —0 yields

[ hdSec,sce < IVPhallieisisy [ S

by Lemma 3.3. In particular, using Lemma 2.1, this implies that

supp Sp,, k,c Csupp Sz, c

for any convex body K in R™ such that hg is C? on S™~1.

By a classical approximation argument [30, Theorem 3.4.1], we can find a sequence
of convex bodies K such that hro is C? for each [, and K® P, in Hausdorff dis-
tance. Thus, SPC,,,KU),CLSPT,C by Lemma 3.3. But, as each SPL,,KU),C is supported in

supp S, ¢, this must be the case for the limiting measure as well. O
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We can now conclude the proof of Theorem 8.1.

Proof of Theorem 8.1. The “if” direction of Theorem 8.1 follows directly from Lem-
mas 2.7 and 2.8, so it suffices to consider the “only if” direction.

Suppose first that Theorem 8.1 has been proved in dimension n—1 for some n>3.
Then, we claim that Theorem 8.1 holds also in dimension n. Indeed, let f: S» ! =R be
a difference of support functions such that Sy »=0, and let g be the function constructed
in Lemma 8.3 (for any r€[n—2] that is fixed throughout the proof). By Lemmas 8.10
and 8.11, there exists s€R"™ such that

g(xz)=(s,z) for all z€suppSgpp.

The claim follows as f(z)=g(z) for all z&€supp Sp p, by Lemma 8.3.

It remains to prove the base case n=2. More precisely, we claim the following: for
any difference of support functions f: S*—R such that S =0, there must exist s€R? such
that f(x)={(s,z) for all z€S'. This is a classical fact; for example, it may be deduced
from the equality case of the Brunn—Minkowski inequality as in [30, Theorem 7.2.1]. Let
us give another proof here in order to illustrate a method that will be used again in §10.3
in an essential manner.

Suppose that f does not satisfy f={(s, -) for any s. Then, the Hahn-Banach theorem
implies [7, Corollary 1V.3.15] that there is a finite signed measure o on S' such that

/fdo>0 and /xo(dm)zo.
Let c=0"—0" be the Hahn—Jordan decomposition of ¢, and let m:= [ x o*(dz) and
wE =0+ |ml|0_ /) +SB-
Then, p* are non-negative measures on S' such that
/ xp*(dr) =0

and span supp p*=R?. By the Minkowski existence theorem [30, Theorem 8.2.2], there
exist convex bodies C* in R? such that u*=Sc+. But then we obtain, using (2.1) and

the symmetry of mixed volumes

/fda:/deC+—/deC_:/hc+ dsf—/hc_ Sy =0,

which entails the desired contradiction. O
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Remark 8.12. Let us highlight a surprising aspect of the proof of Theorem 8.1.
By Lemma 2.8, the equality condition Sy p»=0 can only determine f on the support of
Sp,p. However, in Lemma 8.10 we have characterized the function g on the support of

SB,B, P, The latter set is often much larger than the former. For example, if
Pi=..=P, ;=P

is a full-dimensional polytope, then supp Sg p is the set of normal directions of (n—2)-
dimensional faces of P, but supp S pp,, is the set of normal directions of (n—3)-
dimensional faces of P (cf. [30, Theorem 4.5.3]).

Nonetheless, there is no contradiction, as Theorem 4.3 only ensures that f=g¢ on
the smaller set supp Sp». The phenomenon exhibited here should be viewed as another
manifestation of the fact that the local Alexandrov—Fenchel inequality fixes many degrees
of freedom of the extremal functions.

9. Structure of critical sets

We now turn to the study of the extremals of the Alexandrov—Fenchel inequality in
the critical case (Definition 4.1). The new feature that arises when P is critical is the
appearance of P-degenerate functions (Definition 2.10). Their analysis requires several
new ideas, whose development will occupy us throughout §§9-11.

The definition of the critical case differs from the supercritical case only in that there
may now exist indices i1 <...<iy such that dim(P;, +...4+P;, )=k+1. Such critical sets
of indices will prove to be intimately connected to the structure of P-degenerate pairs
and functions. For example, we will show that for any P-degenerate pair (M, N), the
bodies M and N must be contained (up to translation) in the affine hull of P;, +...4+P;,
for some critical set 71 <...<ig.

In this section, we begin the analysis of the critical case by obtaining a classification
of the critical sets, which will be used to give an explicit description of the structure of P-
degenerate functions. In §10, we undertake a detailed study of the geometric structure of
critical mixed area measures. These results will be employed in §11 to prove Theorem 2.13
in the critical case.

Throughout this section, we fix n>3 and a critical collection P=(Px, ..., P,_2) of
polytopes in R™. As in §8, we will assume without loss of generality that P; contains the
origin in its relative interior for every i€[n—2], and we define the spaces L, and balls
B, as in the supercritical case. The criticality assumption may then be formulated as
dim L, >|a|+1 for every aC[n—2], a#2.
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9.1. Critical sets
The following definition will play a central role in the sequel.

Definition 9.1. Let C=(C14, ..., Cy,) be any collection of convex bodies.
(a) aC[m] is called C-critical if dim(}_,., Cs)=l|a|+1.
(b) aC[m] is called C-mazimal if it is C-critical, and there is no C-critical set SR

A P-critical (P-maximal) set aC[n—2] will simply be called critical (mazimal).

The analysis of degenerate functions will be greatly facilitated by the fact that the
family of critical sets is organized in a very simple manner. The following lemma and its

corollary are due to Panov [23, Lemma 6].
LEMMA 9.2. Let « and o be critical sets. If aNa’#3, then aUd’ is a critical set.

Proof. For any 3,5’ C[n—2], we have Lgug=Ls+Ls and Lgng CLgNLg by the
definition of £5. On the other hand, as we assumed P is critical and aNa’#@, we have
dim Loy 2|aUd’|+1 and dim Lyner =|aNa’|+1. Therefore,

laUd|[+1 < dim Lyue =dim L, +dim L, —dim(L,N L)
<dim L, +dim L —dim Lonar
< (lal+D)+(e/[+1) = (Jana’[+1)
=laUd/|+1,
where we used that dim L,=|a|+1 and dim L, =|c’|+1 as « and o are critical. It
follows that dim L,ya=|aUa’|+1, so aUa’ is critical. O

The key consequence of Lemma 9.2 is that distinct mazimal sets o and o must be
disjoint. This structure is also reflected in the associated linear spaces: if « and o’ are

distinct maximal sets, then L, and L, are linearly independent.
COROLLARY 9.3. Let a#d’ be mazimal sets. Then, aNa’ =< and L,NL,={0}.

Proof. Let o and o be distinct maximal sets. Then, aUa’ cannot be a critical set:
as either aUa’ Qo or aUa’ 2o, this would contradict the maximality of @ and o/. Thus,
anNa’=d, as otherwise aUa’ would be a critical set by Lemma 9.2.

Now note that, as aUcq’ is not a critical set and P is critical, we have
laUa/|+2 < dim Loy < dim Ly +dim Ly = ||+ [+2 = |aUd |+ 2,
where we used that o and o’ are critical sets and aNa/=@. Thus,
dim(L,NLy ) =dim Loy —dim £, —dim L, =0,

completing the proof. O
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In view of Corollary 9.3, we obtain the following picture. Associated with the critical
collection P of polytopes is its collection {ay, ..., ay} of disjoint maximal sets. Any critical
set 0 is contained in exactly one of the maximal sets ;. Moreover, the linear spaces Ly,
are pairwise (but not jointly) linearly independent. The same properties extend verbatim
to any critical collection C of convex bodies.

Let us finally record a simple observation.

LEMMA 9.4. Let aC[n—2] be a critical set and SC[n—2] be arbitrary. Then,
Ly C Ly if and only if BCa.
Proof. If Ca, then L3C L, by definition. Conversely, if L3CL,, then
lol+1 < |aUuf|+1 < dim Loup =dim £, = |a|+1,

where we used that P is critical, that LgCL,, and that « is a critical set, respectively.
Thus, |a|=|aUp|, which implies SCa. O

9.2. Degenerate pairs and functions

We now use the above classification of critical sets to obtain a better understanding of
Definition 2.10. For simplicity, P-degenerate pairs and functions will henceforth be called
degenerate pairs and degenerate functions, respectively. However, the same structure will
apply verbatim to C-degenerate pairs and functions for any critical collection C of convex
bodies.

Let us begin by introducing a more precise definition.

Definition 9.5. Let a be a maximal set, and M and N be convex bodies in R™.

(a) (M,N) is called an «a-degenerate pair if
M,NCL, and Vi, (M,Ps)=Vc. (N, Pa).

(b) A function f:S""!—R is called an «-degenerate function if f=hy—hy for
some «-degenerate pair (M, N).

If C is a critical collection of convex bodies and « is C-maximal, the analogous
definitions will be referred to as (C, @)-degenerate pairs and functions.

As a first step towards understanding Definition 9.5, let us note that, for any maximal
(hence also critical) set o, we have dim £,=|a|+1 and P;CL, for every i€c. Thus, the
mixed volume V. _(M,P,) is indeed well defined: this is the mixed volume of |a|+1

convex bodies in the (Ja|+1)-dimensional space L.
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We will now show that, in the present setting (P is critical), any degenerate pair
or function in the sense of Definition 2.10 is in fact an a-degenerate pair or function up
to translation. In other words, degenerate pairs must always be contained in translates
of L, for some maximal set «, which provides an explicit geometric description of the

dimensionality property that is implicit in Definition 2.10.

LEMMA 9.6. (M, N) is a degenerate pair if and only if M is not a translate of N
and (M+v, N4+w) is an a-degenerate pair for some maximal set « and v, weR™. Thus,
f is a degenerate function if and only if f is non-linear and f—(v,-) is an a-degenerate

function for some maximal set o and veER™.

Proof. We begin by noting that for any critical set o and convex body K CL,,
Lemma 3.8 implies the projection formula
( " )Vn(K,B,’P):VLQ(K,PQ)VEL(PﬁLB,PLLP\Q).
la|+1 ot Ta «
Moreover, as V,,(By, B, P)>0 by Lemma 2.2 and the assumption that P is critical, it
follows that
VL(J; (PE{J;B, PE(J;P\Q) > 0.

Consider first an a-degenerate pair (M, N) for some maximal set «, where M and
N are not translates. We claim that (M, N) is a degenerate pair. Indeed, condition (2.3)
follows from Lemma 2.2 as

dim(M+N+Z Pi> =dim L, =|a|+1,
ica
while condition (2.4) follows from the projection formula and Definition 9.5.

Now, consider a degenerate pair (M, N). As M is not a translate of N, at least
one of M and N must have non-zero dimension. But as P is critical, V,, (K, B,P)>0
whenever dim K >1 by Lemma 2.2. Thus, (2.4) implies that dim(M)>1 and dim(N)>1.
On the other hand, it cannot be the case that dim(M+N)=1. Indeed, if that were the
case, then M and N must be segments with parallel directions; moreover, (2.4) then
implies that M and N have equal length, so that M and N are translates. This case is
therefore ruled out by the definition of a degenerate pair.

We have now shown that any degenerate pair (M, N) must satisfy
dim(M)>1, dim(N)>1, and dim(M+N)>2.

Together with the assumption that P is critical, it follows from Lemma 2.2 and (2.3)
that there must exist o’ C[n—2], o/ #9, such that

dim(M—H\H—Z Pi> <la/[+1.

i€a’
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On the other hand, as P is critical, we have dim(}_, ., Pi)>|a’|4+1. The only way this
can happen is if dim Lo =dim(}_, ., P;)=|a/|+1 (that is, o/ is critical) and there exist
v, wER™ such that M +v and N+w lie in L, .

Now let o be the maximal set containing o’. Then, M, NC L, CL,. Moreover, by
the projection formula, the normalization condition of Definition 9.5 follows from (2.4).
Thus, we have shown that (M+wv, N+w) is an a-degenerate pair.

Finally, the equivalence between degenerate and a-degenerate functions is an imme-

diate consequence of the corresponding equivalence for pairs. O

Lemma 9.6 explains the basic structure of the extremals of the Alexandrov—Fenchel
inequality that appears in Theorem 2.13. Note that, for a given maximal set «, any linear
combination of a-degenerate functions is again an a-degenerate function by definition.
On the other hand, if f is an a-degenerate function and f’ is an o’-degenerate function
for distinct maximal sets « and o', then linear combinations of f and f’ need not be
degenerate. Each maximal set « will therefore give rise to (at most) one a-degenerate
pair in the statement of Theorem 2.13.

9.3. An intrinsic description

So far, we have defined degenerate functions as differences of support functions of degen-
erate pairs of convex bodies. However, in the proof of Theorem 2.13, it will be necessary
to construct degenerate functions directly by gluing together lower-dimensional degener-
ate functions. To this end, we now introduce a more intrinsic perspective on degenerate
functions that does not require the auxiliary construction of a degenerate pair.

Before we proceed, we state a variant of the projection formula of Lemma 3.8 in

terms of mixed area measures, which will be needed below.

LEMMA 9.7. Let C,...,C,_1 be convex bodies in R™, and suppose that C1,...,Cy lie
in a subspace E with dim E=k+1. Then,

n—1
( k )/(p(PEJZ) Scl,_“7c'n71(dx):VEL(PELC]C_A'_l,...,PELC’”)/(pdSCl,_“’Ck

for any 1-homogeneous function p: E—=R that is Sc, ... .c, -integrable.

Proof. Suppose first that the restriction of ¢ to S" 'NE is a C? function. Then,
we may write o=hx —hp for convex bodies K and L in E, by Lemma 2.1. Moreover, by
the definition of support functions, ¢(Pgz)=hx (z)—hr(z) for any z€S" ! as K, LCE.

The conclusion now follows from Lemma 3.8 and (2.1).
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Now, define the map

SN EL — Sning,
PEI

T— .
IPex]|

By 1-homogeneity of ¢, the identity in the statement of the lemma may be written as

n—1
( k )/(pOLd,MZVEJ_(PEJ_C]ﬁLl,...,PEJ_Cn)/(pdSCl’m’Ck,

_, (dz) is supported on S" "1\ E+. As we have
shown that this identity holds for any ¢ of class C?, it follows that

n

where the measure p(dz):=||Pgz| Sc,....c

n—1 _
< k’ ),uOL 1:VEL(PELCk_A'_l,...,PELOH)SCI,_“’C]C (91)

as measures on S 'NE. The conclusion follows for any integrable 1-homogeneous func-

tion ¢: E—R by integrating this identity. O

Remark 9.8. Suppose Ch,...,Cy are polytopes in Lemma 9.7. Then, S¢, ... c, has
finite support, by Lemma 3.4. Thus, (9.1) shows that the measure Sc, ¢, ,°Pg'
is supported on a finite union of rays emanating from the origin with directions in
supp Sc,,....c,- We now observe that any 1-homogeneous function ¢ is continuous on
such a set: it is linear on each ray and zero at the origin. This implies that, in the

polytope setting, the function x+>¢(Pgz) is continuous on supp S¢,,..c, , for any 1-

y“n—1

homogeneous function ¢. This observation will be used below.

We can now introduce the main idea of this section: a-degenerate functions may be

intrinsically described in terms of 1-homogeneous functions on L.

LEMMA 9.9. Let a be a mazimal set.

(a) For any a-degenerate function f, there is a 1-homogeneous function p: Lo, —R
with [ ¢ dSp, =0 such that f(z)=¢(Ps, x) for all zeS™ .

(b) For any 1-homogeneous function ¢: Lo —R with [ ¢dSp, =0, there exists an
a-degenerate function f such that f(z)=¢(Pc, x) for all z€supp Spp.

Proof. To prove part (a), write f=hy;—hy for some a-degenerate pair (M, N). As
M,NCL,, we have hy(x)=hp(Pz,z) and hy(x)=hx(P,, x) for all zeS™"~! by the
definition of support functions. Now, define ¢ to be the restriction of hy;—hy to L,.

Then, ¢ is 1-homogeneous, f(z)=¢ (P, z) for all z€S"~1, and

1

m \/gOdS’Pa :Vﬁa (M, ,Pa)_V£a (N, Pa) =0
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by (2.1) and the definition of an a-critical pair.

The same argument would apply verbatim in the converse direction if ¢ can be
written as a difference of support functions. This is not clear, however, as we did not
make any regularity assumption on . To work around this issue, we will exploit that P
are polytopes to create a modification of ¢ with the requisite property.

More precisely, part (b) is proved as follows. As P are polytopes, supp Sp, is a
finite subset of S""'NL, by Lemma 3.4. Thus, we can choose a C? function 7: S*~1N
Lo—R such that ¢(x)=n(z) for all xesupp Sp,. By Lemma 2.1, there exist convex
bodies M, NCL, such that n(z)=hy(x)—hy(x) for all z€S""1NL,. We claim that
f:=hp —hy has the properties stated in part (b). Indeed, note that

Ve, (M, Pa)—Ve, (N, Pa) dSp, =0,
e (0P Ve (V.P) = i [ 1dSn, = iy [ odsin,

where we used (2.1) in the first equality and f=¢ Sp_-a.e. in the second equality. Thus,
(M, N) is an a-degenerate pair and f is an a-degenerate function. On the other hand,

as f=¢ on supp Sp,, we obtain

0=V s (PrB,PriP\a) / \f— ol dSp,

< ol )/ |£(@) = p(Pe,2)| Sp.p(de)

by Lemma 9.7, where we used that f(x)=f(Pz_ ) as M, NCL,. Thus, f(z)=¢(P,_ x)
for all zesupp Sg,p by Remark 9.8, completing the proof. O

10. Propeller geometry

We have seen in the previous section that the appearance of degenerate functions is in-
timately connected to the critical sets of the reference bodies P. In this section, we will
develop a new geometric phenomenon that explains the origin of this behavior: we will
show that the supports of critical mixed area measures exhibit certain geometric struc-
tures that we call propellers, in view of their resemblance to the propeller of a Mississippi
steamboat. These propellers will play a crucial role in the proof of Theorem 2.13 in the
critical case.

This section is organized as follows. We first introduce the propeller structure in
§10.1. In the proof of Theorem 2.13, this structure will be exploited in two non-trivial
ways: to glue together lower-dimensional degenerate functions, and to decouple the con-

tributions arising from distinct maximal sets. We develop both these methods in an
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Figure 10.1. Illustration of a propeller structure in R%.

abstract setting in §10.2 and §10.3, respectively. While the basic principles can be un-
derstood independently of the rest of the paper, their power will become clear when they

are applied in §11.

10.1. The propeller
The following theorem de