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1. Introduction

1.1. The Alexandrov–Fenchel inequality and the extremal problem

Let C1, ..., Cm be convex bodies (that is, non-empty compact convex sets) in Rn. One

of the most basic facts of convex geometry, due to Minkowski [22], is that the volume of

convex bodies behaves as a homogeneous polynomial under addition

λC+µC ′ := {λx+µy :x∈C, y ∈C ′},

that is, for all λ1, ..., λm⩾0,

Voln(λ1C1+...+λmCm)=

m∑
i1,...,in=1

Vn(Ci1 , ..., Cin)λi1 ... λin . (1.1)

The coefficients Vn(Ci1 , ..., Cin) of this polynomial, called mixed volumes, form a large

family of natural geometric parameters associated with convex bodies. For example,

the special cases Vn(C, ..., C,B, ..., B), called quermassintegrals, already capture familiar

notions such as the volume, surface area, and mean width of C, and the average volume

of the projections of C onto a random k-dimensional subspace.(1) In view of these

and numerous other important examples, mixed volumes play a central role in convex

geometry [3], [5], [24], [30].

When the convex bodies are polytopes, mixed volumes may also be viewed as be-

longing to combinatorial geometry. In this setting, striking connections arise between

the theory of mixed volumes and other areas of mathematics. For example, in algebraic

geometry, mixed volumes compute the number of solutions to systems of polynomial

equations [5, §27] and intersection numbers of divisors on toric varieties [13], [9]; and

in combinatorics, mixed volumes compute quantities associated with objects such as

matroids, partial orders, and permanents [33], [17].

Given the central nature of mixed volumes, it is natural to expect that inequalities

between mixed volumes capture important mathematical phenomena. The most funda-

mental result of this kind is the Alexandrov–Fenchel inequality, which expresses the fact

that mixed volumes are log-concave.

Theorem 1.1. (Alexandrov–Fenchel inequality) We have

Vn(K,L,C1, ..., Cn−2)
2 ⩾Vn(K,K,C1, ..., Cn−2)Vn(L,L,C1, ..., Cn−2)

for any convex bodies K,L,C1, ..., Cn−2 in Rn.

(1) Throughout this paper B denotes the Euclidean unit ball in Rn.
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Theorem 1.1 was first proved by Minkowski in 1903 in dimension n=3 [22], and in

full generality by Alexandrov in 1937 [1], [2]. (Fenchel independently announced a proof

[12], but it was never published.) It lies at the heart of many applications of mixed

volumes in convexity and in other areas of mathematics. This paper is concerned with a

classical open problem surrounding the Alexandrov–Fenchel inequality that dates back

to Alexandrov’s original paper [2, p. 80].

To provide context for the problem studied in this paper, let us recall the original

setting of Minkowski [22]. He viewed Theorem 1.1 as a far-reaching generalization of the

isoperimetric inequality between volume and surface area, which are merely two special

cases of mixed volumes. For example, the special case

V3(B,C,C)2 ⩾V3(C,C,C)V3(B,B,C)

states that the surface area of a 3-dimensional convex body C is lower bounded by the

product of its volume and mean width, a kind of isoperimetric inequality involving three

geometric parameters. From this viewpoint, a complete understanding of Theorem 1.1

should capture not only the inequality but also the associated extremum problem: which

bodies minimize surface area when the volume and mean width are fixed? This question

is equivalent to the study of the cases of equality in the above inequality. Remarkably,

it turns out that the extremals in this example possess highly unusual properties: they

consist of cap bodies (“spiky balls”) which are both non-unique and non-smooth, in

sharp contrast with the situation in the classical isoperimetric problem (cf. [32] and the

references therein).

The above example suggests that the extremum problems associated with more gen-

eral cases of the Alexandrov–Fenchel inequality are likely to possess a rich and intricate

structure. The problem of characterizing these extremals was raised in the original pa-

pers of Minkowski [22] and Alexandrov [1], but progress toward the resolution of this

problem has proved to be elusive. None of the known proofs of the Alexandrov–Fenchel

inequality provides information on its cases of equality. The geometric proofs (cf. [2], [31])

impose restrictions, such as smooth bodies or polytopes with identical face directions,

under which only trivial extremals arise, and deduce the general result by approximation;

non-trivial extremals arise only in the limit, and are thus invisible in the proofs of the

inequality. The algebraic proofs (cf. [5], [13]) perform a reduction to a certain (non-toric)

algebraic surface, which causes the convex geometric structure of the problem to be lost.

It was long believed that the extremals of the Alexandrov–Fenchel inequality are

too numerous to admit a meaningful geometric characterization, cf. [5, §20.5] or [11,

p. 248]. However, detailed conjectures on the structure of the extremals (attributed in

part to Loritz) were published in 1985 by Schneider [26], breathing new life into the
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problem. Schneider’s conjectures need not hold when some of the bodies have empty

interior [8], and no conjectures have been formulated to date about this setting (which, as

we will see, is of special importance in applications). However, the validity of Schneider’s

conjectures for full-dimensional bodies has remained open, except in a few special cases

that are reviewed in [30, §7.6], [24]. Very recently, significant new progress was made

in [32], which enabled the proof of Schneider’s conjectures in the case that dates back

to Minkowski [22]. The general case is however much richer, and entirely new ideas are

needed.

1.2. Main result

In this paper, we completely settle the extremal problem in the combinatorial setting.

Our main result characterizes all equality cases

Vn(K,L, P1, ..., Pn−2)
2 =Vn(K,K,P1, ..., Pn−2)Vn(L,L, P1, ..., Pn−2)

when P1, ..., Pn−2 are arbitrary convex polytopes in Rn and K and L are convex bodies.

The characterization of the extremal bodies is described in §2. In particular, we will show

that the extremals of the Alexandrov–Fenchel inequality arise from the combination

of three distinct mechanisms: translation, support, and dimensionality. The first two

mechanisms were anticipated by Schneider’s conjectures, while the third is responsible

for the new extremals that arise when the polytopes Pi may have empty interior. The

proof of our main result (Theorem 2.13), which is contained in §§5–12, will in fact give

considerably more precise information on the structure of the extremals than is provided

by the characterization in §2; the most detailed form of our main result will be formulated

in §13.
Aside from its intrinsic place in the foundation of convex geometry, the problem of

characterizing the extremals of the Alexandrov–Fenchel inequality may be thought of in

a broader context: the limited progress on this problem to date stems from major gaps

in the understanding of the geometry of mixed volumes of non-smooth convex bodies.

The fundamental issues that arise are both of a combinatorial and of an analytic nature,

as we will explain presently.

As will become clear in §2, the extremals of the Alexandrov–Fenchel inequality are

controlled by the boundary structure of the bodies C1, ..., Cn−2 in Theorem 1.1. In

the case that was settled in [32], only the boundary structure of a single body plays

a role. In general, however, each of the bodies C1, ..., Cn−2 has an arbitrary boundary

structure, and the interactions between the different bodies conspire to give rise to the

extremals. This interaction already arises in its full complexity in the combinatorial



94 y. shenfeld and r. van handel

setting considered in this paper. In settling the problem, we develop a theory that

explains these interactions: this includes, among other ingredients, a local Alexandrov–

Fenchel inequality for mixed area measures, strong gluing principles for projections from

limited data, and new geometric structures (“propellers”) of mixed area measures of

bodies with empty interior. An overview of the proof of our main result will be given

in §4.
The main contribution of this paper is the complete solution of these combinatorial

aspects of the problem. In contrast, the obstacle to going beyond polytopes stems from

unresolved analytic problems in the theory of mixed volumes, which are largely inde-

pendent of the problems studied in this paper. These analytic problems arise because

the boundary of a general convex body may be almost arbitrarily irregular (for exam-

ple, consider the convex hull of an arbitrary closed subset of the unit sphere), so that

mixed volumes of general convex bodies give rise to analytic objects that live on highly

irregular sets. The treatment of general bodies therefore requires the development of an

appropriate functional-analytic framework, which has only been partially accomplished

to date [32] (see §16 for discussion). The main ideas of this paper are not specific to

polytopes, however, and may be expected to apply more generally when placed in an

suitable analytic framework.

1.3. Extensions and applications

While this paper is primarily concerned with the combinatorial setting, our methods

already admit a number of extensions beyond the setting of convex polytopes. In partic-

ular, we will show in §14 that our main result extends to the setting where the convex

bodies C1, ..., Cn−2 in Theorem 1.1 are a combination of polytopes, zonoids, and smooth

bodies. By combining the present methods with [32], we will also fully characterize the

extremals of the Alexandrov–Fenchel inequality for quermassintegrals of arbitrary convex

bodies, a special case that arises frequently in applications.

In §15 we develop an application in combinatorics. It was noticed long ago that var-

ious combinatorially defined sequences (Ni) appear to be log-concave, that is, they sat-

isfy N2
i ⩾Ni−1Ni+1. Such phenomena have received much attention in recent years [17].

One of the earliest advances in this area is due to Stanley [33], who observed that if

one can represent the relevant combinatorial quantities in terms of mixed volumes, log-

concavity is explained by the Alexandrov–Fenchel inequality. Stanley further raises the

following question: in cases where (Ni) is log-concave, can one characterize the asso-

ciated extremum problem, that is, explain what combinatorial objects achieve equality

N2
i =Ni−1Ni+1? As an illustration of our main result, we will settle this problem in one
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of the settings considered by Stanley, where Ni is the number of linear extensions of a

partially ordered set for which a distinguished element has rank i. Such extremal prob-

lems appear to be inaccessible by currently known methods of enumerative or algebraic

combinatorics. This example highlights the significance of the questions considered in

this paper to extremal problems in other areas of mathematics, and hints at the possi-

bility that the structures developed here might have analogues outside convexity; a brief

discussion of algebraic analogues of our results is given in §16.
Let us note that, far from being esoteric, it is precisely the case of convex bodies with

empty interior (which is not covered by previous conjectures) that arises in combinatorial

applications [33]. This reinforces the importance of a complete characterization of the

extremals, whose formulation we turn to presently.

2. Three extremal mechanisms

The aim of this section is to formulate and explain the main result of this paper. We first

recall some key facts on mixed volumes and mixed area measures. We will subsequently

describe three distinct mechanisms that give rise to extremals of the Alexandrov–Fenchel

inequality, and state our main result. Here and throughout the paper, our standard

reference on convexity is the monograph [30].

2.1. Basic facts

2.1.1. Convex bodies, mixed volumes, mixed area measures

Fix n⩾3. A convex body is a non-empty compact convex set in Rn. A (convex) polytope

is the convex hull of a finite number of points.

With each convex body K, we associate its support function

hK(u) := sup
y∈K

⟨y, u⟩.

We think of hK either as a function on Sn−1 or as a 1-homogeneous function on Rn.

Geometrically, if u∈Sn−1, then hK(u) is the (signed) distance to the origin of the sup-

porting hyperplane of K with outer normal u; thus hK :Sn−1
!R uniquely determines K,

as any convex body is the intersection of its supporting half-spaces. The key property of

support functions is that they behave naturally under addition, that is,

hλK+µL =λhK+µhL

for any bodies K and L and λ, µ⩾0.
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The mixed volume Vn(C1, ..., Cn) of n convex bodies C1, ..., Cn in Rn is defined

by (1.1). Mixed volumes are non-negative, and are symmetric and multilinear in their

arguments. Moreover, there exists a non-negative measure SC1,...,Cn−1
on Sn−1, called

the mixed area measure of C1, ..., Cn−1, such that

Vn(K,C1, ..., Cn−1)=
1

n

∫
hK(u)SC1,...,Cn−1(du). (2.1)

Like mixed volume, SC1,...,Cn−1
is symmetric and multilinear in C1, ..., Cn−1.

Consider a function f=hK−hL that is a difference of support functions. As mixed

volumes and mixed area measures are multilinear as functions of the underlying bodies

(and hence of their support functions), we may uniquely extend their definitions to

differences of support functions [30, §5.2]. That is, we will write

Vn(f, C1, ..., Cn−1) :=Vn(K,C1, ..., Cn−1)−Vn(L,C1, ..., Cn−1),

Sf,C1,...,Cn−2 :=SK,C1,...,Cn−2−SL,C1,...,Cn−2 .

We may analogously define Vn(f, g, C1, ..., Cn−2) when f and g are differences of support

functions, etc. The extended definitions are still symmetric and multilinear, but are not

necessarily non-negative. Differences of support functions form a large class of functions

on Sn−1: in particular, we have the following [30, Lemma 1.7.8].

Lemma 2.1. Any f∈C2(Sn−1) is a difference of support functions.

2.1.2. Positivity

While mixed volumes and mixed area measures of convex bodies are always non-negative,

they need not be strictly positive. Positivity of mixed volumes and mixed area measures

will play an important role throughout this paper. We presently state two key facts

in this direction. First, we recall that positivity of mixed volumes is characterized by

dimensionality conditions [30, Theorem 5.1.8]. Throughout this paper, we denote by

[n]:={1, ..., n}.

Lemma 2.2. For convex bodies C1, ..., Cn in Rn, the following are equivalent :

(a) Vn(C1, ..., Cn)>0;

(b) there are segments Ii⊆Ci, i∈[n], with linearly independent directions;

(c) dim(Ci1+...+Cik)⩾k for all k∈[n], 1⩽i1<...<ik⩽n.

Similarly, the mixed area measure SC1,...,Cn−1
need not be supported on the entire

sphere Sn−1. Unlike the positivity of mixed volumes, the problem of characterizing

geometrically the support of mixed area measures of arbitrary convex bodies is not yet
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fully settled, cf. [30, Conjecture 7.6.14]. However, for the present purposes we require

only the following special case. For any vector u∈Rn, let

F (K,u) := {x∈K : ⟨u, x⟩=hK(u)} (2.2)

be the unique face of K with outer normal direction u. The following result states that

when P1, ..., Pn−2 are polytopes, the support of the mixed area measure SB,P1,...,Pn−2

is characterized by dimensionality conditions on faces of P1, ..., Pn−2. This result is

essentially known; we will provide a proof in §5.2.

Lemma 2.3. Let P1, ..., Pn−2 be any convex polytopes in Rn, and let u∈Sn−1. Then,

the following conditions are equivalent :

(a) u∈suppSB,P1,...,Pn−2
;

(b) there are segments Ii⊆F (Pi, u), i∈[n−2] with linearly independent directions;

(c) dim(F (Pi1 , u)+...+F (Pik , u))⩾k for all k∈[n−2], 1⩽i1<...<ik⩽n−2.

When (a)–(c) hold, u∈Sn−1 is called a (B,P1, ..., Pn−2)-extreme normal direction.

The appearance of the Euclidean ball B in Lemma 2.3 may appear rather arbitrary:

we did not assume that B appears as one of the bodies in Theorem 1.1. Its significance

is that the associated mixed area measure has maximal support [30, Lemma 7.6.15] (an

alternative proof may be given along the lines of Lemma 8.11 below).

Lemma 2.4. For any convex bodies M,C1, ..., Cn−2, we have

suppSM,C1,...,Cn−2
⊆ suppSB,C1,...,Cn−2

.

Let us note that Lemma 2.4 remains valid if B is replaced by any sufficiently smooth

convex body; there is nothing uniquely special about B. However, the choice of the

Euclidean ball will prove to be particularly convenient in our proofs.

2.1.3. Equality

We finally recall a basic fact about equality in the Alexandrov–Fenchel inequality. It

is evident that there is equality in Theorem 1.1 if and only if the difference between

the left- and right-hand sides of the inequality is minimized. The first-order optimality

condition associated with this minimum problem gives rise to an equivalent formulation

of the equality cases of the Alexandrov–Fenchel inequality, due to Alexandrov [2, p. 80]

(cf. §3.3 or [30, Theorem 7.4.2]).
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Lemma 2.5. Let K,L,C1, ..., Cn−2 be convex bodies in Rn such that

Vn(K,L,C1, ..., Cn−2)> 0.

Then, the following are equivalent :

(a) Vn(K,L,C1, ..., Cn−2)
2=Vn(K,K,C1, ..., Cn−2)Vn(L,L,C1, ..., Cn−2);

(b) ShK−ahL,C1,...,Cn−2
=0 for some a>0.

Let us emphasize that this result provides essentially no information on the geometry

of the extremal bodies K,L,C1, ..., Cn−2: it is merely a reformulation of the equality con-

dition. The main problem that will be addressed in this paper is to develop a geometric

characterization of the extremals.

Remark 2.6. When Vn(K,L,C1, ..., Cn−2)=0, there is automatically equality in

Theorem 1.1. These trivial equality cases are fully characterized by Lemma 2.2. Non-

trivial equality cases arise only in the case where Vn(K,L,C1, ..., Cn−2)>0, as is assumed

in Lemma 2.5. This is the setting that will concern us in the rest of this paper.

2.2. Extremal mechanisms

What convex bodies yield equality in Theorem 1.1? We will now describe three mech-

anisms that yield extremals of the Alexandrov–Fenchel inequality, each capturing a dif-

ferent geometric phenomenon: translation (§2.2.1), support (§2.2.2), and dimensionality

(§2.2.3).
It is important to note that the bodiesK, L, and C1, ..., Cn−2 play very different roles

in Theorem 1.1: K and L vary, while C1, ..., Cn−2 are the same in each term. We therefore

consider the reference bodies C1, ..., Cn−2 as fixed, and aim to characterize which K

and L yield equality in Theorem 1.1. By Lemma 2.5, the problem can be formulated

equivalently as follows: given C1, ..., Cn−2, we aim to characterize what differences of

support functions f satisfy Sf,C1,...,Cn−2=0.

2.2.1. Translation

The simplest mechanism for equality in Theorem 1.1 stems from the most basic invariance

property of mixed volumes: as volume is translation-invariant, (1.1) implies that mixed

volumes are as well, that is,

Vn(K,C1, ..., Cn−1)=Vn(K+v, C1, ..., Cn−1)

for all v∈Rn. In terms of support functions, we have hK+v(u)=hK(u)+⟨v, u⟩, that is,

the support function of a convex body and its translate differ by a linear function. This

gives rise to the following equality case.
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Lemma 2.7. Sf,C1,...,Cn−2
=0 whenever f=⟨v, ·⟩ is a linear function.

Proof. Let f=⟨v, ·⟩ be any linear function. Then, f=hK+v−hK for any convex

body K. Therefore, by translation-invariance of mixed volumes,

1

n

∫
g dSf,C1,...,Cn−2

=Vn(g, f, C1, ..., Cn−2)= 0

for any difference of support functions g, and thus a fortiori for any g∈C2(Sn−1), by

Lemma 2.1. It follows immediately that Sf,C1,...,Cn−2
=0.

Lemmas 2.7 and 2.5 imply, for example, that equality occurs in the Alexandrov–

Fenchel inequality whenever hK−ahL=⟨v, ·⟩ for some a>0 and v∈Rn, which simply

means that K=aL+v (that is, K and L are homothetic). Of course, this also follows

immediately from Theorem 1.1.

2.2.2. Support

A much more subtle invariance property of mixed volumes stems from the fact that

mixed area measures need not be supported on the entire sphere Sn−1. Indeed, it follows

immediately from (2.1) that

Vn(K,C1, ..., Cn−1)=Vn(L,C1, ..., Cn−1)

whenever

hK(u)=hL(u) for all u∈ suppSC1,...,Cn−1 .

That this phenomenon gives rise to new extremals of the Alexandrov–Fenchel inequality

dates back essentially to the work of Minkowski, and has been put forward systematically

by Schneider. Let us give a precise formulation [30, p. 430].

Lemma 2.8. Sf,C1,...,Cn−2=0 whenever f(u)=0 for all u∈suppSB,C1,...,Cn−2 .

Proof. Suppose that f vanishes on suppSB,C1,...,Cn−2
. Then,

1

n

∫
g dSf,C1,...,Cn−2

=Vn(g, f, C1, ..., Cn−2)=
1

n

∫
f dSg,C1,...,Cn−2

=0

for any difference of support functions g, where we used the symmetry of mixed volumes

and that suppSg,C1,...,Cn−2
⊆suppSB,C1,...,Cn−2

by Lemma 2.4. The conclusion follows

as we may choose any g∈C2(Sn−1) by Lemma 2.1.
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K= L= C=

Figure 2.1. Example of an equality case described by Lemma 2.8.

In the case that C1, ..., Cn−2 are polytopes, we have given a geometric character-

ization of the support of SB,C1,...,Cn−2
in Lemma 2.3. This yields a fully geometric

interpretation of the situation described by Lemma 2.8: that f=hK−hL vanishes on

suppSB,C1,...,Cn−2
means precisely that the convex bodies K and L have the same sup-

porting hyperplanes in all (B,C1, ..., Cn−2)-extreme normal directions.

Example 2.9. Let C=[0, 1]3 be a cube in R3, and let the bodies K and L be derived

from C by slicing off some of its corners. This construction is illustrated in Figure 2.1.

We claim that hK−hL vanishes on suppSB,C , so that in particular

V3(K,L,C)2 =V3(K,K,C)V3(L,L,C)

in this example by Lemmas 2.8 and 2.5.

To verify the claim, note that, by part (c) of Lemma 2.3, we have u∈suppSB,C if

and only if u is a normal direction of a face of C of dimension at least one, that is, if u

is the outer normal of a supporting hyperplane of one of the edges of the unit cube. But

it is readily seen in Figure 2.1 that any such hyperplane also supports both K and L, so

that hK(u)=hL(u) for every u∈suppSB,C . There are of course many other directions in

which the supporting hyperplanes of K and L differ, but these are all normal to a corner

of the cube C and are therefore not in suppSB,C .

2.2.3. Dimensionality

We now describe yet another mechanism that gives rise to extremals of the Alexandrov–

Fenchel inequality, which arises from the fact that mixed volumes may vanish for dimen-

sionality reasons (Lemma 2.2). To make this idea precise, we introduce the following

definition; recall that we are interested in extremals for given reference bodies

C := (C1, ..., Cn−2).
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Definition 2.10. Let (M,N) be a pair of convex bodies, and let f :Sn−1
!R.

(a) (M,N) is called a C-degenerate pair if M is not a translate of N and

Vn(M,N,C1, ..., Cn−2)= 0, (2.3)

Vn(M,B,C1, ..., Cn−2)=Vn(N,B,C1, ..., Cn−2). (2.4)

(b) f is a C-degenerate function if f=hM−hN for some C-degenerate pair (M,N).

By Lemma 2.2, condition (2.3) is of a purely geometric nature: it is characterized

by the dimensions of the relevant bodies. Condition (2.4) should be viewed merely as

a normalization; for any pair (M,N) satisfying the first condition, the second condition

can always be made to hold by rescaling M or N . We assume that M is not a translate

of N to exclude the trivial case that f=hM−hN is a linear function.

Lemma 2.11. Sf,C1,...,Cn−2
=0 whenever f is a C-degenerate function.

Proof. Let (M,N) be a C-degenerate pair. The main observation is that we obtain

equality in Theorem 1.1 for K=B+M and L=B+N . Indeed, as

Vn(K,K,C1, ..., Cn−2)=Vn(K,L,C1, ..., Cn−2)+Vn(M,M,C1, ..., Cn−2),

Vn(L,L,C1, ..., Cn−2)=Vn(K,L,C1, ..., Cn−2)+Vn(N,N,C1, ..., Cn−2)

by (2.3) and (2.4), we obtain

Vn(K,L,C1, ..., Cn−2)
2 ⩽Vn(K,K,C1, ..., Cn−2)Vn(L,L,C1, ..., Cn−2).

As the reverse inequality holds by Theorem 1.1, we must in fact have equality.

Now note that if Vn(B,B,C1, ..., Cn−2)>0, then ShK−ahL,C1,...,Cn−2
=0 for some a

by Lemma 2.5. Integrating against hB and applying (2.1) and (2.4) yields a=1. Thus,

Sf,C1,...,Cn−2 =0 for f =hK−hL =hM−hN .

If Vn(B,B,C1, ..., Cn−2)=0, however, then we have SB,C1,...,Cn−2
=0 by (2.1) as

hB=1 on Sn−1. Thus, in this case, Sf,C1,...,Cn−2
=0 for any f by Lemma 2.4.

The geometric phenomena captured by Lemmas 2.8 and 2.11 are quite different:

the former captures the facial structure of the bodies in C, while the latter captures the

dimensions of the bodies. Let us illustrate the distinction in a concrete example.

Example 2.12. Let C1=[0, 1]4 be a cube in R4, and let C2=[0, e1]+[0, e2] be a 2-

dimensional square in the plane spanned by the first two coordinate directions e1 and e2.

Let M=[0, e1] and N=[0, e2] be segments in the same plane.
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We claim that (M,N) is a degenerate pair. Indeed, as

dim(M+N+C2)= 2,

Lemma 2.2 verifies (2.3). On the other hand, it is clear that (2.4) must hold, as this

example is symmetric under exchanging the e1 and e2 directions. This gives rise, for

example, to the following equality case of the Alexandrov–Fenchel inequality: if we choose

K=C1+M and L=C1+N , then Lemmas 2.11 and 2.5 yield

V4(K,L,C1, C2)
2 =V4(K,K,C1, C2)V4(L,L,C1, C2).

We now aim to show that the present example cannot be explained by a combina-

tion of Lemmas 2.7 and 2.8, confirming that Lemma 2.11 captures a genuinely distinct

phenomenon. That is, we aim to show that f=hM−hN does not coincide with a linear

function on the support of SB,C1,C2
. To this end, note that

f(u)=max(u1, 0)−max(u2, 0).

On the other hand, for any u∈S3∩span{e1, e3} we have

dimF (C1, u)⩾ 2 and dimF (C2, u)⩾ 1,

so that

S3∩span{e1, e3}⊂ suppSB,C1,C2

by Lemma 2.3. Thus f cannot coincide with any linear function on suppSB,C1,C2 , as the

restriction of f to the unit circle in span{e1, e3} is not a smooth function.

2.3. Main result

In the previous section, we described three distinct mechanisms for equality in the

Alexandrov–Fenchel inequality in Lemmas 2.7, 2.8, and 2.11. However, these three mech-

anisms may all appear simultaneously by linearity: if

Sf,C1,...,Cn−2 =0 and Sg,C1,...,Cn−2 =0,

then

Sf+g,C1,...,Cn−2
=0

as well. Thus, any linear combination of the functions that appear in Lemmas 2.7, 2.8,

and 2.11 gives rise to an extremal case of the Alexandrov–Fenchel inequality.



extremals of the alexandrov–fenchel inequality 103

As no other mechanism for equality is known, one may conjecture that these are the

only extremal cases of the Alexandrov–Fenchel inequality. The main result of this paper

is a complete proof of this conjecture in the combinatorial setting. In geometric terms,

we prove the following. (Recall that P-degenerate pairs and (B,P)-extreme directions

are defined in Definition 2.10 and Lemma 2.3.)

Theorem 2.13. Let P :=(P1, ..., Pn−2) be polytopes in Rn, and let K and L be

convex bodies such that Vn(K,L, P1, ..., Pn−2)>0.(2) Then,

Vn(K,L, P1, ..., Pn−2)
2 =Vn(K,K,P1, ..., Pn−2)Vn(L,L, P1, ..., Pn−2)

if and only if there exist a>0, v∈Rn, and a number 0⩽m<∞ of P-degenerate pairs

(M1, N1), ..., (Mm, Nm), such that K+N1+...+Nm and aL+v+M1+...+Mm have the

same supporting hyperplanes in all (B,P)-extreme normal directions.

The “if” direction of Theorem 2.13 follows from Lemmas 2.5, 2.7, 2.8, and 2.11, so

it is the “only if” part that requires proof. Some key ideas in the proof are described in

§4; the proof itself is contained in §§5–12.
Schneider has conjectured [26] that equality in the Alexandrov–Fenchel inequality

holds if and only if K and aL+v have the same supporting hyperplanes in all (B,P)-

extreme normal directions. That this is not always the case was illustrated in Exam-

ple 2.12 (the existence of counterexamples was first noted in [8]). Nonetheless, no coun-

terexample has been found to Schneider’s conjecture in the case where all bodies in P are

full-dimensional. This suggests that in the full-dimensional situation, degenerate pairs

may not exist. Not only does this turn out to be the case, but in fact a much weaker

condition suffices.

Definition 2.14. A collection of convex bodies C=(C1, ..., Cn−2) is supercritical if

dim(Ci1+...+Cik)⩾k+2 for all k∈[n−2], 1⩽i1<...<ik⩽n−2.

Lemma 2.15. If C is supercritical, C-degenerate functions do not exist.

Proof. Suppose (M,N) is a C-degenerate pair. By Lemma 2.2 and the supercriti-

cality assumption, (2.3) implies that

dim(M)= 0, dim(N)= 0, or dim(M+N)⩽ 1.

Assume first that dim(M)=0. Then, Vn(N,B,C1, ..., Cn−2)=0 by (2.4). But then,

by Lemma 2.2 and the supercriticality assumption, dim(N)=0 as well.

(2) As was noted in Remark 2.6, the trivial extremals Vn(K,L, P1, ..., Pn−2)=0 are already fully
characterized geometrically by Lemma 2.2, so we do not consider them further.
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Thus, there are two possibilities:

dim(M)=dim(N)= 0 or dim(M)=dim(N)=dim(N+M)= 1.

In the first case, M and N are singletons, while in the second case M and N are seg-

ments with parallel directions. Moreover, in the latter case, Vn(N,B,C1, ..., Cn−2)>0

by Lemma 2.2 and the supercriticality assumption, so (2.4) implies that M and N have

the same length. Thus, in either case, M and N are translates of one another, which

violates the definition of a degenerate pair.

In other words, Lemma 2.15 yields the following.

Corollary 2.16. Let P :=(P1, ..., Pn−2) be a supercritical collection of polytopes

in Rn, and let K and L be convex bodies such that Vn(K,L, P1, ..., Pn−2)>0. Then,

Vn(K,L, P1, ..., Pn−2)
2 =Vn(K,K,P1, ..., Pn−2)Vn(L,L, P1, ..., Pn−2)

if and only if there exist a>0 and v∈Rn such that K and aL+v have the same supporting

hyperplanes in all (B,P)-extreme normal directions.

Corollary 2.16 highlights that even though Theorem 2.13 provides a complete char-

acterization of the extremals of the Alexandrov–Fenchel inequality for arbitrary poly-

topes P, its formulation leaves key questions open: it does not explain how many degen-

erate pairs can appear, what they look like, or whether the decomposition into degenerate

pairs is unique. A complete understanding of these questions will emerge from the proof

of Theorem 2.13. As the requisite notions will only be introduced as we progress through

the proof, we postpone formulating the definitive form of our main result until §13.
While we have presented Corollary 2.16 as a special case of Theorem 2.13, the

supercritical case will prove to be fundamental to the proof. We will first give a self-

contained proof of Corollary 2.16 in §§5–8, and then characterize the degenerate equality

cases in sections 9–12 by a separate argument that requires the introduction of additional

techniques. In particular, the proof of Corollary 2.16 may be read independently from

the rest of the paper.

2.4. Prior work

Let us briefly review what was known prior to this paper. Three cases of Corollary 2.16

were previously verified: when P consists of strongly isomorphic simple polytopes [30,

Theorem 7.6.21], when P1=...=Pn−2 [28], [32] (in this case Pi need not be simple), and

when P consists of full-dimensional zonotopes and K and L are symmetric [27]. All these
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results make crucial use of the special features that appear in these settings. In addition,

one very special example of a degenerate equality case was previously known, when all

the bodies P lie in a hyperplane [10], [29]. This example sheds little light on more general

cases, however, as it is essentially amenable to explicit computation, cf. [32, §8].
The characterization of lower-dimensional extremals in terms of degenerate pairs

was conjectured by the authors during initial work on this paper. We subsequently

realized, however, that an analogous phenomenon appears in work of Panov [23] on

Alexandrov’s mixed discriminant inequality, which may be viewed as an analogue of the

Alexandrov–Fenchel inequality in linear algebra. Despite tantalizing similarities between

these inequalities, the main feature of the Alexandrov–Fenchel inequality does not arise

here: dimensionality is the only extremal mechanism in the mixed discriminant inequality,

while the central difficulty in the analysis of the Alexandrov–Fenchel inequality stems

from degeneration of the support of mixed area measures. While most of our analysis

has little in common with [23], we will use a basic lemma of [23] to organize the collection

of degenerate pairs (Lemma 9.2).

3. Preliminaries

The aim of this section is to recall some general background from convex geometry that

will be needed in the remainder of the paper.

The following conventions will be in force throughout the paper. We always denote

by B the Euclidean unit ball in Rn. For any collection C :=(C1, ..., Cn−2) of convex bodies

in Rn, we will often use the abbreviated notation

Vn(K,L, C) :=Vn(K,L,C1, ..., Cn−2) and SL,C :=SL,C1,...,Cn−2
.

For I⊆[n−2], we set CI :=(Ci)i∈I and C\I :=(Ci)i∈[n−2]\I .

We will also encounter mixed volumes of convex bodies C1, ..., Cm that lie in a sub-

space E⊂Rn with dim(E)=m. Such mixed volumes will be denoted as VE(C1, ..., Cm),

or as Vm(C1, ..., Cm) when the subspace is clear from context.

3.1. Mixed volumes and mixed area measures

Mixed volumes and mixed area measures were introduced in §2.1. For future reference,

we begin by spelling out their basic properties more carefully.

Mixed volumes are defined by (1.1). They satisfy the following [30, §5.1]. (Here and

in the sequel, we use the notation [[A]]:=
√
detA∗A for a linear map A.)
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Lemma 3.1. Let C,C ′, C1, ..., Cn be convex bodies in Rn.

(a) Vn(C, ..., C)=Voln(C).

(b) Vn(C1, ..., Cn) is symmetric and multilinear in its arguments.

(c) Vn(C1, ..., Cn)⩾0.

(d) Vn(C,C2, ..., Cn)⩾Vn(C
′, C2, ..., Cn) if C⊇C ′.

(e) Vn(C1, ..., Cn) is invariant under translation Ci Ci+vi for vi∈Rn.

(f) Vn(AC1, ..., ACn)=[[A]]Vn(C1, ..., Cn) for any linear map A:Rn
!Rn.

The identity (2.1) may be viewed as the definition of mixed area measures. The

following basic properties are analogous to those of mixed volumes [30, §5.1].

Lemma 3.2. Let C,C1, ..., Cn−1 be convex bodies in Rn.

(a) SC1,...,Cn−1
is symmetric and multilinear in its arguments.

(b) SC1,...,Cn−1
⩾0.

(c) SC1,...,Cn−1 is invariant under translation Ci Ci+vi.

(d)
∫
⟨v, x⟩SC1,...,Cn−1(dx)=0 for all v∈Rn.

We now recall the basic continuity property of mixed volumes and mixed area mea-

sures. Recall that convex bodies C(l) converge to a convex body C in the sense of

Hausdorff convergence if and only if ∥hC(l)−hC∥∞!0, cf. [30, Lemma 1.8.14]. Then, we

have the following result [30, pp. 280–281].

Lemma 3.3. Suppose that C
(l)
1 , ..., C

(l)
n are convex bodies in Rn such that C

(l)
i !Ci

as l!∞ in the sense of Hausdorff convergence. Then,

Vn(C
(l)
1 , ..., C(l)

n )!Vn(C1, ..., Cn) and S
C

(l)
1 ,...,C

(l)
n−1

w−!SC1,...,Cn−1

as l!∞, where the limit of measures is in the sense of weak convergence.

In the case that all the convex bodies are polytopes, mixed area measures take a

particularly simple form [30, p. 279].

Lemma 3.4. Let P1, ..., Pn−1 be polytopes in Rn. Then, SP1,...,Pn−1 is atomic, that

is, suppSP1,...,Pn−1={u∈Sn−1 :SP1,...,Pn−1({u})>0}, with

SP1,...,Pn−1
({u})=Vn−1(F (P1, u), ..., F (Pn−1, u)).

Remark 3.5. In Lemma 3.4 we have made a slight abuse of notation: the faces

F (Pi, u), i=1, ..., n−1, need not lie in a single (n−1)-dimensional subspace. However,

by definition, all these faces have u as a normal direction, so that each face may be

translated to lie in u⊥. We implicitly define Vn−1(F (P1, u), ..., F (Pn−1, u)) as the mixed

volume in u⊥ of the translated faces; this convenient notation is consistent with the

translation-invariance of mixed volumes.
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As the faces F (P, u) play a fundamental role in what follows, let us briefly recall

at this stage some associated notions. A facet of a convex body C in Rn is an (n−1)-

dimensional face of C. We recall that every polytope has a finite number of facets. We

also recall the following basic property [30, §1.7].

Lemma 3.6. Let C and C ′ be any convex bodies in Rn and u, x∈Rn. Then,

hF (C,u)(x)=∇xhC(u),

where ∇x denotes the directional derivative in direction x. In particular,

F (C+C ′, u)=F (C, u)+F (C ′, u).

Consequently, we may observe that the mixed area measure in Lemma 3.4 is in fact

supported on a finite number of points. Indeed, Lemmas 3.4 and 2.2 imply that every

u∈suppSP1,...,Pn−1
must satisfy dimF (P1+...+Pn−1, u)⩾n−1, that is, each such u must

be a facet normal of P1+...+Pn−1. As the Minkowski sum of polytopes is a polytope,

suppSP1,...,Pn−1
must be finite.

Finally, the following basic property of faces will be useful. Here and in the sequel,

we denote by PE the orthogonal projection onto a subspace E of Rn.

Lemma 3.7. For any convex body C in Rn, linear subspace E⊆Rn, and u∈Rn,

F (PEC, u)=PEF (C,PEu).

Proof. Using Lemma 3.6, we can compute

hF (PEC,u)(x)=∇xhPEC(u)=∇PExhC(PEu)

=hF (C,PEu)(PEx)=hPEF (C,PEu)(x)

for every x∈Rn, where we used hPEC(u)=hC(PEu).

3.2. Projection formulae

The relation between mixed volumes of convex bodies and their projections will play a

recurring role in this paper. The following result captures this connection in a general

setting [30, Theorem 5.3.1].

Lemma 3.8. Let E be an m-dimensional subspace of Rn, let C1, ..., Cm be convex

bodies in E, and let Cm+1, ..., Cn be convex bodies in Rn. Then,(
n

m

)
Vn(C1, ..., Cn)=VE(C1, ..., Cm)VE⊥(PE⊥Cm+1, ...,PE⊥Cn).
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We will use Lemma 3.8 in its full force many times. The special case m=1 is

particularly important, however, so we highlight it separately.

Corollary 3.9. Let C1, ..., Cn−1 be convex bodies in Rn, and let u∈Sn−1. Then,

nVn([0, u], C1, ..., Cn−1)=Vn−1(Pu⊥C1, ...,Pu⊥Cn−1).

When combined with Corollary 3.9, the following observation expresses certain n-

dimensional mixed volumes in terms of (n−1)-dimensional projections.

Lemma 3.10. Let C1, ..., Cn−1 be convex bodies in Rn. Then,∫
Sn−1

Vn([0, u], C1, ..., Cn−1)ω(du)=κn−1Vn(B,C1, ..., Cn−1),

where ω denotes the Lebesgue measure on Sn−1 and κn−1 denotes the volume of the

Euclidean unit ball in Rn−1.

Proof. Apply (2.1) and∫
h[0,u](x)ω(du)=

∫
⟨u, x⟩+ ω(du)=κn−1 hB(x).

3.3. Alexandrov–Fenchel inequality and equality

The classical formulation of the Alexandrov–Fenchel inequality given in Theorem 1.1 is

not the most general one: as was emphasized by Alexandrov [1], [2], the convex body K

may be replaced by any difference of support functions f . We will often require this

more general inequality and its equality cases. We presently make precise the connection

between these formulations. The results of this section could be deduced from [30, §7.4],
but we find it more insightful to give direct proofs.

We begin by spelling out three equivalent formulations of Theorem 1.1.

Lemma 3.11. Let C=(C1, ..., Cn−2) be convex bodies in Rn. The following are three

equivalent formulations of the Alexandrov–Fenchel inequality :

(a) For any convex bodies K and L,

Vn(K,L, C)2 ⩾Vn(K,K, C)Vn(L,L, C).

(b) For any difference of support functions g and convex body L,

Vn(g, L, C)2 ⩾Vn(g, g, C)Vn(L,L, C).

(c) For any difference of support functions f and convex body L with Vn(L,L, C)>0,

Vn(f, L, C)= 0 implies Vn(f, f, C)⩽ 0.
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Moreover, if Vn(L,L, C)>0, then equality holds in part (b) if and only if there exists

a∈R such that equality holds in part (c) with f=g−ahL.

Proof. The implications (b)⇒ (a), (b)⇒ (c), and (c)⇒ (b) follow readily by choos-

ing, respectively, g=hK , g=f , and f=g−ahL with a=Vn(g, L, C)/Vn(L,L, C) (we may

assume that Vn(L,L, C)>0 in the latter case, as otherwise (b) is trivial.)

To prove (a)⇒ (b), note first that if g=hK−ahL for some a∈R, the ahL term cancels

on both sides of the inequality in (b) by expanding the square, so that (a)⇒ (b) follows

trivially. But if g and L are sufficiently smooth, then we may always write g=hK−ahL for

some a>0 and convex body K [31, Corollary 2.2]; thus, the implication (a)⇒ (b) follows

under smoothness assumptions, and consequently in general by a standard approximation

argument [30, §3.4].
Finally, suppose Vn(L,L, C)>0. Then it is immediate that (b) holds with equality

if and only if (c) holds with equality with f=g−ahL and a=Vn(g, L, C)/Vn(L,L, C). It

remains to note that, if (c) holds with equality with f=g−ahL for some a∈R, then it

follows from Vn(f, L, C)=0 that necessarily a=Vn(g, L, C)/Vn(L,L, C).

In view of Lemma 3.11, to study the equality cases of the Alexandrov–Fenchel in-

equality it suffices to consider the formulation of part (c) of Lemma 3.11. We presently

reformulate the equality condition

Vn(f, L, C)= 0 and Vn(f, f, C)= 0 (3.1)

using the first-order condition of optimality, following [2, p. 80]. For future reference, we

consider a slightly more general situation than arises in Lemma 3.11.

Lemma 3.12. Let f be a difference of support functions, and let C=(C1, ..., Cn−2)

and L be convex bodies in Rn.

(a) Suppose that Vn(L,L, C)>0. Then, (3.1) holds if and only if Sf,C=0.

(b) Suppose that Vn(L,L, C)=0 and SL,C ̸=0. Then, (3.1) holds if and only if there

exists a∈R such that Sf−ahL,C=0.

Proof. We first prove part (a). If Sf,C=0, then∫
hL dSf,C =

∫
f dSf,C =0,

and (2.1) yields (3.1). Conversely, suppose that (3.1) holds, and let g be any difference

of support functions. As Vn(L,L, C)>0, we can choose a so that Vn(g−ahL, L, C)=0.

Then,

φ(λ) :=Vn(f+λ(g−ahL), f+λ(g−ahL), C)
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satisfies φ(λ)⩽0 by Lemma 3.11 (c), and φ(0)=0 by (3.1). Thus, φ is a quadratic function

with maximum at 0, so φ′(0)=0. Using Vn(f, L, C)=0, this yields

0=Vn(g, f, C)=
1

n

∫
g dSf,C .

As we may choose g to be any C2 function by Lemma 2.1, we have Sf,C=0.

We now prove part (b). If Sf−ahL,C=0, then

nVn(f, L, C)=
∫

hL dSf−ahL,C =0

as Vn(L,L, C)=0; consequently,

nVn(f, f, C)=
∫

f dSf−ahL,C =0,

proving (3.1). Conversely, suppose (3.1) holds. Since SL,C ̸=0, we have Vn(B,L, C)>0.

Therefore, the following statements hold:

• we may choose a∈R so that Vn(f−ahL, B, C)=0;

• Vn(f−ahL, f−ahL, C)=0 by (3.1) and Vn(L,L, C)=0;

• Vn(B,B, C)>0 as Vn(B,L, C)>0 and L⊆cB for some c>0.

We can now apply part (a) with L B, f f−ahL to conclude.

For completeness, we conclude with a proof of Lemma 2.5.

Proof of Lemma 2.5. Let K, L, and C=(C1, ..., Cn−2) be as in the statement of

Lemma 2.5. To prove (b)⇒ (a), it suffices to note that integrating condition (b) against

hK and hL yields Vn(K,K, C)=aVn(K,L, C)=a2Vn(L,L, C) by (2.1). To prove (a)⇒ (b),

note that the assumption Vn(K,L, C)>0 and condition (a) imply Vn(L,L, C)>0. Thus,

Lemmas 3.11 and 3.12 imply ShK−ahL,C=0 for some a∈R. But integrating against hL

yields Vn(K,L, C)=aVn(L,L, C) by (2.1), so a>0.

4. Overview of the proof

The main result of this paper, Theorem 2.13, is proved in §§5–12 below. Before we

proceed to the details, however, we aim to give a high-level overview of the proof in

order to help the reader navigate the following sections. At the most basic level, the

proof proceeds by induction on the dimension n. The argument splits into two parts

that require completely different ideas and techniques.

Throughout the proof of Theorem 2.13, we will fix n⩾3 and polytopes

P =(P1, ..., Pn−2)

in Rn. Let us introduce at the outset a minimal dimensionality condition that will be

assumed throughout most of this paper.
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Definition 4.1. A collection of convex bodies C=(C1, ..., Cn−2) is critical if

dim(Ci1+...+Cik)⩾ k+1

for all k∈[n−2] and all 1⩽i1<...<ik⩽n−2.

Note that if there exist i1<...<ik with

dim(Pi1+...+Pik)⩽ k,

then the bodies (Pi1 , ..., Pik) factor on both sides of the Alexandrov–Fenchel inequality

by Lemma 3.8, and the problem reduces to a lower-dimensional one. For this reason, we

may focus our attention on the case where P is critical, and the remaining cases will be

easily dispensed with at the very end of the proof.

4.1. The local Alexandrov–Fenchel inequality

In order to perform induction on the dimension, we must understand how the extremals

of the Alexandrov–Fenchel inequality in dimensions n and n−1 are related. The purpose

of the first part of the proof of Theorem 2.13 is to make this connection. To explain how

this is done, we begin by discussing an apparently unrelated question.

In view of their definition (2.1), it is natural to think of mixed area measures as local

analogues of mixed volumes: they describe the behavior of mixed volumes in different

normal directions. The analogy is even more explicit in the polytope case, cf. Lemma 3.4.

One might therefore wonder whether there exists an analogue of the Alexandrov–Fenchel

inequality for mixed area measures. This question makes little sense in the formulation

of Theorem 1.1, of course, as one cannot square a measure. However, the question can

be meaningfully formulated in the form of Lemma 3.11 (c): given convex bodies L and

C1, ..., Cn−3, is it true that

Sf,L,C1,...,Cn−3 =0 implies Sf,f,C1,...,Cn−3 ⩽ 0 (4.1)

for any difference of support functions f? We will refer to any statement of the form

(4.1) as a local Alexandrov–Fenchel inequality.

Let us first explain why such an inequality would enable an induction argument, at

least in the full-dimensional case. To this end, we make a simple observation.



112 y. shenfeld and r. van handel

Lemma 4.2. Let C=(C1, ..., Cn−2) be convex bodies in Rn, let r∈[n−2], and suppose

that Cr is full-dimensional. If Sf,C=0 and Sf,f,C\r⩽0, then Sf,f,C\r=0.

Proof. By translation-invariance, we may assume that 0∈intCr, so that hCr>0.

Now note that, as Sf,C=0, using (2.1) and the symmetry of mixed volumes yields

0=

∫
f dSf,C =

∫
hCr

dSf,f,C\r .

The conclusion follows as Sf,f,C\r⩽0 and hCr
>0.

Now, suppose that we have equality in Theorem 1.1, and assume for simplicity that

Cr is full-dimensional for some r∈[n−2]. Then, by Lemma 2.5, we have

Sf,C =0 with f =hK−ahL

for some a>0. If the local Alexandrov–Fenchel inequality (4.1) were to hold, we would ob-

tain Sf,f,C\r⩽0, and thus Sf,f,C\r=0, by Lemma 4.2. Integrating both measures against

h[0,u] (for any u∈Sn−1) yields, by (2.1) and Corollary 3.9,

Vn−1(Pu⊥f,Pu⊥C)= 0 and Vn−1(Pu⊥f,Pu⊥f,Pu⊥C\r)= 0,

where

PEf :=hPEK−ahPEL and PEC := (PEC1, ...,PECn−2).

But this is nothing other than an equality case (3.1) of the Alexandrov–Fenchel inequality

in u⊥. Thus, a local Alexandrov–Fenchel inequality would imply that extremality for the

Alexandrov–Fenchel inequality in dimension n is inherited by projection onto any (n−1)-

dimensional subspace, opening the door to induction.

Unfortunately, it turns out that this approach breaks down precisely when the

Alexandrov–Fenchel inequality has non-trivial extremals. That the above conclusion

must fail in this case is immediately evident from the classical fact that equality

V2(K,L)2 =V2(K,K)V2(L,L)

holds in dimension n=2 if and only if K and L are homothetic (cf. Remark 8.2 and the

proof of Theorem 8.1). Thus, it cannot be the case that the projections of a non-trivial

equality case of the Alexandrov–Fenchel inequality in dimension n⩾3 yield equality in

dimension 2, as convex bodies in dimension n⩾3 whose projections onto every hyperplane

are homothetic must themselves be homothetic [36] (this is illustrated, for example, by

Figure 2.1). In particular, it follows that the validity of the local Alexandrov–Fenchel

inequality (4.1) is contradicted by the presence of non-trivial extremals.
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At first sight, the failure of (4.1) appears to render the above approach useless for the

study of the extremals. Remarkably, however, this turns out not to be the case. Recall

that, by Lemma 2.8, the measure Sf,C is unchanged if we modify f outside the support

of SB,C ; in particular, as we characterize extremals only up to SB,C-a.e. equivalence,

we are free to modify f outside suppSB,C in the proof. On the other hand, the same

property does not hold for Sf,f,C : this measure may change drastically if we modify f

outside the support of SB,C . One of the central ideas of this paper is that we can exploit

the resulting degrees of freedom to force the validity of (4.1). More precisely, we will

prove the following result.

Theorem 4.3. (Local Alexandrov–Fenchel inequality) Let P=(P1, ..., Pn−2) be a

critical collection of polytopes in Rn, and fix r∈[n−2]. Then, for any difference of

support functions f such that Sf,P=0, there exists a difference of support functions g

such that Sg,P=0, Sg,g,P\r⩽0, and g(x)=f(x) for all x∈suppSB,P .

The proof of this result is the main part of this paper in which we exploit the assump-

tion that the reference bodies are polytopes (see §16 for discussion). The simplification

provided by this setting is that it enables us to reduce Theorem 4.3 to a finite-dimensional

problem, which will be accomplished in §5 and §6 by adapting ideas from Alexandrov’s

original proof of the Alexandrov–Fenchel inequality using strongly isomorphic polytopes

[1] to the setting of arbitrary polytopes. It should be emphasized, however, that this

reduction is merely a technical device: the entire difficulty of the proof lies in §7, where
we prove the existence of a function g with the requisite properties. We will ultimately

reduce this problem to a system of linear equations, and the heart of the matter is to

rule out the presence of degeneracies that would obstruct the existence of a solution.

Remark 4.4. The simple argument in the proof of Lemma 4.2 is due to Weyl [40]. It

is used in classical proofs of the Alexandrov–Fenchel inequality precisely to rule out the

existence of non-trivial extremals; see, e.g., [3, p. 110] or [30, p. 396]. It therefore appears

rather surprising that such an argument provides a starting point for the study of non-

trivial extremals. That this is in fact the case relies crucially on Theorem 4.3, which is

a central new idea of this paper that opens the door to the analysis of the extremals by

induction on the dimension.

A different induction argument was exploited by Schneider [27] to investigate ex-

tremals of the Alexandrov–Fenchel inequality for zonoids, that is, limits of Minkowski

sums of segments. In this setting, the relation between the extremals and their projec-

tions arises from Corollary 3.9, but this appears as a very special property of this class

of bodies. A notable aspect of our approach is that we are able to perform induction by

projection in the absence of such special structure.
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4.2. The gluing argument

Once we have shown that extremality is preserved by projection onto hyperplanes, we

must combine the information contained in the (n−1)-dimensional projections in order

to characterize the n-dimensional extremals. This is the purpose of the second part of

the proof of Theorem 2.13.

At first sight, it seems evident that we may reconstruct a convex body from its pro-

jections, as hPEK(x)=hK(PEx) for all x by the definition of support functions. Thus, if

the function Pu⊥f were known for every u, the function f would be uniquely determined.

The situation we encounter is much more delicate, however, as only very limited informa-

tion about the projections will follow from the induction hypothesis that Theorem 2.13

holds in dimension n−1.

To illustrate the difficulty, suppose for simplicity that all polytopes in P are full-

dimensional, and let f be an equality case of the Alexandrov–Fenchel inequality in di-

mension n, that is, Sf,P=0. We aim to prove the conclusion of Corollary 2.16, that is,

there exists s∈Rn such that f(x)=⟨s, x⟩ for x∈suppSB,P . If we assume Corollary 2.16

holds in dimension n−1, then Theorem 4.3 and the arguments of the previous section

show that, for every u∈Sn−1, there exists s(u)∈Rn such that

f(x)= ⟨s(u), x⟩ for all x∈ suppSP
u⊥B,P

u⊥P\r∩suppSB,P .

We now face two problems: the linear function ⟨s(u), x⟩ may a priori depend on u; and

we have only very limited information for any given u, as suppSP
u⊥B,P

u⊥P\r∩suppSB,P

may only cover a very small part of Sn−1∩u⊥. We must therefore rule out, for example,

that f is piecewise linear on disjoint parts of the supports of the mixed area measures

that arise for different u.

In the supercritical case (Definition 2.14), these issues will be resolved in §8, where
we will glue together the linear functions ⟨s(u), x⟩ to form a single linear function ⟨s, x⟩.
The idea behind the gluing argument is to show that there is sufficient overlap between

the supports of the measures SP
u⊥B,P

u⊥P\r for different u, so that all the vectors s(u)

must be consistent with a single vector s. It will turn out that the supercriticality

assumption is preserved by the induction, so that a self-contained proof of Corollary 2.16

will already be achieved in §8.
To complete the proof of Theorem 2.13 it remains to consider the critical case, that

is, when dim(Ci1+...+Cik)=k+1 for some critical set i1<...<ik. It is in this situation

that non-trivial degenerate functions (Definition 2.10) appear. The problem of gluing

together these degenerate functions in dimension n−1 to form degenerate functions in

dimension n gives rise to numerous complications. We begin in §9 by characterizing

what degenerate functions look like; they will turn out to be intimately connected to the
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critical sets. In §10, we will show that, in the critical case, the supports of the relevant

mixed area measures exhibit a striking phenomenon: they form geometric structures that

we call propellers, which are responsible for the formation of the degenerate extremals.

We exploit these insights in §11 to solve the gluing problem for degenerate functions.

The proof of Theorem 2.13 is finally completed in §12.

Part 1. The local Alexandrov–Fenchel inequality

5. Polytopes, graphs, and extremals

The aim of this section is to give a concrete formulation of the equality condition Sf,P=0

in the case where P=(P1, ..., Pn−2) are polytopes. In particular, we will describe the

underlying combinatorial structure, and introduce the basic objects and notation that

will be used in the following sections.

5.1. Basic constructions

We fix at the outset n⩾3 and an arbitrary collection of polytopes P=(P1, ..., Pn−2) in Rn.

The notation and definitions that are introduced below will be used throughout §§5–7.

5.1.1. The background polytope

We begin by introducing a certain background polytope P that will be fixed throughout

the following constructions.

Recall that a polytope in Rn is called simple if it has non-empty interior and each

of its extreme points meets exactly n facets.

Lemma 5.1. There exists a polytope P0 in Rn such that P0+P1+...+Pn is simple.

Proof. Let R be any polytope in Rn with non-empty interior, and define

Q :=R+P1+...+Pn.

Then, by [30, Lemma 2.4.14], there exists a simple polytope Q′ such that each normal

cone of an extreme point of Q′ is contained in the normal cone of an extreme point

of Q. As the normal cones of Q′+Q are intersections of normal cones of Q′ and of Q [30,

Theorem 2.2.1], it follows that the normal cones of the extreme points of Q′+Q coincide

with the normal cones of the extreme points of Q′. Thus, Q′+Q is also simple. The

proof is concluded by choosing P0=Q′+R.
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In the sequel, we fix a polytope P0 as in Lemma 5.1, and define

P :=P0+P1+...+Pn−2.

We will use P to construct a certain graph structure, on which the various objects that

will be encountered in the sequel are defined.

Remark 5.2. In this section we will only use the fact that P is full-dimensional. The

reason for choosing P to be simple will become apparent in §6.

5.1.2. The background graph

Let P 1, ..., PN be the facets of P . We will frequently identify a facet P i by its index i.

For each i∈[N ], we denote by ui∈Sn−1 the outer unit normal vector of the facet P i.

Two facets i, j∈[N ] of P are said to be neighboring if they intersect in an (n−2)-

dimensional face of P . We denote the set of such pairs as

EP := {(i, j)∈ [N ]2 : dim(P i∩P j)=n−2}.

For any i∈[N ], we will denote by

Ei
P := {j ∈ [N ] : (i, j)∈EP }

the set of facets that are neighbors of facet i. One should view ([N ], EP ) as a graph

whose vertices are facets of P and whose edges are neighboring facets.

As P is full-dimensional, the angle θij between the vectors ui and uj must satisfy

0<θij<π for any (i, j)∈EP . Thus, there is a unique shortest geodesic in the sphere

between ui and uj , which we denote by eij⊂Sn−1; note that the length of eij is pre-

cisely θij . Geometrically, eij is precisely the set of outer unit normal vectors of the

(n−2)-dimensional face P i∩P j of P .

We further define, for each (i, j)∈EP , a vector vij∈Sn−1 such that vij⊥ui by

uj =:ui cos θij+vij sin θij .

Then, vij is the unit tangent vector to eij at ui, pointing toward uj . Geometrically, if we

view P i as an (n−1)-dimensional convex body in aff P i, then vij is precisely the outer

unit normal vector of its facet P i∩P j=F (P i, vij).

The above definitions are illustrated in Figure 5.1. As is evident from the figure, one

may naturally view these definitions as a geometric realization of the combinatorial graph

([N ], EP ), whose vertices are the vectors {ui}i∈[N ] and whose edges are the geodesics

{eij}(i,j)∈EP
. We will often implicitly identify these viewpoints: we refer to both i∈[N ]

and the associated vector ui as a vertex, and to (i, j)∈EP and the associated geodesic

eij as an edge, of the graph defined by P .
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uiuj

eij

vij

P=
P j P i

P i∩P j

Figure 5.1. A polytope P in R3 and the associated geometric graph.

5.1.3. Faces

For any convex body C in Rn and i∈[N ], j∈Ei
P , we will denote

Ci :=F (C, ui) and Cij :=F (Ci, vij).

We will frequently write

Pi := (P i
1, ..., P

i
n−2) and Pij := (P ij

1 , ..., P ij
n−2),

and analogously for other collections of bodies.

The notation Ci is consistent with the notation P i for the facets of P , and we have

P ij=P i∩P j . In particular, it follows from Lemma 3.6 that we can express the facets

and (n−2)-faces of P in terms of faces of the polytopes Pr, as

P i =P i
0+...+P i

n−2 and P ij =P ij
0 +...+P ij

n−2.

In the sequel, we will apply these and similar consequences of the linearity of faces under

Minkowski addition (Lemma 3.6) without further comment.

Note that P i
r and P ij

r are faces of the polytope Pr by definition. However, in contrast

to the analogous faces of P , it is not necessarily the case that P i
r is a facet and P ij

r is an

(n−2)-face of Pr. Nonetheless, the following lemma shows that the normal cone of the

face P ij
r of Pr always contains eij . In particular, it follows that P ij

r =P ji
r , which is not

entirely obvious from the definition.

Lemma 5.3. For every r, i∈[N ], j∈Ei
P , and u∈relint eij , we have

P ij
r =F (Pr, u).

Proof. Recall that eij is the set of outer unit normal vectors of the face P i∩P j

of P . But as any normal cone of a Minkowski sum P=P0+...+Pn−2 of polytopes is
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contained in some normal cone of Pr for each r [30, Theorem 2.2.1], it follows that

F (Pr, u)=F (Pr, v)⊆F (Pr, w) for all u, v∈relint eij and w∈eij .
Choosing w=ui, it follows that F (Pr, u)⊆F (Pr, ui)=P i

r . Thus, F (Pr, u) must be

a face of P i
r that has u as an outer normal vector, so that F (Pr, u)⊆F (P i

r , u). On

the other hand, as F (P i
r , u) is a face of Pr with outer normal vector u, we must have

F (P i
r , u)⊆F (Pr, u) as well. Thus, we have shown that F (Pr, u)=F (P i

r , u).

To conclude, note that, as u∈relint eij , we may write u=aui+buj for some a, b>0,

so that Pu⊥
i
u=cvij with c=b sin θij>0. It therefore follows from Lemma 3.7 that

F (P i
r , u)=F (P i

r , vij)=P ij
r ,

concluding the proof.

5.2. The quantum graph

The aim of this section is to describe the structure of the mixed area measure SB,P ; this

will be used in the next section to describe the extremal functions f such that Sf,P=0.

It turns out that these objects are supported on a certain subgraph of the background

graph defined by P in the previous section. We will rely on the formulation developed in

our paper [32], where the construction that arises here was called the “quantum graph”.

Related representations of mixed volumes and mixed area measures may be found in [8]

and [30, p. 437].

Let us begin by describing the measure SB,P .

Lemma 5.4. For every continuous function f :Sn−1
!R, we have∫

f dSB,P =
1

n−1

∑
(i,j)∈EP

i<j

Vn−2(P
ij
1 , ..., P ij

n−2)

∫
eij

f dH1,

where H1 is the 1-dimensional Hausdorff measure.

Proof. This is an immediate consequence of [32, Remark 5.11].

Lemma 5.4 shows that SB,P is supported on the edges {eij}(i,j)∈EP
of the geometric

graph defined in the previous section. However, not every edge appears in the support:

some of the weights Vn−2(Pij) may be zero. Thus, the collection of reference polytopes

P defines a subgraph of the graph defined by P . Let us define some notation to describe

this subgraph. In the sequel, we will write

ωij :=Vn−2(P
ij
1 , ..., P ij

n−2).
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The active edges of the graph defined by P are

E := {(i, j)∈EP :ωij > 0}.

Similarly, the active vertices of the graph defined by P are

V :=

{
i∈ [N ] :

N∑
j=1

ωij > 0

}
,

that is, i∈V when i is incident to at least one active edge (i, j)∈E. Denote by

Ei := {j ∈V : (i, j)∈E}

the neighbors of i∈V in the graph defined by P.

We can now characterize the support of SB,P as announced in Lemma 2.3.

Lemma 5.5. The following are equivalent for any u∈Sn−1:

(a) u∈suppSB,P ;

(b) u∈eij for some (i, j)∈E;

(c) there are segments Ii⊆F (Pi, u), i∈[n−2], with linearly independent directions;

(d) for all k∈[n−2] and all 1⩽i1<...<ik⩽n−2,

dim(F (Pi1 , u)+...+F (Pik , u))⩾ k.

Proof. That (a)⇔ (b) is immediate by Lemma 5.4, while (c)⇒ (d) is trivial.

We now prove (b)⇒ (c). Suppose first that u∈relint eij for (i, j)∈E. Then,

Vn−2(F (P1, u), ..., F (Pn−2, u))> 0

by the definition of E and Lemma 5.3, which implies (c) by Lemma 2.2. It remains to

consider the case where u=ui for some i∈V , so that F (Pr, u)=P i
r . But, by the definition

of V , there exists j such that

Vn−2(P
ij
1 , ..., P ij

n−2)> 0,

so (c) follows by Lemma 2.2 and P ij
r ⊆P i

r .

It remains to prove (d)⇒ (a). To this end, suppose that (d) holds, and let Q be any

polytope in Rn that has a facet with outer normal direction u. Then, by Lemma 2.2, we

have

Vn−1(F (Q, u), F (P1, u), ..., F (Pn−2, u))> 0.

Thus (a) follows as u∈suppSQ,P⊆suppSB,P by Lemmas 3.4 and 2.4.
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We now provide a useful description of the active vertices.

Lemma 5.6. Let i∈[N ]. Then, the following statements hold :

(a) i∈V if and only if Vn−1(P
i, P i

1, ..., P
i
n−2)>0;

(b) if i /∈V , then Vn−1(Q
i, P i

1, ..., P
i
n−2)=0 for every polytope Q.

Proof. We may assume without loss of generality (by translation) that P i
1, ..., P

i
n−2

are convex bodies in u⊥
i and that 0∈relintP i. As the facet normals of P i in u⊥

i are

precisely {vij}j∈EP
, it follows from Lemma 3.4 that the mixed area measure SP i

1 ,...,P
i
n−2

(computed in u⊥
i ) is supported on {vij}j∈EP

, and that

SP i
1 ,...,P

i
n−2

({vij})=Vn−2(F (P i
1, vij), ..., F (P i

n−2, vij))=ωij .

Thus, (2.1) implies

Vn−1(Q
i, P i

1, ..., P
i
n−2)=

1

n−1

∑
j∈Ei

P

hQi(vij)ωij

for any polytope Q, from which part (b) follows immediately. To prove part (a), recall

that P i is a facet of P by definition, so our assumptions imply that P i is a full-dimensional

polytope in u⊥
i containing the origin in its interior. Thus, hP i(vij)>0 for all j∈Ei

P , and

the conclusion of part (a) follows.

5.3. The Alexandrov matrix

The aim of this section is to give a combinatorial description of the equality cases of the

Alexandrov–Fenchel inequality: we will show that the equality condition Sf,P=0 can be

equivalently formulated in terms of separate conditions on the edges and vertices of the

graph defined by P. Such a characterization appears in the proof of [30, Theorem 7.6.21]

for the special case that P1, ..., Pn−2 are strongly isomorphic, which we do not assume

here.

Define a symmetric matrix A∈RN×N by

Aij := 1(i,j)∈EP
ωij csc θij−1i=j

∑
k∈Ei

P

ωik cot θik.

We will refer to A as the Alexandrov matrix, as a special case of this matrix arises in a

much more restrictive setting (of strongly isomorphic polytopes) in Alexandrov’s original

proof of the Alexandrov–Fenchel inequality [1]. We now show that Sf,P=0 is equivalent

to two conditions: f is (piecewise) linear on each edge in E, and the values of f on the

vertices define a vector in the kernel of A.
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Proposition 5.7. Let f :Sn−1
!R be a difference of support functions. Then,

Sf,P =0

if and only if the following two conditions both hold :

(1) for every (i, j)∈E, there exists tij∈Rn such that f(x)=⟨tij , x⟩ for x∈eij ;
(2) the vector z :=(f(ui))i∈[N ]∈RN satisfies z∈kerA.

Proof. That Sf,P=0 may be equivalently stated as Vn(g, f,P)=0 for every difference

of support functions g. By [32, Theorem 5.1], this is equivalent to the statement that f

lies in the kernel of the self-adjoint operator defined in [32, Theorem 5.7 and Remark 5.11],

which is characterized by the following two conditions:

(1) f is (piecewise) linear on each edge eij for (i, j)∈E;

(2) f satisfies ∑
j∈Ei

P

ωij∇vij
f(ui)= 0 for every i∈V .

It remains to show that the second condition is equivalent to z∈kerA. To this end,

let us parameterize the edge eij as

eij = {x(θ) : 0⩽ θ⩽ θij}, where x(θ) :=ui cos θ+vij sin θ.

By the first condition, we can write f(x)=⟨t, x⟩ on eij for some vector t, so

f(x(θ))= ⟨t, ui⟩ cos θ+⟨t, vij⟩ sin θ= f(ui) cos θ+
f(uj)−f(ui) cos θij

sin θij
sin θ.

Consequently,

∇vijf(ui)=
d

dθ
f(x(θ))

∣∣∣∣
θ=0

=
f(uj)−f(ui) cos θij

sin θij
.

Thus the second condition may be expressed equivalently as

0=
∑
j∈Ei

P

ωij
f(uj)−f(ui) cos θij

sin θij
=(Az)i for all i∈V.

But (Az)i=0 always holds for i /∈V by the definition of V , so we have shown that the

second condition above is equivalent to z∈kerA.

Remark 5.8. Instead of using the analytic theory of [32] as we have done here, one

can give a more geometric proof by adapting the first part of the proof of [30, Theo-

rem 7.6.21] to the present setting. Conditions (1) and (2) in the proof of Proposition 5.7

appear in [30] as (7.177) and (7.178), respectively.
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Let us emphasize that the ith row and column of A are zero for every i /∈V . Thus,

the values f(ui) for i /∈V never actually appear in Proposition 5.7. This simply reflects

the fact that {ui}i/∈V lie outside the support of SB,P , so these points play no role in

the equality condition. Recall, however, that our ultimate aim is to prove the local

Alexandrov–Fenchel inequality of Theorem 4.3, in which points outside the support of

SB,P play a crucial role. We therefore resist the temptation to simply remove the zero

rows and columns from the definition of A at this stage.

6. Finite-dimensional reduction

The previous section introduced a combinatorial formulation of the equality condition

Sf,P=0. In particular, Proposition 5.7 shows that an extremal function f is fully specified

by its values f(ui) on the vertices ui of the graph defined by P: its values on the rest of

the support of SB,P are then uniquely determined by linearity. In order to prove the local

Alexandrov–Fenchel inequality, however, we will also need to reason about the measure

Sf,f,P\r , and there is no reason to expect that only the directions {ui}i∈[N ] will appear

in its description.

The aim of this section is to introduce a basic geometric construction that will enable

us to surmount this issue. This construction will simultaneously serve two purposes: it

will enable us to reduce the local Alexandrov–Fenchel inequality to a finite-dimensional

problem, and it will furnish the objects that appear in Proposition 5.7 with a geometric

interpretation that will be key to their analysis.

In this section, all assumptions and definitions of §5 will be in force.

6.1. Strongly isomorphic polytopes

We begin by recalling the definition.

Definition 6.1. Two polytopes Q and Q′ are said to be strongly isomorphic if

dimF (Q, u)=dimF (Q′, u) for all u∈Sn−1.

The key feature of strongly isomorphic polytopes Q and Q′ is that they have identical

facial structures: there is a bijection between the faces of Q and Q′ such that each pair

of identified faces has the same normal cone [30, §2.4]. Consequently, no new faces are

created when one takes Minkowski sums of strongly isomorphic polytopes. Let us record

this basic fact for future reference [30, Corollary 2.4.12].
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Lemma 6.2. Let Q and Q′ be polytopes. Then, all the polytopes λQ+λ′Q′ with

λ, λ′>0 are strongly isomorphic. If Q and Q′ are themselves strongly isomorphic, then

all the polytopes λQ+λ′Q′ with λ, λ′⩾0 are strongly isomorphic.

The following simple observation will play an important role in the sequel.

Lemma 6.3. Let Q be a polytope that is strongly isomorphic to P . Then, for every

(i, j)∈EP , there exists tij∈Rn such that hQ(x)=⟨tij , x⟩ for x∈eij.

Proof. Let (i, j)∈EP . As Q and P are strongly isomorphic, eij is the set of unit

normal vectors to the face Qij of Q. Thus, Qij=F (Q, u) for any u∈relint eij . If we there-
fore fix any tij∈Qij , then hQ(u)=⟨tij , u⟩ for all u∈relint eij by (2.2), and the conclusion

extends to the endpoints of eij by continuity.

The significance of Lemma 6.3 is immediately evident from Proposition 5.7: when

Q is strongly isomorphic to P , the function

f =hQ−hP

automatically satisfies the piecewise linearity condition that characterizes the extremals

of the Alexandrov–Fenchel inequality on the edges of the graph defined by P (note that as

P is strongly isomorphic to itself, Lemma 6.3 also applies to Q=P ). We will shortly prove

a strong converse to this statement: any extremal function f of the Alexandrov–Fenchel

inequality may be represented in such a form.

6.2. Support vectors

As is already anticipated by Proposition 5.7, we will frequently work with the restriction

of support functions of convex bodies to the finite collection of directions {ui}i∈[N ]. It

will be convenient to introduce the following notation: for any convex body C in Rn, we

define its support vector hC∈RN by

(hC)i :=hC(ui), i∈ [N ].

The following result shows that any vector z∈RN can be expressed in terms of the

support vector of a polytope that is strongly isomorphic to P . It is here that we make

crucial use of the fact that P was chosen to be a simple polytope.

Lemma 6.4. For any vector z∈RN , there exists a polytope Q that is strongly iso-

morphic to P and a scalar a∈R such that z=hQ−ahP .
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Proof. For any y∈RN , define

Qy :=
⋂

i∈[N ]

{x∈Rn : ⟨ui, x⟩⩽hP (ui)+yi}.

As P is a simple polytope, it follows from [30, Lemma 2.4.13] that there exists ε>0

such that Qy is strongly isomorphic to P whenever ∥y∥∞⩽ε. In particular, we then

have hQy
=hP +y, as Qy and P have the same facet normals. The conclusion follows by

choosing Q:=aQz/a with a:=ε−1(1+∥z∥∞).

We can now explain a key implication of the above construction: it enables us to

modify any equality case of the Alexandrov–Fenchel inequality outside the support of

SB,P in such a way that the relevant mixed area measures are supported in the finite set

{ui}i∈[N ]. It is by virtue of this procedure that we will be able to reduce Theorem 4.3

to a finite-dimensional problem.

Corollary 6.5. Let f be a difference of support functions such that Sf,P=0. Then,

there is a polytope Q that is strongly isomorphic to P and a∈R such that

g=hQ−ahP

satisfies g=f SB,P -a.e., Sg,P=0, and Sg,g,P\r is supported on {ui}i∈[N ] for all r.

Proof. Choose any z∈RN such that zi=f(ui) for i∈V . Applying Lemma 6.4, we

find a polytope Q that is strongly isomorphic to P and a∈R such that g=hQ−ahP

satisfies g(ui)=f(ui) for all i∈V . Moreover, f is linear on eij for every (i, j)∈E by

Proposition 5.7, while g satisfies the same property by Lemma 6.3. Thus, f=g SB,P -a.e.

by Lemma 5.5. That Sg,P=Sf,P=0 now follows by Lemma 2.8. Finally, as the facet

normals of Q+P are {ui}i∈[N ] by Lemma 6.2, we can conclude that Sg,g,P\r is supported

in this set for any r by Lemma 3.4.

It should be emphasized that Corollary 6.5 does not in itself capture any aspect of the

phenomenon described by Theorem 4.3: it merely reduces the problem to a finite universe

{ui}i∈[N ] of normal directions, but does not otherwise guarantee any properties of the

measure Sg,g,P\r . On the other hand, we have considerable freedom in the construction

of g in Corollary 6.5: we have only specified g(ui) for i∈V in the proof, and we are

therefore free to choose arbitrary values of g(ui) for i /∈V . What we must show in the

proof of the local Alexandrov–Fenchel inequality is that there exists a choice of the latter

values which ensures that Sg,g,P\r⩽0.
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6.3. The Alexandrov matrix revisited

We now show that strongly isomorphic polytopes enable us to furnish the Alexandrov

matrix of Proposition 5.7 with a geometric interpretation. To this end, it will be useful

to introduce the following notation. For any i∈[N ], define a linear map Di :RN
!REi

P

by

(Diz)j := zj csc θij−zi cot θij , j ∈Ei
P , i∈ [N ], z ∈RN .

The significance of this definition is the following.

Lemma 6.6. Let Q be a polytope that is strongly isomorphic to P . Then,

(DihQ)j =hQi(vij) for all (i, j)∈EP .

Proof. Fix (i, j)∈EP . As Q is strongly isomorphic to P , it must be the case that

F (Qi, vij)=Qi∩Qj . Thus, for fixed x∈Qi∩Qj , we have

⟨x, ui⟩=hQ(ui), ⟨x, uj⟩=hQ(uj), ⟨x, vij⟩=hQi(vij).

Taking the inner product with x in the definition of vij yields

hQ(uj)=hQ(ui) cos θij+hQi(vij) sin θij ,

and the conclusion follows by rearranging this expression.

As a consequence, we obtain the following geometric interpretation.

Corollary 6.7. Let Q be strongly isomorphic to P and let a∈R. Denote

z := hQ−ahP , f :=hQ−ahP , f i :=hQi−ahP i .

Then, for every i∈[N ],

(Az)i =(n−1)Vn−1(f
i, P i

1, ..., P
i
n−2),

and for any convex body C,

⟨hC ,Az⟩=n(n−1)Vn(C, f, P1, ..., Pn−2).

Proof. It was shown in the proof of Lemma 5.6 that ωij=SP i
1 ,...,P

i
n−2

({vij}). We

may therefore rewrite the definition of A as

(Az)i =
∑
j∈Ei

P

(Diz)jωij =
∑
j∈Ei

P

f i(vij)SP i
1 ,...,P

i
n−2

({vij})
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using Lemma 6.6. But as {vij}j∈Ei
P
are the facet normals of P i in aff P i, we obtain

(Az)i =

∫
f i dSP i

1 ,...,P
i
n−2

=(n−1)Vn−1(f
i, P i

1, ..., P
i
n−2)

by Lemma 3.4 and (2.1). Now, note that as Q is strongly isomorphic to P , the facet

normals of Q+P are {ui}i∈[N ] by Lemma 6.2. Thus,

⟨hC ,Az⟩=(n−1)
∑
i∈[N ]

hC(ui)Vn−1(f
i, P i

1, ..., P
i
n−2)

= (n−1)

∫
hC dSf,P1,...,Pn−2

=n(n−1)Vn(C, f, P1, ..., Pn−2)

by Lemma 3.4 and (2.1).

7. Proof of the local Alexandrov–Fenchel inequality

Now that the requisite machinery is in place, we proceed to the main part of the proof

of Theorem 4.3. Throughout this section, all assumptions and definitions of §5 and §6
will be assumed without further comment.

Let us begin by reformulating Theorem 4.3 in a more combinatorial manner.

Theorem 7.1. Assume that P=(P1, ..., Pn−2) is a critical collection of polytopes.

Fix r∈[n−2] and z∈kerA. Then, there exist a polytope Q that is strongly isomorphic

to P and a∈R such that the following hold :

(1) (hQ−ahP )i=zi for every i∈V ;

(2) Vn−1(hQi−ahP i , hQi−ahP i ,Pi
\r)⩽0 for every i∈[N ].

With this result in hand, the conclusion of Theorem 4.3 follows readily:

Proof of Theorem 4.3. Fix r∈[n−2] and a difference of support functions f such

that Sf,P=0. Then, z :=(f(ui))i∈[N ] satisfies z∈kerA by Proposition 5.7. We can there-

fore apply Theorem 7.1 to construct an associated polytope Q and a∈R. We claim that

g :=hQ−ahP satisfies the conclusion of Theorem 4.3.

To show this, note first that it follows exactly as in the proof of Corollary 6.5 that

g=f SB,P -a.e., that Sg,P=0, and that Sg,g,P\r is supported on {ui}i∈[N ]. On the other

hand, Lemma 3.4 implies that

Sg,g,P\r ({ui})=Vn−1(hQi−ahP i , hQi−ahP i ,Pi
\r).

Thus, the second property of Theorem 7.1 implies Sg,g,P\r⩽0.
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The rest of this section is devoted to the proof of Theorem 7.1. The proof consists

of two parts. First, we will show that the second property of Theorem 7.1 holds auto-

matically for i∈V by the Alexandrov–Fenchel inequality. We then show that Q and a

can be chosen in such a way that this property holds also for i /∈V .

7.1. The active vertices

The first observation of the proof of Theorem 7.1 is that its second condition is auto-

matically satisfied for the active vertices i∈V whenever the first condition is satisfied,

regardless of how Q is chosen.

Lemma 7.2. Let Q be a polytope that is strongly isomorphic to P , and let a∈R.
Suppose that hQ−ahP ∈kerA. Then, for any r∈[n−2], we have

Vn−1(hQi−ahP i , hQi−ahP i ,Pi
\r)⩽ 0 for all i∈V .

Proof. By Corollary 6.7, the assumption hQ−ahP ∈kerA implies that

Vn−1(hQi−ahP i ,Pi)= 0 for all i∈ [N ].

By the Alexandrov–Fenchel inequality, we have

0⩾Vn−1(hQi−ahP i , hQi−ahP i ,Pi
\r)Vn−1(P

i
r , P

i
r ,Pi

\r).

The conclusion follows immediately for any i such that Vn−1(P
i
r , P

i
r ,Pi

\r)>0.

Now, suppose i∈V but Vn−1(P
i
r , P

i
r ,Pi

\r)=0. Then, we can argue in a similar man-

ner as in the proof of the second part of Lemma 3.12. As i∈V , Lemma 5.6 states that

Vn−1(P
i, P i

r ,Pi
\r)>0. Thus, we may choose b∈R so that

Vn−1(hQi−ahP i−bhP i
r
, P i,Pi

\r)= 0.

The Alexandrov–Fenchel inequality now yields

0⩾Vn−1(hQi−ahP i−bhP i
r
, hQi−ahP i−bhP i

r
,Pi

\r)Vn−1(P
i, P i,Pi

\r).

But i∈V implies Vn−1(P
i, P i,Pi

\r)⩾Vn−1(P
i,Pi)>0 by Lemma 5.6. Thus,

0⩾Vn−1(hQi−ahP i−bhP i
r
, hQi−ahP i−bhP i

r
,Pi

\r)

=Vn−1(hQi−ahP i , hQi−ahP i ,Pi
\r),

where we used that Vn−1(hQi−ahP i ,Pi)=Vn−1(P
i
r , P

i
r ,Pi

\r)=0.
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Now consider the setting of Theorem 7.1 for a given z∈kerA. As the ith row and

column of A are zero for i /∈V , we have z′∈kerA whenever zi=z′i for i∈V . To any such

choice of z′, we can apply Lemma 6.4 to obtain a polytope Q that is strongly isomorphic

to P and a∈R such that z′=hQ−ahP . Then, the following statements hold:

(1) (hQ−ahP )i=zi for every i∈V (as zi=z′i for i∈V );

(2) Vn−1(hQi−ahP i , hQi−ahP i ,Pi
\r)⩽0 for every i∈V (by Lemma 7.2).

Thus, the only part of the proof of Theorem 7.1 that remains is to ensure that the

second condition holds for i /∈V . On the other hand, in the above construction, the choice

of z′i for i /∈V is completely arbitrary.

This discussion provides us with a key intuition about why the local Alexandrov–

Fenchel inequality has any hope of being true: we aim to satisfy N−|V | non-trivial
equations, but we are free to choose N−|V | parameters. In other words, the number of

degrees of freedom equals the number of equations we aim to satisfy. This fact is not at

all obvious from the formulation of Theorem 4.3.

On the other hand, this idea alone cannot suffice to complete the proof: it is possible

that the system of equations we aim to solve is degenerate, in which case no solution may

exist. It is far from obvious, a priori, why this situation cannot occur for some special

choices of polytopes: had that been the case, there would have likely existed additional

extremals of the Alexandrov–Fenchel inequality beyond the ones discussed in §2. The

main difficulty in the remainder of the proof of Theorem 7.1 is to rule out the existence

of such degeneracies.

7.2. Reduction to a linear system

As was explained above, we now aim to choose the polytope Q in such a way that the

second condition of Theorem 7.1 holds for i /∈V . In essence, this requires us to find a

solution to a system of quadratic inequalities. The manipulation of these inequalities is

somewhat awkward, however, so we begin by introducing a simplification: we will reduce

the problem to solving a system of linear equations, which are formulated in the following

result.

Proposition 7.3. Assume that P=(P1, ..., Pn−2) is a critical collection of polytopes.

Fix r∈[n−2] and z∈RN . Then, there exist a polytope Q that is strongly isomorphic to

P and a∈R such that the following hold :

(1) (hQ−ahP )i=zi for every i∈V ;

(2) Vn−1(hQi−ahP i , P i,Pi
\r)=0 for every i /∈V .
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Proposition 7.3 will be proved in the next section. Before we do so, let us show

that it implies Theorem 7.1. As in Lemma 7.2, the transition from linear equations to

quadratic inequalities is a consequence of the Alexandrov–Fenchel inequality.

Proof of Theorem 7.1. Fix r∈[n−2] and z∈kerA, and construct the polytope Q

as in Proposition 7.3. Then, the first condition of Theorem 7.1 holds by construction.

Moreover, as the ith column of A vanishes for i /∈V , it follows that hQ−ahP ∈kerA. Thus,

the second condition of Theorem 7.1 holds for i∈V by Lemma 7.2.

Now, let i /∈V . Then by Proposition 7.3 and the Alexandrov–Fenchel inequality

0=Vn−1(hQi−ahP i , P i,Pi
\r)

2

⩾Vn−1(hQi−ahP i , hQi−ahP i ,Pi
\r)Vn−1(P

i, P i,Pi
\r).

Thus the second condition of Theorem 7.1 holds provided

Vn−1(P
i, P i,Pi

\r)> 0.

It remains to consider i∈[N ] such that Vn−1(P
i, P i,Pi

\r)=0. By definition, P i are

the facets of P , so dimP i=n−1. It therefore follows from Lemma 2.2 that

Vn−1(K
i, Li,Pi

\r)= 0

for any convex bodies K and L. In particular, for such i,

Vn−1(hQi−ahP i , hQi−ahP i ,Pi
\r)= 0.

Thus, the second condition of Theorem 7.1 is established for every i∈[N ].

To clarify the computations in the next section, let us further express the linear

system of Proposition 7.3 explicitly in a finite-dimensional form. To this end, we would

like to represent the mixed volume Vn−1(hQi−ahP i , P i,Pi
\r) in terms of an Alexandrov

matrix. In the present setting, however, the reference body Pr has been replaced by P ,

so that Corollary 6.7 does not directly apply.

Note, however, that P+
∑

i/∈r Pi is strongly isomorphic to P by Lemma 6.2. There-

fore, if we replace the reference bodies P by (P,P\r), then the background graph defined

in §5.1 remains unchanged, and all the subsequent constructions in §5 and §6 extend ver-

batim to this setting up to a change of notation. In particular, if we define the Alexandrov

matrix associated with (P,P\r) as

Āij := 1(i,j)∈EP
Vn−2(P

ij ,Pij
\r) csc θij−1i=j

∑
k∈Ei

P

Vn−2(P
ik,Pik

\r) cot θik,
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then Corollary 6.7 extends immediately to show that, whenever z′=hQ−ahP for a poly-

tope Q that is strongly isomorphic to P and a∈R, we have

(Āz′)i =(n−1)Vn−1(hQi−ahP i , P i,Pi
\r),

⟨hC , Āz′⟩=n(n−1)Vn(C, hQ−ahP , P,P\r)

for any i∈[N ] and convex body C. If we can therefore show that the linear system

{
z′i = zi for i∈V ,

(Āz′)i =0 for i /∈V
(7.1)

has a solution z′∈RN , the proof of Proposition 7.3 would follow from Lemma 6.4.

7.3. The Fredholm alternative

We are now ready to complete the proof of Proposition 7.3. To show that the linear

system (7.1) has a solution, we will verify the dual condition provided by the Fredholm

alternative ranM=(kerM∗)⊥ of linear algebra. Surprisingly, it will turn out that the

validity of this dual condition is itself a consequence of the equality condition of the

Alexandrov–Fenchel inequality.

Proof of Proposition 7.3. We fix r∈[n−2] and z∈RN throughout the proof. Let us

begin by rewriting the linear system (7.1) as a single equation. Let V c :=[N ]\V , and

denote by PV and PV c the orthogonal projections onto the subspaces of vectors supported

on the coordinates V and V c, respectively. Then clearly (7.1) has a solution z′∈RN if

and only if there exists y∈RN such that

PV cĀPV cy=−PV cĀPV z (7.2)

(as then z′=PV cy+PV z is a solution to (7.1)).

To show there exists a solution to (7.2), we will prove the following claim:

PV cw∈ ker Ā for every w∈ kerPV cĀPV c . (7.3)

Let us first argue that this suffices to conclude the proof. If (7.3) holds, then we clearly

have ⟨w,PV cĀPV z⟩=⟨ĀPV cw,PV z⟩=0 for every w∈kerPV cĀPV c . The latter is pre-

cisely the dual condition for the existence of a solution y to (7.2). It therefore follows

that there exists z′∈RN satisfying (7.1), and the proof of Proposition 7.3 is concluded

as explained at the end of the previous section.
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It therefore remains to prove (7.3). To this end, let us fix w∈kerPV cĀPV c . By

Lemma 6.4, there exists a polytope R that is strongly isomorphic to P and b∈R such

that PV cw=hR−bhP . We can therefore compute

Vn(hR−bhP , hR−bhP , P,P\r)=
⟨PV cw, ĀPV cw⟩

n(n−1)
= 0.

On the other hand, we have

Vn(hR−bhP , Pr, P,P\r)=
1

n

∑
i∈[N ]

(hR−bhP )iVn−1(P
i
r , P

i,Pi
\r)

=
1

n

∑
i∈V c

(hR−bhP )iVn−1(P
i,Pi)= 0,

where the first equality follows from Lemma 3.4 and (2.1), the second equality follows as

(hR−bhP )i=(PV cw)i=0 for i∈V , and the third equality follows as Vn−1(P
i,Pi)=0 for

i∈V c by Lemma 5.6. Finally, we have

Vn(Pr, Pr, P,P\r)> 0

using that P is critical (Definition 4.1) and Lemma 2.2. Thus, Lemma 3.12 yields

0=ShR−bhP ,P,P\r ({ui})=Vn−1(hRi−bhP i , P i,Pi
\r)=

(ĀPV cw)i
n−1

for every i∈[N ], where we used Lemma 3.4 in the second equality. In other words, we

have shown that PV cw∈ker Ā, concluding the proof of (7.3).

Remark 7.4. Let us emphasize that the definition of the matrix Ā depends on the

choice of r, so that the polytope Q and a∈R that are constructed in the proof of Proposi-

tion 7.3 will generally depend on r. This will not be a problem for our purposes, however,

as we will fix r when we implement the induction argument.

Part 2. Gluing

8. The supercritical case

The aim of this section is to complete our characterization of the extremals of the

Alexandrov–Fenchel inequality in the supercritical case (Definition 2.14).

Theorem 8.1. Let P :=(P1, ..., Pn−2) be a supercritical collection of polytopes in Rn

(n⩾2). For any difference of support functions f :Sn−1
!R, we have Sf,P=0 if and only

if there exists s∈Rn such that f(x)=⟨s, x⟩ for all x∈suppSB,P .
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Let us note that Theorem 8.1 is simply a reformulation of Corollary 2.16.

Proof of Corollary 2.16. By Lemma 2.5, the equality condition in Corollary 2.16

holds if and only if there exists a>0 such that Sf,P=0 for f=hK−ahL. The conclusion

now follows immediately from Theorem 8.1.

Remark 8.2. We fixed at the beginning of this paper (§2.1) n⩾3, which has been

assumed throughout without further comment. In dimension n=2, the collection P is

empty and the Alexandrov–Fenchel inequality reduces to Minkowski’s first inequality [30,

Theorem 7.2.1] whose equality cases are elementary. The case n=2 does play a role in

this paper, however, as it will be used as the base case for our induction arguments. For

this reason, we have formulated Theorem 8.1 for n⩾2. Note that the n=2 case is always

supercritical by definition.

Most of this section will be devoted to the proof of the induction step. We there-

fore fix until further notice n⩾3 and a supercritical collection of polytopes in Rn. By

translation-invariance of mixed area measures, the equality condition Sf,P=0 is invariant

under translation of the polytopes in P, so there is no loss of generality in assuming that

Pi contains the origin in its relative interior for every i∈[n−2]. Consequently, if we

define, for every α⊆[n−2], the linear space

Lα := span{Pi : i∈α}=span
∑
i∈α

Pi,

then dim
∑

i∈α Pi=dimLα for any α⊆[n−2]. We will denote by Bα the Euclidean unit

ball in Lα, and we write Lr :=L{r} and Br :=B{r}.

The above assumptions and notation will be assumed in the sequel without further

comment. In particular, note that the supercriticality assumption may now be formulated

as dimLα⩾|α|+2 for every α⊆[n−2], α ̸=∅. Let us also note the simple identity

Lα∪β =Lα+Lβ

that will be used many times.

8.1. The induction hypothesis

The proof of Theorem 8.1 proceeds by induction on n: in the induction step, we will

assume the theorem has been proved in dimension n−1, and deduce its validity in di-

mension n. The aim of this section is to formulate the resulting induction hypothesis. To

this end, let us begin by stating a consequence of the local Alexandrov–Fenchel inequality.
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Lemma 8.3. Fix r∈[n−2] and a difference of support functions f with Sf,P=0.

Then, there exists a difference of support functions g with the following properties:

(1) g(x)=f(x) for all x∈suppSB,P ;

(2) Vn−1(Pu⊥g,Pu⊥Pr,Pu⊥P\r)=0 for all u∈Sn−1;

(3) Vn−1(Pu⊥g,Pu⊥g,Pu⊥P\r)=0 for all u∈Sn−1∩Lr;

(4) Vn−1(Pu⊥Pr,Pu⊥Pr,Pu⊥P\r)>0 for all u∈Sn−1.

Here the projections Pu⊥g and Pu⊥P\r are as defined in §4.1.

Proof. By Theorem 4.3, there exists g, with g=f SB,P -a.e., such that Sg,P=0 and

Sg,g,P\r⩽0. Let us check that each of the claimed properties holds for g. The first

property holds by construction. To prove the second property, note that

0=

∫
h[0,u] dSg,P =Vn−1(Pu⊥g,Pu⊥Pr,Pu⊥P\r),

where we have used Corollary 3.9 and (2.1).

The third property is analogous to Lemma 4.2, but in the present case we cannot

assume that Pr is full-dimensional. We first note that, as Sg,P=0, we have

0=

∫
g dSg,P =

∫
hPr dSg,g,P\r ,

using (2.1) and the symmetry of mixed volumes. On the other hand, as Sg,g,P\r⩽0

by construction, it follows that 1hPr>0 dSg,g,P\r=0. Now note that, as we assumed

0∈relintPr, there exists ε>0 such that ε[0, u]⊆Pr for every u∈Sn−1∩Lr. In particular,

this implies εh[0,u]⩽hPr
, and thus

{x :h[0,u](x)> 0}⊆{x :hPr
(x)> 0}

whenever u∈Sn−1∩Lr. We can therefore conclude that

0=

∫
h[0,u] dSg,g,P\r =Vn−1(Pu⊥g,Pu⊥g,Pu⊥P\r)

for any u∈Sn−1∩Lr using Corollary 3.9 and (2.1).

It remains to verify the fourth property, which is a consequence of the super-

criticality assumption. As dim(
∑

i∈α Pi)⩾|α|+2 for all α ̸=∅, it follows readily that

dim(
∑

i∈α Pu⊥Pi)⩾|α|+1 for α ̸=∅, and thus also dim(Pu⊥Pr+
∑

i∈α Pu⊥Pi)⩾|α|+1 for

all α. The fourth property now follows from Lemma 2.2.

From now on, we will fix r∈[n−2] and a difference of support functions f with

Sf,P=0, and construct the difference of support functions g as in Lemma 8.3. In par-

ticular, Lemma 8.3 ensures that the projection Pu⊥g yields an equality case (3.1) of the
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Alexandrov–Fenchel inequality in dimension n−1 for any u∈Sn−1∩Lr. If we now as-

sume that the conclusion of Theorem 8.1 is valid in dimension n−1, this will yield an

explicit characterization of Pu⊥g that will serve as the induction hypothesis for the proof

of Theorem 8.1 in dimension n.

Theorem 8.1 is only valid, however, if the supercriticality assumption is satisfied. In

order to implement the above program, we must therefore show that the supercriticality

assumption on P is inherited by Pu⊥P\r. We will presently show that this is in fact the

case for almost all directions u, which will suffice for our purposes. More precisely, let us

define the sets

N :=
⋃

α⊆[n−2]\{r}
dimLα=|α|+2

Sn−1∩Lr∩Lα and U := (Sn−1∩Lr)\N.

Then, we have the following lemma. Here and in the remainder of this paper, we will

frequently use the following simple linear algebra fact without further comment: for

any linear subspace E⊆Rn and u∈Sn−1, we have dim(Pu⊥E)=dimE if u /∈E, whereas

dim(Pu⊥E)=dimE−1 if u∈E.

Lemma 8.4. The following hold :

(a) Pu⊥P\r is supercritical for every u∈U ;

(b) U has full measure with respect to the uniform measure on Sn−1∩Lr.

Proof. To prove part (a), consider u∈Sn−1∩Lr such that Pu⊥P\r is not supercritical.

Then, dim(
∑

i∈α Pu⊥Pi)<|α|+2 for some α⊆[n−2]\{r}, α ̸=∅. On the other hand, as

P is supercritical, we have dim(
∑

i∈α Pi)⩾|α|+2. By the above linear algebra fact, this

can only occur if dim(
∑

i∈α Pi)=|α|+2 and u∈Lα, so that u∈N . Thus if u∈U , then

Pu⊥P\r must be supercritical.

For part (b), it suffices to show that N is the intersection of Sn−1∩Lr with hyper-

planes of codimension at least 1. That is, for any α⊆[n−2]\{r} such that dimLα=|α|+2,

we claim that dim(Lα∩Lr)<dimLr. Indeed, if this is not the case, we must have Lr⊆Lα.

But that would imply that dimLα∪{r}=dimLα=|α|+2, contradicting the supercritical-

ity assumption on P.

Combining the above observations, we can now formally state the induction hypoth-

esis (recall that r, f , and g have been fixed in the remainder of this section).

Corollary 8.5. Suppose that Theorem 8.1 has been proved in dimension n−1.

Then, for any u∈U , there exists s(u)∈u⊥ such that

g(x)= ⟨s(u), x⟩ for all x∈ suppS[0,u],B,P\r .
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Proof. Applying Lemma 3.12 in u⊥ and Lemma 8.3, we obtain SP
u⊥g,P

u⊥P\r=0. As

Pu⊥P\r is supercritical by Lemma 8.4, applying Theorem 8.1 in u⊥ yields

Pu⊥g(x)= ⟨s(u), x⟩ for all x∈ suppSP
u⊥B,P

u⊥P\r .

But, as Pu⊥g(x)=g(Pu⊥x) and as SP
u⊥B,P

u⊥P\r is supported in u⊥ by definition, we may

remove Pu⊥ on the left-hand side. The conclusion now follows, as

suppSP
u⊥B,P

u⊥P\r =suppS[0,u],B,P\r

by Corollary 3.9 (see Remark 8.6 below).

Remark 8.6. In the proof of Corollary 8.5, we encountered a mixed area measure

of the form SP
u⊥C1,...,Pu⊥Cn−2 for convex bodies C1, ..., Cn−2 in Rn. By convention, this

notation will be taken to mean that Pu⊥C1, ...,Pu⊥Cn−2 are viewed as convex bodies

in u⊥, and that the mixed area measure is computed in this space. Even though we

do not specify explicitly in the notation in which space the mixed area measure is com-

puted, this will always be clear from context. For example, note that the collection

Pu⊥C1, ...,Pu⊥Cn−2 consists of n−2 bodies, so its mixed area measure only makes sense

in an (n−1)-dimensional space.

Projected mixed area measures may be equivalently expressed as mixed area mea-

sures in Rn by Corollary 3.9. Indeed, note that∫
h dS[0,u],C1,...,Cn−2

=
1

n−1

∫
h dSP

u⊥C1,...,Pu⊥Cn−2

for any convex bodies C1, ..., Cn−2 in Rn and any difference of support functions h by

Corollary 3.9 and (2.1), where we used again that Pu⊥h(x)=h(Pu⊥x). As we may choose

h to be any C2 function by Lemma 2.1, it follows that

(n−1)S[0,u],C1,...,Cn−2
=SP

u⊥C1,...,Pu⊥Cn−2
.

This is, of course, the direct counterpart of Corollary 3.9 for mixed area measures. Let

us note, in particular, that suppS[0,u],C1,...,Cn−2
⊂u⊥.

8.2. The gluing argument

We now aim to show that the induction hypothesis of Corollary 8.5 implies the conclusion

of Theorem 8.1 in dimension n. To this end, the main issue we encounter is to show that

s(u) may be replaced by a single vector s∈Rn that is independent of u. That is, we must

“glue” together the linear functions obtained for different u∈U to obtain a single linear

function.

As a first step, we observe that supports of the measures S[0,u],B,P\r for different

u∈U have a small but non-trivial overlap.
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Lemma 8.7. Let u, v∈U be linearly independent. Then,

suppS[0,u],[0,v],P\r ⊆ suppS[0,u],B,P\r∩suppS[0,v],B,P\r ,

and

span suppS[0,u],[0,v],P\r = {u, v}⊥.

Proof. The first claim is immediate by Lemma 2.4. To prove the second claim, note

first that span suppS[0,u],[0,v],P\r⊆{u, v}⊥, by Remark 8.6. Now suppose the inclusion is

strict. Then suppS[0,u],[0,v],P\r⊂w⊥ for some w∈Sn−1∩{u, v}⊥, so

0=

∫
⟨w, x⟩+ S[0,u],[0,v],P\r (dx)=nVn([0, w], [0, u], [0, v],P\r)

using h[0,w](x)=⟨w, x⟩+ and (2.1). Now note that

dim

(∑
i∈α

Pi

)
⩾ |α|+2 and dim

(
[0, v]+

∑
i∈α

Pi

)
⩾ |α|+3

for every α⊆[n−2]\{r}, α ̸=∅, by the supercriticality assumption and the definition of

U . As u, v, and w are linearly independent, it follows from Lemma 2.2 that

Vn([0, w], [0, u], [0, v],P\r)> 0,

which entails a contradiction.

We can now conclude the following.

Corollary 8.8. Suppose the conclusion of Corollary 8.5 holds. Then, there exists

a function a:U×U!R such that

s(u)−s(v)= a(u, v)u−a(v, u)v

whenever u, v∈U are linearly independent.

Proof. Let u, v∈U be linearly independent. By Corollary 8.5 and Lemma 8.7,

⟨s(u), x⟩= g(x)= ⟨s(v), x⟩ for all x∈ suppS[0,u],[0,v],P\r .

Thus, Lemma 8.7 implies that s(u)−s(v)⊥{u, v}⊥, so that

s(u)−s(v)= a(u, v)u+b(u, v)v

for some functions a and b. But exchanging the roles of u and v, we obtain

a(u, v)u+b(u, v)v= s(u)−s(v)=−(s(v)−s(u))=−a(v, u)v−b(v, u)u,

which implies b(u, v)=−a(v, u) as u and v are linearly independent.
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Next, we show that the function a(u, v) may be chosen to be independent of v.

Lemma 8.9. Suppose the conclusion of Corollary 8.5 holds, and let v, w∈U be lin-

early independent. Then, there is a function b:U!R such that the function

u 7−! s(u)−b(u)u

is constant on U \span{v, w}.

Proof. Let the function a be as in Corollary 8.8. Consider first any linearly inde-

pendent u, v, w∈U . Then, by Corollary, we obtain 8.8

0= s(u)−s(v)+s(v)−s(w)+s(w)−s(u)

= (a(u, v)−a(u,w))u+(a(v, w)−a(v, u))v+(a(w, u)−a(w, v))w.

Thus a(u, v)=a(u,w), by linear independence of u, v, and w.

Let us now fix any linearly independent v, w∈U , and let b(u):=a(u, v) for u∈U . As

u, v, and w are linearly independent for any u∈U \span{v, w}, we have b(u)=a(u, v)=

a(u,w) and b(w)=a(w, v)=a(w, u) for all such u. Therefore,

s(u)−b(u)u= s(w)+s(u)−s(w)−b(u)u= s(w)−b(w)w

for every u∈U \span{v, w}, by Corollary 8.8.

Putting together the preceding arguments, we obtain the following.

Lemma 8.10. Suppose that Theorem 8.1 has been proved in dimension n−1. Then,

there exists s∈Rn such that

g(x)= ⟨s, x⟩ for all x∈ suppSB,Br,P\r .

Proof. We begin by noting that dimPr⩾3, by the supercriticality assumption. Thus,

as U has full measure in Sn−1∩Lr by Lemma 8.4, we may choose linearly independent

v, w∈U . Also, as dimPr⩾3 and dim span{u, v}=2, it follows that U \span{v, w} still has

full measure.

By Corollary 8.5 and Lemma 8.9, there exists a function b:U!R and s∈Rn such

that s(u)−b(u)u=s for all u∈U \span{v, w}. Thus, Corollary 8.5 yields

g(x)= ⟨s, x⟩ for all x∈ suppS[0,u],B,P\r and u∈U \span{v, w},

where we used the fact that ⟨s, x⟩=⟨s(u), x⟩ for x∈u⊥.
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Now note that it follows, as in the proof of Lemma 3.10 and Remark 8.6, that∫
S[0,u],B,P\r ωr(du)=κdimPr−1 SBr,B,P\r ,

where ωr denotes the uniform measure on Sn−1∩Lr. Since U \span{v, w} has full ωr-

measure, we can compute

0=

∫
U\span{v,w}

(∫
|g(x)−⟨s, x⟩|S[0,u],B,P\r (dx)

)
ωr(du)

=κdimPr−1

∫
|g(x)−⟨s, x⟩|SBr,B,P\r (dx).

The conclusion follows by the continuity of g(x)−⟨s, x⟩.

We have now almost concluded the induction step in the proof of Theorem 8.1,

but there is a remaining subtlety: in Lemma 8.10 we have shown that g(x)=⟨s, x⟩ for

x∈suppSB,Br,P\r , while the conclusion of Theorem 8.1 states that this holds for x∈
suppSB,Pr,P\r . That the latter follows from the former is an immediate consequence of

the following lower-dimensional analogue of Lemma 2.4.

Lemma 8.11. For any convex bodies C=(C1, ..., Cn−2) in Rn, we have

suppSPr,C ⊆ suppSBr,C .

Proof. Let K be any convex body in Rn such that hK is a C2 function on Sn−1. It

is shown in [32, Lemma 5.4] that we have∫
h dSK,C ⩽ ∥∇2hK∥L∞(Sn−1)

∫
h dSB,C

for any difference of support functions h:Sn−1
!R+. Let us now define Πε :=PLr

+εPL⊥
r
.

Replacing C Π−1
ε C and h h�Π−1

ε in the above inequality yields∫
h dSΠεK,C ⩽ ∥∇2hK∥L∞(Sn−1)

∫
h dSΠεB,C ,

where we have used (2.1) and part (f) of Lemma 3.1. Letting ε!0 yields∫
h dSPLrK,C ⩽ ∥∇2hK∥L∞(Sn−1)

∫
h dSBr,C ,

by Lemma 3.3. In particular, using Lemma 2.1, this implies that

suppSPLrK,C ⊆ suppSBr,C

for any convex body K in Rn such that hK is C2 on Sn−1.

By a classical approximation argument [30, Theorem 3.4.1], we can find a sequence

of convex bodies K(l) such that hK(l) is C2 for each l, and K(l)
!Pr in Hausdorff dis-

tance. Thus, SPLrK
(l),C

w−!SPr,C by Lemma 3.3. But, as each SPLrK
(l),C is supported in

suppSBr,C , this must be the case for the limiting measure as well.
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We can now conclude the proof of Theorem 8.1.

Proof of Theorem 8.1. The “if” direction of Theorem 8.1 follows directly from Lem-

mas 2.7 and 2.8, so it suffices to consider the “only if” direction.

Suppose first that Theorem 8.1 has been proved in dimension n−1 for some n⩾3.

Then, we claim that Theorem 8.1 holds also in dimension n. Indeed, let f :Sn−1
!R be

a difference of support functions such that Sf,P=0, and let g be the function constructed

in Lemma 8.3 (for any r∈[n−2] that is fixed throughout the proof). By Lemmas 8.10

and 8.11, there exists s∈Rn such that

g(x)= ⟨s, x⟩ for all x∈ suppSB,P .

The claim follows as f(x)=g(x) for all x∈suppSB,P , by Lemma 8.3.

It remains to prove the base case n=2. More precisely, we claim the following: for

any difference of support functions f :S1
!R such that Sf=0, there must exist s∈R2 such

that f(x)=⟨s, x⟩ for all x∈S1. This is a classical fact; for example, it may be deduced

from the equality case of the Brunn–Minkowski inequality as in [30, Theorem 7.2.1]. Let

us give another proof here in order to illustrate a method that will be used again in §10.3
in an essential manner.

Suppose that f does not satisfy f=⟨s, ·⟩ for any s. Then, the Hahn–Banach theorem

implies [7, Corollary IV.3.15] that there is a finite signed measure σ on S1 such that∫
f dσ > 0 and

∫
xσ(dx)= 0.

Let σ=σ+−σ− be the Hahn–Jordan decomposition of σ, and let m:=
∫
xσ±(dx) and

µ± :=σ±+∥m∥δ−m/∥m∥+SB .

Then, µ± are non-negative measures on S1 such that∫
xµ±(dx)= 0

and span suppµ±=R2. By the Minkowski existence theorem [30, Theorem 8.2.2], there

exist convex bodies C± in R2 such that µ±=SC± . But then we obtain, using (2.1) and

the symmetry of mixed volumes∫
f dσ=

∫
f dSC+−

∫
f dSC− =

∫
hC+ dSf−

∫
hC− dSf =0,

which entails the desired contradiction.
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Remark 8.12. Let us highlight a surprising aspect of the proof of Theorem 8.1.

By Lemma 2.8, the equality condition Sf,P=0 can only determine f on the support of

SB,P . However, in Lemma 8.10 we have characterized the function g on the support of

SB,Br,P\r . The latter set is often much larger than the former. For example, if

P1 = ...=Pn−2 =P

is a full-dimensional polytope, then suppSB,P is the set of normal directions of (n−2)-

dimensional faces of P , but suppSB,B,P\r is the set of normal directions of (n−3)-

dimensional faces of P (cf. [30, Theorem 4.5.3]).

Nonetheless, there is no contradiction, as Theorem 4.3 only ensures that f=g on

the smaller set suppSB,P . The phenomenon exhibited here should be viewed as another

manifestation of the fact that the local Alexandrov–Fenchel inequality fixes many degrees

of freedom of the extremal functions.

9. Structure of critical sets

We now turn to the study of the extremals of the Alexandrov–Fenchel inequality in

the critical case (Definition 4.1). The new feature that arises when P is critical is the

appearance of P-degenerate functions (Definition 2.10). Their analysis requires several

new ideas, whose development will occupy us throughout §§9–11.
The definition of the critical case differs from the supercritical case only in that there

may now exist indices i1<...<ik such that dim(Pi1+...+Pik)=k+1. Such critical sets

of indices will prove to be intimately connected to the structure of P-degenerate pairs

and functions. For example, we will show that for any P-degenerate pair (M,N), the

bodies M and N must be contained (up to translation) in the affine hull of Pi1+...+Pik

for some critical set i1<...<ik.

In this section, we begin the analysis of the critical case by obtaining a classification

of the critical sets, which will be used to give an explicit description of the structure of P-

degenerate functions. In §10, we undertake a detailed study of the geometric structure of

critical mixed area measures. These results will be employed in §11 to prove Theorem 2.13

in the critical case.

Throughout this section, we fix n⩾3 and a critical collection P=(P1, ..., Pn−2) of

polytopes in Rn. As in §8, we will assume without loss of generality that Pi contains the

origin in its relative interior for every i∈[n−2], and we define the spaces Lα and balls

Bα as in the supercritical case. The criticality assumption may then be formulated as

dimLα⩾|α|+1 for every α⊆[n−2], α ̸=∅.
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9.1. Critical sets

The following definition will play a central role in the sequel.

Definition 9.1. Let C=(C1, ..., Cm) be any collection of convex bodies.

(a) α⊆[m] is called C-critical if dim(
∑

i∈α Ci)=|α|+1.

(b) α⊆[m] is called C-maximal if it is C-critical, and there is no C-critical set β⊋α.

A P-critical (P-maximal) set α⊆[n−2] will simply be called critical (maximal).

The analysis of degenerate functions will be greatly facilitated by the fact that the

family of critical sets is organized in a very simple manner. The following lemma and its

corollary are due to Panov [23, Lemma 6].

Lemma 9.2. Let α and α′ be critical sets. If α∩α′ ̸=∅, then α∪α′ is a critical set.

Proof. For any β, β′⊂[n−2], we have Lβ∪β′=Lβ+Lβ′ and Lβ∩β′⊆Lβ∩Lβ′ by the

definition of Lβ . On the other hand, as we assumed P is critical and α∩α′ ̸=∅, we have

dimLα∪α′⩾|α∪α′|+1 and dimLα∩α′⩾|α∩α′|+1. Therefore,

|α∪α′|+1⩽dimLα∪α′ =dimLα+dimLα′−dim(Lα∩Lα′)

⩽dimLα+dimLα′−dimLα∩α′

⩽ (|α|+1)+(|α′|+1)−(|α∩α′|+1)

= |α∪α′|+1,

where we used that dimLα=|α|+1 and dimLα′=|α′|+1 as α and α′ are critical. It

follows that dimLα∪α′=|α∪α′|+1, so α∪α′ is critical.

The key consequence of Lemma 9.2 is that distinct maximal sets α and α′ must be

disjoint. This structure is also reflected in the associated linear spaces: if α and α′ are

distinct maximal sets, then Lα and Lα′ are linearly independent.

Corollary 9.3. Let α ̸=α′ be maximal sets. Then, α∩α′=∅ and Lα∩Lα′={0}.

Proof. Let α and α′ be distinct maximal sets. Then, α∪α′ cannot be a critical set:

as either α∪α′⊋α or α∪α′⊋α′, this would contradict the maximality of α and α′. Thus,

α∩α′=∅, as otherwise α∪α′ would be a critical set by Lemma 9.2.

Now note that, as α∪α′ is not a critical set and P is critical, we have

|α∪α′|+2⩽dimLα∪α′ ⩽dimLα+dimLα′ = |α|+|α′|+2= |α∪α′|+2,

where we used that α and α′ are critical sets and α∩α′=∅. Thus,

dim(Lα∩Lα′)=dimLα∪α′−dimLα−dimLα′ =0,

completing the proof.
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In view of Corollary 9.3, we obtain the following picture. Associated with the critical

collection P of polytopes is its collection {α1, ..., αℓ} of disjoint maximal sets. Any critical

set β is contained in exactly one of the maximal sets αi. Moreover, the linear spaces Lαi

are pairwise (but not jointly) linearly independent. The same properties extend verbatim

to any critical collection C of convex bodies.

Let us finally record a simple observation.

Lemma 9.4. Let α⊆[n−2] be a critical set and β⊆[n−2] be arbitrary. Then,

Lβ ⊆Lα if and only if β⊆α.

Proof. If β⊆α, then Lβ⊆Lα by definition. Conversely, if Lβ⊆Lα, then

|α|+1⩽ |α∪β|+1⩽dimLα∪β =dimLα = |α|+1,

where we used that P is critical, that Lβ⊆Lα, and that α is a critical set, respectively.

Thus, |α|=|α∪β|, which implies β⊆α.

9.2. Degenerate pairs and functions

We now use the above classification of critical sets to obtain a better understanding of

Definition 2.10. For simplicity, P-degenerate pairs and functions will henceforth be called

degenerate pairs and degenerate functions, respectively. However, the same structure will

apply verbatim to C-degenerate pairs and functions for any critical collection C of convex

bodies.

Let us begin by introducing a more precise definition.

Definition 9.5. Let α be a maximal set, and M and N be convex bodies in Rn.

(a) (M,N) is called an α-degenerate pair if

M,N ⊂Lα and VLα
(M,Pα)=VLα

(N,Pα).

(b) A function f :Sn−1
!R is called an α-degenerate function if f=hM−hN for

some α-degenerate pair (M,N).

If C is a critical collection of convex bodies and α is C-maximal, the analogous

definitions will be referred to as (C, α)-degenerate pairs and functions.

As a first step towards understanding Definition 9.5, let us note that, for any maximal

(hence also critical) set α, we have dimLα=|α|+1 and Pi⊂Lα for every i∈α. Thus, the
mixed volume VLα

(M,Pα) is indeed well defined: this is the mixed volume of |α|+1

convex bodies in the (|α|+1)-dimensional space Lα.
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We will now show that, in the present setting (P is critical), any degenerate pair

or function in the sense of Definition 2.10 is in fact an α-degenerate pair or function up

to translation. In other words, degenerate pairs must always be contained in translates

of Lα for some maximal set α, which provides an explicit geometric description of the

dimensionality property that is implicit in Definition 2.10.

Lemma 9.6. (M,N) is a degenerate pair if and only if M is not a translate of N

and (M+v,N+w) is an α-degenerate pair for some maximal set α and v, w∈Rn. Thus,

f is a degenerate function if and only if f is non-linear and f−⟨v, ·⟩ is an α-degenerate

function for some maximal set α and v∈Rn.

Proof. We begin by noting that for any critical set α and convex body K⊂Lα,

Lemma 3.8 implies the projection formula(
n

|α|+1

)
Vn(K,B,P)=VLα

(K,Pα)VL⊥
α
(PL⊥

α
B,PL⊥

α
P\α).

Moreover, as Vn(Bα, B,P)>0 by Lemma 2.2 and the assumption that P is critical, it

follows that

VL⊥
α
(PL⊥

α
B,PL⊥

α
P\α)> 0.

Consider first an α-degenerate pair (M,N) for some maximal set α, where M and

N are not translates. We claim that (M,N) is a degenerate pair. Indeed, condition (2.3)

follows from Lemma 2.2 as

dim

(
M+N+

∑
i∈α

Pi

)
=dimLα = |α|+1,

while condition (2.4) follows from the projection formula and Definition 9.5.

Now, consider a degenerate pair (M,N). As M is not a translate of N , at least

one of M and N must have non-zero dimension. But as P is critical, Vn(K,B,P)>0

whenever dimK⩾1 by Lemma 2.2. Thus, (2.4) implies that dim(M)⩾1 and dim(N)⩾1.

On the other hand, it cannot be the case that dim(M+N)=1. Indeed, if that were the

case, then M and N must be segments with parallel directions; moreover, (2.4) then

implies that M and N have equal length, so that M and N are translates. This case is

therefore ruled out by the definition of a degenerate pair.

We have now shown that any degenerate pair (M,N) must satisfy

dim(M)⩾ 1, dim(N)⩾ 1, and dim(M+N)⩾ 2.

Together with the assumption that P is critical, it follows from Lemma 2.2 and (2.3)

that there must exist α′⊆[n−2], α′ ̸=∅, such that

dim

(
M+N+

∑
i∈α′

Pi

)
⩽ |α′|+1.
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On the other hand, as P is critical, we have dim(
∑

i∈α′ Pi)⩾|α′|+1. The only way this

can happen is if dimLα′=dim(
∑

i∈α′ Pi)=|α′|+1 (that is, α′ is critical) and there exist

v, w∈Rn such that M+v and N+w lie in Lα′ .

Now let α be the maximal set containing α′. Then, M,N⊂Lα′⊆Lα. Moreover, by

the projection formula, the normalization condition of Definition 9.5 follows from (2.4).

Thus, we have shown that (M+v,N+w) is an α-degenerate pair.

Finally, the equivalence between degenerate and α-degenerate functions is an imme-

diate consequence of the corresponding equivalence for pairs.

Lemma 9.6 explains the basic structure of the extremals of the Alexandrov–Fenchel

inequality that appears in Theorem 2.13. Note that, for a given maximal set α, any linear

combination of α-degenerate functions is again an α-degenerate function by definition.

On the other hand, if f is an α-degenerate function and f ′ is an α′-degenerate function

for distinct maximal sets α and α′, then linear combinations of f and f ′ need not be

degenerate. Each maximal set α will therefore give rise to (at most) one α-degenerate

pair in the statement of Theorem 2.13.

9.3. An intrinsic description

So far, we have defined degenerate functions as differences of support functions of degen-

erate pairs of convex bodies. However, in the proof of Theorem 2.13, it will be necessary

to construct degenerate functions directly by gluing together lower-dimensional degener-

ate functions. To this end, we now introduce a more intrinsic perspective on degenerate

functions that does not require the auxiliary construction of a degenerate pair.

Before we proceed, we state a variant of the projection formula of Lemma 3.8 in

terms of mixed area measures, which will be needed below.

Lemma 9.7. Let C1, ..., Cn−1 be convex bodies in Rn, and suppose that C1, ..., Ck lie

in a subspace E with dimE=k+1. Then,(
n−1

k

)∫
φ(PEx)SC1,...,Cn−1(dx)=VE⊥(PE⊥Ck+1, ...,PE⊥Cn)

∫
φdSC1,...,Ck

for any 1-homogeneous function φ:E!R that is SC1,...,Ck
-integrable.

Proof. Suppose first that the restriction of φ to Sn−1∩E is a C2 function. Then,

we may write φ=hK−hL for convex bodies K and L in E, by Lemma 2.1. Moreover, by

the definition of support functions, φ(PEx)=hK(x)−hL(x) for any x∈Sn−1 as K,L⊂E.

The conclusion now follows from Lemma 3.8 and (2.1).
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Now, define the map

ι:Sn−1\E⊥ −!Sn−1∩E,

x 7−! PEx

∥PEx∥
.

By 1-homogeneity of φ, the identity in the statement of the lemma may be written as(
n−1

k

)∫
φ�ι dµ=VE⊥(PE⊥Ck+1, ...,PE⊥Cn)

∫
φdSC1,...,Ck

,

where the measure µ(dx):=∥PEx∥SC1,...,Cn−1
(dx) is supported on Sn−1\E⊥. As we have

shown that this identity holds for any φ of class C2, it follows that(
n−1

k

)
µ�ι−1 =VE⊥(PE⊥Ck+1, ...,PE⊥Cn)SC1,...,Ck

(9.1)

as measures on Sn−1∩E. The conclusion follows for any integrable 1-homogeneous func-

tion φ:E!R by integrating this identity.

Remark 9.8. Suppose C1, ..., Ck are polytopes in Lemma 9.7. Then, SC1,...,Ck
has

finite support, by Lemma 3.4. Thus, (9.1) shows that the measure SC1,...,Cn−1
�P−1

E

is supported on a finite union of rays emanating from the origin with directions in

suppSC1,...,Ck
. We now observe that any 1-homogeneous function φ is continuous on

such a set: it is linear on each ray and zero at the origin. This implies that, in the

polytope setting, the function x 7!φ(PEx) is continuous on suppSC1,...,Cn−1
for any 1-

homogeneous function φ. This observation will be used below.

We can now introduce the main idea of this section: α-degenerate functions may be

intrinsically described in terms of 1-homogeneous functions on Lα.

Lemma 9.9. Let α be a maximal set.

(a) For any α-degenerate function f , there is a 1-homogeneous function φ:Lα!R
with

∫
φdSPα=0 such that f(x)=φ(PLαx) for all x∈Sn−1.

(b) For any 1-homogeneous function φ:Lα!R with
∫
φdSPα=0, there exists an

α-degenerate function f such that f(x)=φ(PLαx) for all x∈suppSB,P .

Proof. To prove part (a), write f=hM−hN for some α-degenerate pair (M,N). As

M,N⊂Lα, we have hM (x)=hM (PLαx) and hN (x)=hN (PLαx) for all x∈Sn−1 by the

definition of support functions. Now, define φ to be the restriction of hM−hN to Lα.

Then, φ is 1-homogeneous, f(x)=φ(PLα
x) for all x∈Sn−1, and

1

|α|+1

∫
φdSPα

=VLα
(M,Pα)−VLα

(N,Pα)= 0
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by (2.1) and the definition of an α-critical pair.

The same argument would apply verbatim in the converse direction if φ can be

written as a difference of support functions. This is not clear, however, as we did not

make any regularity assumption on φ. To work around this issue, we will exploit that P
are polytopes to create a modification of φ with the requisite property.

More precisely, part (b) is proved as follows. As P are polytopes, suppSPα is a

finite subset of Sn−1∩Lα by Lemma 3.4. Thus, we can choose a C2 function η:Sn−1∩
Lα!R such that φ(x)=η(x) for all x∈suppSPα . By Lemma 2.1, there exist convex

bodies M,N⊂Lα such that η(x)=hM (x)−hN (x) for all x∈Sn−1∩Lα. We claim that

f :=hM−hN has the properties stated in part (b). Indeed, note that

VLα
(M,Pα)−VLα

(N,Pα)=
1

|α|+1

∫
f dSPα

=
1

|α|+1

∫
φdSPα

=0,

where we used (2.1) in the first equality and f=φ SPα
-a.e. in the second equality. Thus,

(M,N) is an α-degenerate pair and f is an α-degenerate function. On the other hand,

as f=φ on suppSPα , we obtain

0=VL⊥
α
(PL⊥

α
B,PL⊥

α
P\α)

∫
|f−φ| dSPα

=

(
n−1

|α|

)∫
|f(x)−φ(PLα

x)|SB,P(dx)

by Lemma 9.7, where we used that f(x)=f(PLα
x) as M,N⊂Lα. Thus, f(x)=φ(PLα

x)

for all x∈suppSB,P by Remark 9.8, completing the proof.

10. Propeller geometry

We have seen in the previous section that the appearance of degenerate functions is in-

timately connected to the critical sets of the reference bodies P. In this section, we will

develop a new geometric phenomenon that explains the origin of this behavior: we will

show that the supports of critical mixed area measures exhibit certain geometric struc-

tures that we call propellers, in view of their resemblance to the propeller of a Mississippi

steamboat. These propellers will play a crucial role in the proof of Theorem 2.13 in the

critical case.

This section is organized as follows. We first introduce the propeller structure in

§10.1. In the proof of Theorem 2.13, this structure will be exploited in two non-trivial

ways: to glue together lower-dimensional degenerate functions, and to decouple the con-

tributions arising from distinct maximal sets. We develop both these methods in an



extremals of the alexandrov–fenchel inequality 147

z

E⊥

F+

z ∩suppSB,C1,C2

Figure 10.1. Illustration of a propeller structure in R4.

abstract setting in §10.2 and §10.3, respectively. While the basic principles can be un-

derstood independently of the rest of the paper, their power will become clear when they

are applied in §11.

10.1. The propeller

The following theorem describes the propeller structure.

Theorem 10.1. Let C1, ..., Cn−1 be convex bodies in Rn, and suppose that C1, ..., Ck

lie in a subspace E with dimE=k+1. Define the space Fz :=span{E⊥, z} and the half-

space F+

z :={x∈Fz :⟨z, x⟩>0} for z∈E. Then,

suppSC1,...,Cn−1 ⊂E⊥∪
⋃

z∈suppSC1,...,Ck

F+

z ,

and (
n−1

k

)∫
f(x) 1x/∈E⊥ SC1,...,Cn−1(dx)

=

∫ (∫
f(x) 1⟨z,x⟩>0 SPFzCk+1,...,PFzCn−1

(dx)

)
SC1,...,Ck

(dz)

(10.1)

for any bounded measurable function f :Sn−1
!R.

Informally, Theorem 10.1 states that SC1,...,Cn−1
is supported in a union of half-

spaces (“blades”) centered around E⊥ with orthogonal direction in suppSC1,...,Ck
⊂E.

Moreover, SC1,...,Cn−1
agrees on each blade with the mixed area measure of the projections

of Ck+1, ..., Cn−1 onto the subspace in which that blade lies.

Example 10.2. The propeller structure is illustrated in Figure 10.1. Here, C1 and

C2 are polytopes in R4, where C1 is a pentagon contained in the plane E=span{e1, e2}
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spanned by the first two coordinate directions, and C2 is a full-dimensional polytope

(in the figure, we chose the Minkowski sum of a cube and an octahedron). We have

visualized the support of SB,C1,C2
by projecting it onto span{e1, e2, e3}, which yields a

geometric graph in the unit ball of R3 (cf. §5.2). The propeller structure is immediately

evident in the picture: the “blades” of the propeller lie in the half-spaces F+

z , while the

“shaft” of the propeller lies in E⊥. There are five blades, corresponding to the five facet

normals of the pentagon C1.

Example 10.3. Suppose that C1, ..., Cn−2 all lie in a subspace E=w⊥. Then, we may

apply Theorem 10.1 with k=n−1 to investigate the measure SB,C1,...,Cn−2
. In this case,

Sn−1∩F+

z is merely a semicircular arc from w to −w passing through z, and SPFzB
is the

uniform measure on this arc. The propeller then takes the explicit “striped watermelon”

form that was studied in [32, §8] and implicitly in [29].

Let us now discuss the interaction between degenerate functions and the propeller

structure. In the setting of Theorem 10.1, a degenerate function may be expressed as

f(x)=φ(PEx) for a 1-homogeneous function φ:E!R (cf. Lemma 9.9). Now note that,

for any z∈Sn−1∩E, we have PEFz=span{z} by definition, so that PEx=⟨x, z⟩z for any

x∈Fz. We therefore obtain

f(x)=φ(z)⟨z, x⟩ for all x∈F+

z and z ∈Sn−1∩E

by the homogeneity of φ. On the other hand, clearly f(x)=0 for x∈E⊥. Thus, we

have shown that a degenerate function is linear on each blade of the propeller, and van-

ishes on the shaft. This provides a geometric explanation for why degenerate functions

are extremals of the Alexandrov–Fenchel inequality: the conditions of Proposition 5.7

are satisfied for degenerate functions precisely because the propeller structure creates a

geometric mechanism for this to happen.

Remark 10.4. The propeller structure was already hinted at by the observation of

Remark 9.8 in the previous section: it is evident from the propeller structure that the

projection of suppSC1,...,Cn−1
on E is supported on rays emanating from the origin in

the directions in suppSC1,...,Ck
. More generally, the reader may verify that Lemma 9.7

can be deduced directly from Theorem 10.1 and Corollary 3.9.

Remark 10.5. In Theorem 10.1 we only considered the effect of a single critical set on

the geometry of the mixed area measure. However, many critical sets may coexist for the

same collection of bodies: this is not ruled out by the assumptions of Theorem 10.1, where

we singled out one critical set for analysis. When distinct maximal sets are present, the

geometry of the mixed area measure will feature several propellers that are superimposed
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in different directions. Such “propellers within propellers” are hard to visualize, and we

will not attempt to do so. Nonetheless, this situation must be addressed in the proof of

Theorem 2.13, which will be done using a technique that is developed in §10.3 below.

We now turn to the proof of Theorem 10.1.

Proof of Theorem 10.1. The statement about the support of SC1,...,Cn−1
follows im-

mediately from (10.1). We will first prove (10.1) in the case that C1, ..., Cn−1 are poly-

topes, and then derive the general case by approximation.

Step 1. Suppose that C1, ..., Cn−1 are polytopes. Fix any x∈Sn−1\E⊥ and let

z :=
PEx

∥PEx∥
.

Then, x∈Fz by definition. As C1+...+Ck⊂E, we have

F (C1+...+Ck, x)=F (C1+...+Ck, z)⊂ az+E∩z⊥

for some constant a, by Lemma 3.7. In particular, dimF (C1+...+Ck, x)⩽k. We can

therefore write, using Lemmas 3.4, and 3.8(
n−1

k

)
SC1,...,Cn−1

({x})

=

(
n−1

k

)
Vn−1(F (C1, x), ..., F (Cn−1, x))

=VE∩z⊥(F (C1, z), ..., F (Ck, z))VFz
(PFz

F (Ck+1, x), ...,PFz
F (Cn−1, x))

=SC1,...,Ck
({z})SPFzCk+1,...,PFzCn−1

({x}),

where we used in the last line that PFz
F (Ci, x)=F (PFz

Ci, x) by Lemma 3.7.

Now note that for any u∈E, we have x∈Fu if and only if u=z or u=−z. In partic-

ular, as ⟨z, x⟩>0 and suppSPFuCk+1,...,PFuCn−1⊂Fu, we have

1⟨u,x⟩>0 SPFuCk+1,...,PFuCn−1
({x})= 0 for all u∈E, u ̸= z.

We therefore obtain(
n−1

k

)
SC1,...,Cn−1

({x})=
∑
u

1⟨u,x⟩>0 SPFuCk+1,...,PFuCn−1({x})SC1,...,Ck
({u}).

As this identity holds for any x∈Sn−1\E⊥, (10.1) follows from Lemma 3.4.



150 y. shenfeld and r. van handel

Step 2. We now aim to show that (10.1) remains valid when C1, ..., Cn−1 are arbi-

trary convex bodies. We first claim that the result is equivalent to(
n−1

k

)∫
g(x) ∥PEx∥SC1,...,Cn−1

(dx)

=

∫ (∫
g(x) ⟨z, x⟩+ SPFzCk+1,...,PFzCn−1

(dx)

)
SC1,...,Ck

(dz)

(10.2)

for every continuous function g:Sn−1
!R. That (10.1) implies (10.2) follows by choosing

f(x)=g(x)∥PEx∥ and using that ∥PEx∥=|⟨z, x⟩| on Fz. Conversely, suppose that (10.2)

holds; by a standard approximation argument, it extends to any non-negative measurable

function g. Choosing g(x)=f(x)1x/∈E⊥∥PEx∥−1 yields (10.1) for non-negative f , and the

conclusion follows by linearity.

The advantage of (10.2) is that the integrands are continuous, so we may use weak

convergence. Fix a continuous function g:Sn−1
!R, and choose polytopes C

(l)
1 , ..., C

(l)
n−1

so that C
(l)
1 , ..., C

(l)
k ⊂E and C

(l)
r !Cr in Hausdorff distance for all r (the existence of

such approximations is elementary [30, Theorem 1.8.16]). We have already shown in the

first part of the proof that (10.2) holds for the polytopes C
(l)
1 , ..., C

(l)
n−1. We would like

to show the identity remains valid as l!∞. As mixed area measures are continuous by

Lemma 3.3, it suffices by a standard weak convergence argument [18, Theorem 4.27] to

show that∫
g(x) ⟨zl, x⟩+ S

PFzl
C

(l)
k+1,...,PFzl

C
(l)
n−1

(dx)
l!∞−−−!

∫
g(x) ⟨z, x⟩+ SPFzCk+1,...,PFzCn−1(dx)

for any sequence zl!z∈Sn−1∩E. But this follows readily from Lemma 3.3 as

∥h
PFzl

C
(l)
r
−hPFzCr

∥∞ ⩽ ∥h
PFzl

C
(l)
r
−hPFzl

Cr
∥∞+∥hPFzl

Cr
−hPFzCr

∥∞

⩽ ∥h
C

(l)
r
−hCr∥∞+∥hPFzl

Cr−hPFzCr∥∞
l!∞−−−! 0

(that is, PFzl
C

(l)
r !PFz

Cr in Hausdorff distance) and ∥⟨zl, ·⟩−⟨z, ·⟩∥∞!0.

10.2. The gluing principle

One of the difficulties we will encounter in the proof of Theorem 2.13 is that we must glue

together degenerate functions in (n−1)-dimensional hyperplanes to form a degenerate

function in dimension n. This will be accomplished using the following application of the

propeller structure.
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Lemma 10.6. Let Ck+1, ..., Cn−1 be convex bodies in Rn, and let E be a subspace of

dimension dimE=k+1. Assume that

VE⊥(PE⊥Ck+1, ...,PE⊥Cn−1)> 0.

Then, for any 1-homogeneous function h:Rn
!R, there exists a 1-homogeneous function

φ:E!R with the following property : for every collection of convex bodies K1, ...,Kk in

E such that we have

h(x)= φ̃(PEx) for all x∈ suppSK1,...,Kk,Ck+1,...,Cn−1

for some 1-homogeneous function φ̃:E!R, we have in fact

h(x)=φ(PEx) for all x∈ suppSK1,...,Kk,Ck+1,...,Cn−1
.

The point of Lemma 10.6 is that the function φ̃ depends on the choice of bodies

K1, ...,Kk, while φ does not. Thus, φ may be viewed as having “glued together” the

functions φ̃ over all choices of K1, ...,Kk in E for which φ̃ exists. In the proof of The-

orem 2.13, φ̃ will be degenerate functions of the (n−1)-dimensional projections, and φ

will be the degenerate function in dimension n.

Proof of Lemma 10.6. Throughout the proof we adopt the same notation as in The-

orem 10.1. First, we define φ(z) for z∈Sn−1∩E as

φ(z) :=
1

VE⊥(PE⊥Ck+1, ...,PE⊥Cn−1)

∫
h(x) 1⟨z,x⟩>0 SPFzCk+1,...,PFzCn−1

(dx).

We may extend φ:E!R to a 1-homogeneous function as

φ(z) := ∥z∥φ
(

z

∥z∥

)
for z∈E\{0}. We now show that φ satisfies the requisite property.

To this end, let φ̃:E!R be any 1-homogeneous function, and fix any z∈Sn−1∩E.

As PEx=⟨x, z⟩z for any x∈Fz, we obtain

φ̃(PEx)= φ̃(z)⟨z, x⟩ for any x∈F+

z .

Integrating this identity against 1⟨z,x⟩>0 SPFzCk+1,...,PFzCn−1(dx) yields∫
φ̃(PEx) 1⟨z,x⟩>0 SPFzCk+1,...,PFzCn−1

(dx)

= φ̃(z)

∫
⟨z, x⟩+ SPFzCk+1,...,PFzCn−1

(dx)

= φ̃(z)VE⊥(PE⊥Ck+1, ...,PE⊥Cn−1),

(10.3)
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where we used Corollary 3.9 in the last line.

Now let K1, ...,Kk be convex bodies in E such that

h(x)= φ̃(PEx) for all x∈ suppSK1,...,Kk,Ck+1,...,Cn−1 .

Then, we also have

h(x)= φ̃(PEx) for all x∈ supp(1⟨z, ·⟩>0 dSPFzCk+1,...,PFzCn−1
)

for any z∈suppSK1,...,Kk
, by Theorem 10.1. Thus,

φ̃(z)=φ(z) for all z ∈ suppSK1,...,Kk
,

by (10.3) and the definition of φ. But then we may also conclude that

h(x)= φ̃(PEx)=φ(PEx) for all x∈ suppSK1,...,Kk,Ck+1,...,Cn−1
,

because

PEx

∥PEx∥
∈ suppSK1,...,Kk

for every x∈ suppSK1,...,Kk,Ck+1,...,Cn−1

by Theorem 10.1, and as φ̃ and φ are both 1-homogeneous.

10.3. Linear relations

Lemma 10.6 is only applicable when a single degenerate function appears. In general

there may be multiple degenerate functions corresponding to different maximal sets, and

we will need a way to decouple their analysis. The technique that will be used for this

purpose is developed in this section. The utility of the following result will be far from

obvious at this point, but we will see in §11.2 that it plays a key role in our proofs.

Unlike the other results of this section, we formulate the following result only for

polytopes, which will suffice for our purposes. The polytope assumption is convenient in

the proof, but does not appear to be of fundamental importance.

Proposition 10.7. Let C1, ..., Cn−1 be polytopes in Rn. Suppose that C1, ..., Ck lie

in a subspace E with dimE=k+1 and satisfy the criticality condition of Definition 4.1.

Let h:Sn−1
!R be a function such that

h(x)= 0 for all x∈E⊥∩suppSC1,...,Cn−1 ,

and such that ∫
h dSQ,...,Q,Ck+1,...,Cn−1 =0
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for every full-dimensional polytope Q in E. Then, there exists w∈E such that∫
h(x)1⟨z,x⟩>0 SPFzCk+1,...,PFzCn−1(dx)= ⟨w, z⟩

for all z∈Sn−1∩E, where Fz is as defined in Theorem 10.1.

The reader should keep in mind the case where h is a degenerate function corre-

sponding to a critical set disjoint from [k]. Then, the bodies C1, ..., Ck factor out of the

integral
∫
h dSC1,...,Cn−1

by Lemma 9.7, and may thus be replaced by any other body Q

in E. This motivates the assumption of Proposition 10.7. The conclusion of Proposi-

tion 10.7 then states that the average of h over each blade of the propeller generated by

C1, ..., Ck must be linearly related across the blades. This is not at all clear from Theo-

rem 10.1, which specifies the mixed area measure on each blade but does not explain the

relations between different blades.

The proof of Proposition 10.7 is based on a duality argument that is similar to the

one used at the end of the proof of Theorem 8.1. Let us begin by formulating a simple

consequence of the Minkowski existence theorem.

Lemma 10.8. Let σ be a signed measure on Sn−1∩E that is supported on a finite

number of points and satisfies
∫
xσ(dx)=0. Then, there exist full-dimensional polytopes

Q and Q′ in E such that σ=SQ,...,Q−SQ′,...,Q′ .

Proof. Let σ=σ+−σ− be the Hahn–Jordan decomposition of σ and

m :=

∫
xσ±(dx).

Let R be any full-dimensional polytope in E, and define

µ± :=σ±+∥m∥δ−m/∥m∥+SR,...,R.

Then, µ± are finitely supported measures,
∫
x dµ±=0, and

span suppµ± =E.

The Minkowski existence theorem [30, Theorem 8.2.1] therefore yields the existence of

full-dimensional polytopes Q and Q′ in E such that µ+=SQ,...,Q and µ−=SQ′,...,Q′ . The

conclusion now follows as σ=µ+−µ−.

We will exploit Lemma 10.8 through a duality argument.

Corollary 10.9. Let ϱ:Sn−1∩E!R be any function such that
∫
ϱ dSQ,...,Q=0 for

every full-dimensional polytope Q in E. Then, ϱ=⟨w, ·⟩ for some w∈E.
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Proof. We first claim that, for any finite set Ω⊂Sn−1∩E, there exists wΩ∈E such

that ϱ=⟨wΩ, ·⟩ on Ω. Indeed, suppose this is not the case; then, by the Hahn–Banach

theorem, there is a signed measure with support in Ω such that∫
ϱ dσ > 0 and

∫
xσ(dx)= 0.

This is contradicted by Lemma 10.8 and the assumption.

Now let w:=w{v1,...,vk+1}, where {v1, ..., vk+1} is a basis of E. Then, we have

⟨w, vi⟩= ϱ(vi)= ⟨w{x,v1,...,vk+1}, vi⟩

for every x∈Sn−1∩E and i. Thus w{x,v1,...,vk+1}=w, so that

ϱ(x)= ⟨w{x,v1,...,vk+1}, x⟩= ⟨w, x⟩

for every x∈Sn−1∩E.

Remark 10.10. The reason for the somewhat roundabout finite-dimensional argu-

ment is that we did not assume any regularity (for example, continuity) of ϱ, so the

Hahn–Banach theorem cannot be applied directly in infinite dimension.

We now formulate a useful consequence of the criticality condition. It is this part of

the proof that is facilitated by the polytope assumption.

Lemma 10.11. Let C1, ..., Cn−1 be polytopes in Rn. Suppose that C1, ..., Ck lie in

a subspace E with dimE=k+1 and satisfy the criticality condition of Definition 4.1.

Then, for any full-dimensional polytope Q in E, we have

E⊥∩suppSC1,...,Cn−1 =E⊥∩suppSQ,...,Q,Ck+1,...,Cn−1 .

Proof. Fix u∈E⊥. As C1, ..., Ck, Q⊂E, Lemma 3.4 yields

SC1,...,Cn−1({u})=Vu⊥(C1, ..., Ck, F (Ck+1, u), ..., F (Cn−1, u)),

SQ,...,Q,Ck+1,...,Cn−1
({u})=Vu⊥(Q, ..., Q, F (Ck+1, u), ..., F (Cn−1, u)).

Thus, SC1,...,Cn−1({u})>0 implies SQ,...,Q,Ck+1,...,Cn−1({u})>0 by Lemma 2.2, as Q is

full-dimensional. It remains to prove the converse implication.

To this end, suppose that SQ,...,Q,Ck+1,...,Cn−1({u})>0. Then, by Lemma 2.2, there

exist segments I1, ..., Ik⊆Q and Ir⊆F (Cr, u), r=k+1, ..., n−1, such that

Vu⊥(I1, ..., In−1)> 0.
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Thus, Lemma 3.8 yields

0<

(
n−1

k

)
Vu⊥(Q, ..., Q, Ik+1, ..., In−1)=VolG(PGQ)VH(Ik+1, ..., In−1),

where H is the linear span of the directions of the segments Ik+1, ..., In−1 and

G :=H⊥∩u⊥.

This implies that dim(PGQ)=k. But, as dim(Q)=k+1 by assumption, the map PG|E
must have a 1-dimensional kernel. Therefore,

dim

(∑
i∈α

PGCi

)
⩾ dim

(∑
i∈α

Ci

)
−1⩾ |α| for all α⊆ [k],

where, in the second inequality, we used the criticality assumption. Therefore,

0<VG(PGC1, ...,PGCk)VH(Ik+1, ..., In−1)=

(
n−1

k

)
Vu⊥(C1, ..., Ck, Ik+1, ..., In−1)

⩽

(
n−1

k

)
Vu⊥(C1, ..., Ck, F (Ck+1, u), ..., F (Cn−1, u)),

by Lemmas 2.2 and 3.8. Thus, we have shown that SQ,...,Q,Ck+1,...,Cn−1
({u})>0 implies

SC1,...,Cn−1
({u})>0, completing the proof.

We can now complete the proof of Proposition 10.7.

Proof of Proposition 10.7. Define the function ϱ:Sn−1∩E!R as

ϱ(z) :=

∫
h(x) 1⟨z,x⟩>0 SPFzCk+1,...,PFzCn−1(dx).

Then, for any convex body Q in E, we have∫
ϱ dSQ,...,Q =

(
n−1

k

)∫
h(x) 1x/∈E⊥ SQ,...,Q,Ck+1,...,Cn−1

(dx)

by Theorem 10.1. But, by the first assumption on h and Lemma 10.11, we have h(x)=0

for x∈E⊥∩suppSQ,...,Q,Ck+1,...,Cn−1
, when Q is a full-dimensional polytope in E. Thus,

the second assumption on h shows that
∫
ϱ dSQ,...,Q=0 for every full-dimensional poly-

tope Q in E. The conclusion follows from Corollary 10.9.



156 y. shenfeld and r. van handel

11. The critical case

In this section, we complete the extremal characterization of the Alexandrov–Fenchel

inequality in the critical case. More precisely, we will prove the following.

Theorem 11.1. Let P=(P1, ..., Pn−2) be polytopes in Rn that contain the origin

in their relative interior. Assume that P is critical but not supercritical, and denote

by α0, ..., αℓ the associated maximal sets. Then, for any difference of support functions

f :Sn−1
!R, we have that Sf,P=0 if and only if

f(x)= ⟨s, x⟩+
ℓ∑

j=0

gj(x) for all x∈ suppSB,P

holds for some s∈Rn and αj-degenerate function gj , j=0, ..., ℓ.

The proof of Theorem 11.1 proceeds by induction on n. Just as in the supercritical

case, it will turn out that the criticality assumption (Definition 4.1) is preserved by

the induction. The induction hypothesis may therefore give rise to a supercritical case,

which is already covered by Theorem 8.1, or to a critical case, to which we may apply

Theorem 11.1 in lower dimension.

The following setting will be assumed throughout this section. We fix n⩾3 and a

collection of polytopes P=(P1, ..., Pn−2) in Rn that contain the origin in their relative

interior. We assume that P is critical but not supercritical, that is, there exists at least

one critical set. We denote the maximal sets by α0, ..., αℓ. The spaces Lα and the balls

Bα are defined as in §8. In particular, the criticality assumption may be formulated as

dimLα⩾|α|+1 for every α⊆[n−2], α ̸=∅.

11.1. The induction hypothesis

In the induction step, we will assume that Theorem 11.1 has been proved in dimension

n−1, and deduce its validity in dimension n. The aim of this section is to formulate the

resulting induction hypothesis.

As in §8, we will begin by applying the local Alexandrov–Fenchel inequality. To this

end, we must choose an index r∈[n−2] to which Theorem 4.3 will be applied. Unlike

in the supercitical case, however, we may not choose r arbitrarily: the entire argument

will be based on the fact that we will choose r to lie inside one of the maximal sets. We

therefore fix an element r∈α0 at the outset, which will be used throughout the proof

without further comment. As α0 will play a special role throughout the proof, we will

define henceforth γ :=α0 in order to distinguish it in the notation from the remaining

maximal sets α1, ..., αℓ.
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Our starting point is the following direct analogue of Lemma 8.3.

Lemma 11.2. Let f be a difference of support functions such that Sf,P=0. Then,

there exists a difference of support functions g with the following properties:

(1) g(x)=f(x) for all x∈suppSB,P .

(2) Vn−1(Pu⊥g,Pu⊥Pr,Pu⊥P\r)=0 for all u∈Sn−1.

(3) Vn−1(Pu⊥g,Pu⊥g,Pu⊥P\r)=0 for all u∈Sn−1∩Lr.

(4) SP
u⊥Pr,Pu⊥P\r ̸=0 for all u∈Sn−1.

Proof. By Theorem 4.3, there is g=f SB,P -a.e. such that Sg,P=0 and Sg,g,P\r⩽0.

We must show that each of the claimed properties holds for g. The proof of properties

(1)–(3) is identical to the proof of these properties in Lemma 8.3. To prove property (4),

recall that

SP
u⊥Pr,Pu⊥P\r =(n−1)S[0,u],P

(cf. Remark 8.6). If there were to exist u∈Sn−1 such that S[0,u],P=0, then integrating

against hB and using (2.1) would yield Vn([0, u], B,P)=0. But this contradicts the

criticality assumption by Lemma 2.2, concluding the proof.

We would like to exploit Lemma 11.2 by applying Theorem 11.1 (or Theorem 8.1)

in u⊥. In order to do this, we must understand what happens to the criticality assumption

under projection onto u⊥. We will presently show that such a projection preserves not

just the criticality assumption, but even the collection of maximal sets, for almost every

choice of u. To this end, we define

N :=
⋃

α⊆[n−2]\{r}
dimLα⩽|α|+2

Lr ̸⊆Lα

Sn−1∩Lr∩Lα, U := (Sn−1∩Lr)\N

in the remainder of this section. Then, we have the following.

Lemma 11.3. The following hold for every u∈U :

(a) Pu⊥P\r is critical ;

(b) the Pu⊥P\r-maximal sets are precisely γ\{r}, α1, ..., αℓ;

(c) the map Pu⊥ |Lαi
:Lαi!Pu⊥Lαi is a bijection for i=1, ..., ℓ;

(d) U has full measure with respect to the uniform measure on Sn−1∩Lr.

If γ={r} is a singleton, then part (b) should be understood to say that the Pu⊥P\r-

maximal sets are precisely α1, ..., αℓ.

Proof. To prove part (a), suppose that Pu⊥P\r is not critical. Then we must have

dim(
∑

i∈α Pu⊥Pi)<|α|+1 for some α⊆[n−2]\{r}, α ̸=∅. But as P is critical, we have

dim(
∑

i∈α Pi)⩾|α|+1. This can happen only if dim(
∑

i∈α Pi)=|α|+1 and u∈Lα. Thus,
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α is a critical set with r /∈α, so that Lr ̸⊆Lα by Lemma 9.4. Therefore u /∈U by the

definition of U , which entails a contradiction.

To prove part (b), we must prove two distinct properties: that γ\{r}, α1, ..., αℓ are

Pu⊥P\r-maximal sets, and that no other Pu⊥P\r-maximal sets exist.

Claim. αi is Pu⊥P\r-maximal for all i=1, ..., ℓ.

Proof. Fix a maximal set α=αi for some i=1, ..., ℓ. Then, α is disjoint from γ∋r by

Corollary 9.3, so α⊆[n−2]\{r}. Therefore,

|α|+1⩽dim

(∑
i∈α

Pu⊥Pi

)
⩽dim

(∑
i∈α

Pi

)
= |α|+1,

where the first inequality holds by part (a), and the equality holds, as α is critical. Thus,

we have shown that α is Pu⊥P\r-critical.

To show that α is Pu⊥P\r-maximal, we must show that there does not exist a

Pu⊥P\r-critical set β⊆[n−2]\{r} such that α⊊β. Indeed, suppose such a set β does

exist. Then, dim(
∑

i∈β Pu⊥Pi)=|β|+1, so there are two possibilities: either

(i) dim(
∑

i∈β Pi)=|β|+1 and u /∈Lβ , or

(ii) dim(
∑

i∈β Pi)=|β|+2 and u∈Lβ .

In case (i), we have α⊊β for a critical set β, which contradicts the maximality of α.

On the other hand, in case (ii), we must have Lr⊆Lβ by the definition of U∋u, so that

dimLβ∪{r}=dimLβ=|β|+2. Thus, in this case, α⊊β∪{r} and β∪{r} is a critical set,

which contradicts again the maximality of α.

Claim. If γ\{r}≠∅, then γ\{r} is Pu⊥P\r-maximal.

Proof. As r∈γ, we have u∈Lr⊆Lγ by the definition of U . Therefore,

|γ|= |γ\{r}|+1⩽dim(
∑

i∈γ\{r} Pu⊥Pi)⩽dimLγ−1= |γ|,

where the first inequality holds by part (a), the second inequality holds as u∈Lγ , and

the last equality holds as γ is critical. Thus γ\{r} is Pu⊥P\r-critical.

Now, suppose γ\{r}⊊β⊆[n−2]\{r} for some Pu⊥P\r-critical set β. Then, one of

the possibilities (i) and (ii) in the proof of the previous claim must hold.

In case (i), let β′ be the maximal set containing the critical set β. As β\γ ̸=∅,
we must have γ ̸=β′. But, as γ∩β′⊇γ\{r}≠∅, this contradicts maximality of γ by

Corollary 9.3. On the other hand, in case (ii), we must have Lr⊆Lβ by the definition of

U∋u, so that dimLβ∪{r}=dimLβ=|β|+2. Thus, γ⊊β∪{r} and β∪{r} is a critical set,

contradicting again the maximality of γ.

Claim. There exists no Pu⊥P\r-critical set β⊆[n−2]\(γ∪α1∪...∪αℓ).
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Proof. Suppose that β⊆[n−2]\(γ∪α1∪...∪αℓ) is a Pu⊥P\r-critical set. Then, one

of the possibilities (i) and (ii) in the proofs of the previous claims must hold. Case (i)

is impossible, as it would imply that β is a critical set that is disjoint from all maximal

sets. In case (ii), we must have Lr⊆Lβ by the definition of U∋u, so that

dimLβ∪{r} =dimLβ = |β|+2.

Thus, β∪{r} is a critical set containing r. But this would imply by Corollary 9.3 that

β∪{r}⊆γ, which is impossible as β and γ are disjoint. Thus, we have shown the desired

contradiction.

Now recall that distinct maximal sets must be disjoint by Corollary 9.3. Thus, the

combination of the above three claims concludes the proof of part (b).

To prove part (c), it suffices to note that, for any i=1, ..., ℓ,

dimLαi
= |αi|+1=dimPu⊥Lαi

,

where the first equality holds as αi is a critical set and the second equality holds as αi is

a Pu⊥P\r-critical set by part (b). The conclusion follows immediately.

Finally, we prove part (d). To this end, note that, by definition, N lies in a union

of subspaces Lα ̸⊇Lr, so that dim(Lα∩Lr)<dimLr for each of these spaces. In other

words, N is the intersection of Sn−1∩Lr with hyperplanes of codimension at least 1, and

is therefore a set of zero measure.

In the rest of this section, we fix a difference of support functions f with Sf,P=0, and

construct the difference of support functions g as in Lemma 11.2. Then, Lemmas 11.2

and 11.3 ensure that the projection Pu⊥g yields a critical equality case (3.1) of the

Alexandrov–Fenchel inequality in dimension n−1 for every u∈U .

We would like to combine this fact with Theorem 11.1 in dimension n−1 to create

the induction hypothesis for its proof in dimension n. In the critical case, however, there

is a new subtlety: applying Theorem 11.1 in u⊥ yields Pu⊥P\r-degenerate functions,

while we must construct P-degenerate functions to prove Theorem 11.1 in dimension n.

We will address this problem by using condition (c) of Lemma 11.3 to map between the

two types of degenerate functions. In addition, we must handle the new term that may

now arise from part (b) of Lemma 3.12, which did not appear in the supercritical case.

Both issues will be resolved presently.

Lemma 11.4. Suppose that Theorem 11.1 has been proved in dimension n−1. Then,

for every u∈U , we have

g(x)= ⟨s(u), x⟩+
ℓ∑

j=0

gj,u(x) for all x∈ suppS[0,u],B,P\r
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for some s(u)∈u⊥ and αj-degenerate function gj,u, j=0, ..., ℓ.

Proof. Fix u∈U . Applying Lemma 3.12 in u⊥ and Lemma 11.2, we find that

SP
u⊥g−auhP

u⊥Pr ,Pu⊥P\r =0 for some au ∈R.

Now note that Pu⊥P\r is critical with critical sets γ\{r}, α1, ..., αℓ, by Lemma 11.3. If

ℓ=0 and γ={r}, then Pu⊥P\r is supercritical and we may apply Theorem 8.1 in u⊥;

otherwise we may apply Theorem 11.1 in u⊥. In either case

Pu⊥g(x)= ⟨s(u), x⟩+auhP
u⊥Pr

(x)+

ℓ∑
j=0

g̃j,u(x) for all x∈ suppSP
u⊥B,P

u⊥P\r

holds for some s(u)∈u⊥, some (Pu⊥P\r, αj)-degenerate functions g̃j,u, j=1, ..., ℓ, and

some (Pu⊥P\r, γ\{r})-degenerate function g̃0,u (if γ={r}, we simply set g̃0,u=0). But,

as SP
u⊥B,P

u⊥P\r is supported in u⊥ by definition, we may remove Pu⊥ on the left-hand

side of this identity. We therefore obtain

g(x)= ⟨s(u), x⟩+auhPr (x)+

ℓ∑
j=0

g̃j,u(x) for all x∈ suppS[0,u],B,P\r , (11.1)

as suppSP
u⊥B,P

u⊥P\r=suppS[0,u],B,P\r by Remark 8.6.

It remains to reformulate the above identity in terms of αj-degenerate (as opposed

to (Pu⊥P\r, αj)-degenerate) functions. To this end, we consider two cases.

Claim. For every j=1, ..., ℓ, there exists an αj-degenerate function gj,u such that

gj,u(x)= g̃j,u(x) for all x∈u⊥.

Proof. Let g̃j,u=hM̃−hÑ for a (Pu⊥P\r, αj)-degenerate pair (M̃, Ñ). In particular,

M̃, Ñ⊂Pu⊥Lαj
. Therefore, by part (c) of Lemma 11.3, we can uniquely define convex

bodies M,N⊂Lαj
such that

M̃ =Pu⊥M and Ñ =Pu⊥N.

We claim that the function gj,u :=hM−hN satisfies the requisite properties.

Indeed, note that gj,u(Pu⊥x)=g̃j,u(x) by construction, so gj,u(x)=g̃j,u(x) for all

x∈u⊥. On the other hand, note that, for any convex body K⊂Lαj
,

VP
u⊥Lαj

(Pu⊥K,Pu⊥Pαj
)= [[Pu⊥ |Lαj

]]VLαj
(K,Pαj

)

by part (f) of Lemma 3.1. As (M̃, Ñ) is a (Pu⊥P\r, αj)-degenerate pair, we obtain

[[Pu⊥ |Lαj
]]VLαj

(hM−hN ,Pαj
)=VP

u⊥Lαj
(hM̃−hÑ ,Pu⊥Pαj

)= 0.

As [[Pu⊥ |Lαj
]]>0 by part (c) of Lemma 11.3, and as M,N⊂Lαj

, we have verified that

(M,N) is an αj-degenerate pair. Thus, gj,u is an αj-degenerate function.
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Claim. There exists a γ-degenerate function g0,u such that

g0,u(x)= auhPr
(x)+g̃0,u(x) for all x∈u⊥.

Proof. Fix b∈R, and define g0,u as

g0,u := auhPr+g̃0,u+bh[0,u].

Clearly, h[0,u](x)=⟨u, x⟩+=0, and thus

g0,u(x)= auhPr
(x)+g̃0,u(x) for x∈u⊥.

We claim that g0,u is γ-degenerate for a suitable choice of b∈R.
If g̃0,u ̸=0, then g̃0,u=hM−hN for a (Pu⊥P\r, γ\{r})-degenerate pair (M,N). As

r∈γ, we have u∈Lr⊆Lγ by the definition of U , so M,N⊂Pu⊥Lγ\{r}⊂Lγ . But, as r∈γ,
we always have [0, u], Pr⊂Lγ . Thus, g0,u is a difference of support functions of convex

bodies in Lγ . On the other hand, we can choose b∈R such that

VLγ
(g0,u,Pγ)=VLγ

(auhPr
+g̃0,u,Pγ)+bVLγ

([0, u],Pγ)= 0

as VLγ
([0, u],Pγ)>0 by the criticality assumption and Lemma 2.2. Thus, we have shown

that g0,u is γ-degenerate, completing the proof.

As suppS[0,u],B,P\r⊂u⊥, the conclusion of Lemma 11.4 follows readily by combining

the above two claims with the identity (11.1).

11.2. The decoupling argument

With Lemma 11.4 in hand, the main difficulty we face is to remove the dependence of

s(u) and gj,u on u. We therefore begin, as in the supercritical case, by investigating the

overlap between the supports of the measures S[0,u],B,P\r for different u∈U . Surprisingly,

the situation in the critical case proves to be completely different than in the supercritical

case: the overlap between the supports does not depend on the choice of u.

In the remainder of this section, we define the polytope

Pγ :=
∑
i∈γ

Pi.

We state at the outset a simple technical lemma that will be used several times.

Lemma 11.5. Vn(K,Pγ ,P)>0 whenever dim(K)⩾1 and 0∈K ̸⊂Lγ .
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Proof. Suppose that Vn(K,Pγ ,P)=0. As P is critical (which implies dimPγ⩾2),

we must have dim(K+Pγ+
∑

i∈α Pi)⩽|α|+1 for some α⊆[n−2] by Lemma 2.2. Since

dim(
∑

i∈α Pi)⩾|α|+1 by the criticality assumption, this can happen only if α is a crit-

ical set and K,Pγ⊂Lα. But Pγ⊂Lα implies γ⊆α by Lemma 9.4. Thus, α=γ by the

maximality of γ, which contradicts the assumption K ̸⊂Lγ .

We can now formulate the key property of suppS[0,u],B,P\r .

Lemma 11.6. For every u∈U , we have

suppSPγ ,P ⊆ suppS[0,u],B,P\r ,

and

span suppSPγ ,P =L⊥
γ .

Proof. We begin by noting that suppS[0,u],Pγ ,P\r⊆suppS[0,u],B,P\r by Lemma 2.4.

As u∈Lr⊆Lγ by the definition of U , we have [0, u], Pγ⊂Lγ , so that

dim([0, u]+Pγ+
∑

i∈γ\{r} Pi)=dimLγ = |γ|+1.

Applying Lemma 3.8 as in Remark 8.6 yields(
n−1

|γ|+1

)
S[0,u],Pγ ,P\r =VLγ

([0, u], Pγ ,Pγ\{r})SPL⊥
γ
P\γ ,(

n−1

|γ|+1

)
SPγ ,P =VLγ

(Pγ ,Pγ)SPL⊥
γ
P\γ .

But, as P is critical, (Pγ ,P\r) is critical as well, so

VLγ
([0, u], Pγ ,Pγ\{r})> 0 and VLγ

(Pγ ,Pγ)> 0

by Lemma 2.2. Thus, we have proved the first claim.

Now note that the second identity above implies span suppSPγ ,P⊆L⊥
γ . If the inclu-

sion were to be strict, then suppSPγ ,P⊂w⊥ for some w∈Sn−1∩L⊥
γ , so

0=

∫
⟨w, x⟩+SPγ ,P(dx)=nVn([0, w], Pγ ,P)

using h[0,w](x)=⟨w, x⟩+ and equality (2.1). Since [0, w] ̸⊂Lγ , this entails a contradiction

by Lemma 11.5. Thus the second claim is proved.

Combining the above results, we conclude the following.
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Corollary 11.7. If the conclusion of Lemma 11.4 holds, then, for any u, v∈U ,

⟨s(u)−s(v), x⟩+
ℓ∑

j=1

{gj,u(x)−gj,v(x)}=0 for all x∈ suppSPγ ,P .

Proof. As g0,u is a γ-degenerate function, g0,u(x)=g0,u(PLγ
x)=0 for all x∈L⊥

γ by

Lemma 9.9. The claim follows immediately from Lemmas 11.4 and 11.6.

We emphasize that the conclusion of Corollary 11.7 is of a fundamentally different

nature than the analogous statement in the supercritical case: as the mixed area measure

that appears here does not depend on u and v, there is no need to “glue” the functions

⟨s(u), ·⟩+
ℓ∑

j=1

gj,u

for different u. (We will still have to solve a gluing problem for g0,u, which is addressed

in the next section.) The problem we face here is that Corollary 11.7 only provides

information on suppSPγ ,P , while we must characterize these functions on suppSB,P to

prove Theorem 11.1. As a first step towards this goal, let us make the following basic

observation.

Lemma 11.8. Let h be any αi-degenerate function for some i=1, ..., ℓ. Then, the

following statements are equivalent :

(a) h(x)=0 for all x∈suppSPγ ,P ;

(b) h(x)=0 for all x∈suppSPαi
;

(c) h(x)=0 for all x∈suppSB,B,P\r .

Proof. Lemmas 9.7 and 9.9 imply that(
n−1

|αi|

)∫
|h| dSB,B,P\r =VL⊥

αi
(PL⊥

αi
B,PL⊥

αi
B,PL⊥

αi
P\{αi,r})

∫
|h| dSPαi

,(
n−1

|αi|

)
v

∫
|h| dSPγ ,P =VL⊥

αi
(PL⊥

αi
Pγ ,PL⊥

αi
P\αi

)

∫
|h| dSPαi

.

Thus, the conclusion follows provided the two mixed volumes in the above identities are

positive. To show that this is in fact the case, we note that

VLαi
(Bαi ,Pαi)VL⊥

αi
(PL⊥

αi
Pγ ,PL⊥

αi
P\αi

)=

(
n

|αi|+1

)
Vn(Bαi , Pγ ,P)> 0

by Lemmas 3.8 and 11.5 (here we used Bαi ̸⊂Lγ by Corollary 9.3). Therefore,

cVL⊥
αi
(PL⊥

αi
B,PL⊥

αi
B,PL⊥

αi
P\{αi,r})⩾VL⊥

αi
(PL⊥

αi
Pγ ,PL⊥

αi
P\αi

)> 0

for some c>0, where we used Pγ⊂diam(Pγ)B and Pr⊂diam(Pr)B.
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The difficulty in the application of Lemma 11.8 is that it applies only to an indi-

vidual αi-degenerate function, which is used crucially in its proof. On the other hand,

Corollary 11.7 involves a sum of degenerate functions for different sets αi. The problem

we must now address is therefore to decouple the different terms of the sum in Corol-

lary 11.7. This will be accomplished using Proposition 10.7.

Proposition 11.9. Let t∈Rn, and let fj be an αj-degenerate function for every

j=1, ..., ℓ. Suppose that we have

⟨t, x⟩+
ℓ∑

j=1

fj(x)= 0 for all x∈ suppSPγ ,P . (11.2)

Then, for every j=1, ..., ℓ, there exists wj∈Lαj
such that

fj(x)= ⟨wj , x⟩ for all x∈ suppSB,B,P\r

and t+w1+...+wℓ∈Lγ .

Proof. Fix i∈[ℓ] until further notice.

Step 1. We aim to apply Proposition 10.7 with

(C1, ..., Cn−1) − (Pγ ,P),

(C1, ..., Ck) −Pαi
,

E −Lαi
,

to the function

h(x) := ⟨t, x⟩+
∑
j ̸=i

fj(x).

To this end, let us verify that the assumptions of Proposition 10.7 are satisfied. The

requisite criticality assumptions follow immediately, as P is critical and αi is a critical

set. Now note that, as fi is αi-degenerate, it follows from Lemma 9.9 that fi(x)=0 for

x∈L⊥
αi
. Thus, (11.2) implies that

h(x)= 0 for all x∈L⊥
αi
∩suppSPγ ,P .

On the other hand, note that, by Lemmas 9.7 and 9.9, we have(
n−1

|αj |

)∫
fj dSQαi

,Pγ ,P\αi
=VL⊥

αj
(PL⊥

αj
Qαi

,PL⊥
αj
Pγ ,PL⊥

αj
P\{αi,αj})

∫
fj dSPαj
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for any j ̸=i and convex bodies Qαi
=(Ql)l∈αi

in Lαi
. But the right-hand side vanishes

as VLαj
(fj ,Pαj

)=0, by the definition of an αj-degenerate function; thus,∫
h dSQ,...,Q,Pγ ,P\αi

=0

for any full-dimensional polytope Q in Lαi
, where we used that the integral of the linear

part of h vanishes by Lemma 3.2. The assumptions of Proposition 10.7 are therefore

satisfied. Consequently, there exists w′
i∈Lαi

such that∫
h(x) 1⟨z,x⟩>0 SPFzPγ ,PFzP\αi

(dx)= ⟨w′
i, z⟩ (11.3)

for all z∈Sn−1∩Lαi
, where Fz :=span{z,L⊥

αi
}.

Step 2. Now note that PLαi
x=⟨x, z⟩z for every x∈Fz. Thus,

fi(x)= fi(z)⟨z, x⟩ for all x∈F+

z ,

by Lemma 9.9. On the other hand, (11.2) and Theorem 10.1 imply that

h(x)+fi(x)= 0 for all x∈ supp(1⟨z, ·⟩>0 dSPFzPγ ,PFzP\αi
)

holds for every z∈suppSPαi
. Substituting these identities in (11.3) yields

VL⊥
αi
(PL⊥

αi
Pγ ,PL⊥

αi
P\αi

) fi(z)=−⟨w′
i, z⟩

for every z∈suppSPαi
, where we used Corollary 3.9. But we already showed in the proof

of Lemma 11.8 that VL⊥
αi
(PL⊥

αi
Pγ ,PL⊥

αi
P\αi

)>0. Therefore,

fi(z)= ⟨wi, z⟩ for all z ∈ suppSPαi
,

where wi :=−VL⊥
αi
(PL⊥

αi
Pγ ,PL⊥

αi
P\αi

)−1w′
i∈Lαi .

Step 3 As i∈[ℓ] was arbitrary, we have now constructed for every j=1, ..., ℓ a vector

wj∈Lαj such that fj(z)−⟨wj , z⟩=0 for z∈suppSPαj
. As fj−⟨wj , ·⟩ is an αj-degenerate

function, we conclude by Lemma 11.8 that

fj(x)= ⟨wj , x⟩ for all x∈ suppSB,B,P\r and x∈ suppSPγ ,P .

In particular, using (11.2), we obtain

⟨t+w1+...+wℓ, x⟩=0 for all x∈ suppSPγ ,P .

Thus, PL⊥
γ
(t+w1+...+wℓ)=0 by Lemma 11.6, completing the proof.
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We can now put together all the ideas of this section.

Corollary 11.10. Suppose that Theorem 11.1 has been proved in dimension n−1.

Then, there exist s∈Rn, an αj-degenerate function gj for every j=1, ..., ℓ, and t(u)∈Lγ

for every u∈U , such that the following holds for all u∈U :

g(x)−⟨s, x⟩−
ℓ∑

j=1

gj(x)= ⟨t(u), x⟩+g0,u(x) for all x∈ suppS[0,u],B,P\r .

Proof. Fix any v∈U , and define

s := s(v) and gj := gj,v for j=1, ..., ℓ.

Then, Lemma 11.4, Corollary 11.7, and Proposition 11.9 yield wj(u)∈Lαj
, so that

gj,u(x)= gj(x)+⟨wj(u), x⟩ for all x∈ suppSB,B,P\r

and

t(u) := s(u)−s+w1(u)+...+wℓ(u)∈Lγ

for every u∈U . As

suppS[0,u],B,P\r ⊆ suppSB,B,P\r

for every u by Lemma 2.4, the conclusion follows immediately from Lemma 11.4.

11.3. The gluing argument

With Corollary 11.10 in hand, it remains to glue the γ -degenerate functions g0,u for

different u∈U . This will be accomplished using Lemma 10.6. We remind the reader

that the function f with Sf,P=0 was fixed at the beginning of the proof, and that g was

constructed from f by Lemma 11.2.

Lemma 11.11. Suppose that Theorem 11.1 has been proved in dimension n−1.

Then, there exist s∈Rn and an αj-degenerate function gj , for j=0, ..., ℓ, such that

f(x)= ⟨s, x⟩+
ℓ∑

j=0

gj(x) for all x∈ suppSB,P .

Proof. We use the notation of Corollary 11.10 throughout the proof.

Step 1. We begin by applying Lemma 10.6 with

(Ck+1, ..., Cn−1) − (B,P\γ),

E −Lγ ,
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to the function

h(x) := g(x)−⟨s, x⟩−
ℓ∑

j=1

gj(x).

Note that

VLγ (Pγ ,Pγ)VL⊥
γ
(PL⊥

γ
B,PL⊥

γ
P\γ)=

(
n

|γ|+1

)
Vn(B,Pγ ,P)> 0, (11.4)

by Lemmas 3.8 and 11.5, so the assumptions of Lemma 10.6 are satisfied. Denote by

φ:Lγ!R the 1-homogeneous function constructed from h by Lemma 10.6.

Step 2. Now fix any u∈U , and choose

φ̃(x) := ⟨t(u), x⟩+g0,u(x).

As g0,u is a γ-degenerate function, it follows from Lemma 9.9 and t(u)∈Lγ that

φ̃(x)= φ̃(PLγ
x).

Corollary 11.10 therefore states that

h(x)= φ̃(PLγ
x) for all x∈ suppS[0,u],B,P\r .

Recalling [0, u]⊂Lγ by the definition of U , we can apply the conclusion of Lemma 10.6

with (K1, ...,Kk) ([0, u],Pγ\{r}) to obtain

g(x)= ⟨s, x⟩+
ℓ∑

j=1

gj(x)+φ(PLγ
x) for all x∈ suppS[0,u],B,P\r

for any u∈U . Moreover, as U has full measure in Sn−1∩Lr by Lemma 11.3, we may

further integrate over u∈U as in the proof of Lemma 8.10 to conclude that the previous

identity remains valid for all x∈suppSB,Br,P\r . It follows that

f(x)= g(x)= ⟨s, x⟩+
ℓ∑

j=1

gj(x)+φ(PLγ
x) for all x∈ suppSB,P (11.5)

by Lemma 8.11 and property 1 of Lemma 11.2.
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Step 3. It remains to show that φ(PLγ
x) defines a γ-degenerate function. To this

end, recall that Sf,P=0 by assumption, and Sgj ,P=0 for j=1, ..., ℓ by Lemmas 2.11

and 9.6. Thus, ∫
f dSB,P =

∫
gj dSB,P =

∫
⟨s, ·⟩ dSB,P =0

by (2.1), the symmetry of mixed volumes, and Lemma 3.2. We therefore have

0=

(
n−1

|γ|

)∫
φ(PLγx)SB,P(dx)=VL⊥

γ
(PL⊥

γ
B,PL⊥

γ
P\γ)

∫
φdSPγ

using (11.5) and Lemma 9.7. But, as VL⊥
γ
(PL⊥

γ
B,PL⊥

γ
P\γ)>0 by (11.4), we can apply

Lemma 9.9 to construct a γ -degenerate function g0 such that

g0(x)=φ(PLγ
x) for all x∈ suppSB,P .

Substituting this identity into (11.5) completes the proof.

The proof of Theorem 11.1 is now readily completed.

Proof of Theorem 11.1. The “if” direction is an immediate consequence of Lem-

mas 2.7, 2.8, 2.11, and 9.6, so it suffices to consider the “only if” direction.

To this end, note first that the case n=2 is always supercritical, so Theorem 11.1

is trivial in this case. For the induction step, it remains to prove that the validity of

Theorem 11.1 in dimension n−1 implies its validity in dimension n for any n⩾3. The

latter is precisely the statement of Lemma 11.11.

12. Proof of the main result

The aim of this section is to complete the proof of Theorem 2.13. While the results that

we have proved in the supercritical and critical cases provide a lot more information on

the extremals than can be read off from Theorem 2.13 (which will be described in full

detail in §13 below), the advantage of the formulation of Theorem 2.13 is that it unifies

all the different cases that arise in our analysis in one simple and universal statement.

What remains is to verify that all possible cases are in fact captured by the formulation

of Theorem 2.13.

So far, we have only considered the extremals under the criticality assumption on P.

The remaining cases turn out to be either trivial, or to reduce readily to a critical case in

lower dimension. We will first investigate the latter phenomenon, and then put everything

together to complete the proof of Theorem 2.13.
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12.1. Subcritical sets

Let us begin by formally defining the cases that have not yet been considered in the

previous sections.

Definition 12.1. A collection of convex bodies C=(C1, ..., Cn−2) is said to be subcrit-

ical if dim(Ci1+...+Cik)⩾k for all k∈[n−2], 1⩽i1<...<ik⩽n−2. A collection of convex

bodies that is not subcritical is called null.

In view of the following lemma, the null case is trivial.

Lemma 12.2. Let C=(C1, ..., Cn−2) be a null collection of convex bodies in Rn.

Then, Vn(K,L, C)=0 for any convex bodies K and L.

Proof. This is an immediate consequence of Lemma 2.2.

In the remainder of this section, we fix n⩾3 and a collection P=(P1, ..., Pn−2) of

convex bodies in Rn that is subcritical but not critical. We will assume that Pi contains

the origin in its relative interior for each i∈[n−2], and define the spaces Lα as in §8.
Thus, the subcriticality assumption states that dimLα⩾|α| for every α, and the lack of

criticality implies that dimLα=|α| for at least one set α. In analogy with the critical

case, we introduce the following terminology.

Definition 12.3. α⊆[n−2] is called a subcritical set if

dim

(∑
i∈α

Pi

)
= |α|.

The point of this definition is the following.

Lemma 12.4. We have VLα(Pα)>0 and(
n

|α|

)
Vn(K,L,P)=VLα(Pα)VL⊥

α
(PL⊥

α
K,PL⊥

α
L,PL⊥

α
P\α)

for any convex bodies K and L, and any subcritical set α⊆[n−2].

Proof. That VLα
(Pα)>0 follows from Lemma 2.2 and the assumption that P is

subcritical. The second statement is an immediate consequence of Lemma 3.8.

In other words, any subcritical set will factor out of all mixed volumes that appear

in the Alexandrov–Fenchel inequality, reducing it to a lower-dimensional case. However,

there may a priori be many subcritical sets, and it is also not clear what properties

PL⊥
α
P\α may have. The main aim of this section is to show that there is a special choice

of subcritical set η so that PL⊥
η
P\η is a critical collection of convex bodies, which reduces

the study of extremals of the Alexandrov–Fenchel inequality in the subcritical case to

the setting of Theorem 11.1.

To this end, we first prove a subcritical analogue of Lemma 9.2.
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Lemma 12.5. Let α and α′ be subcritical sets. Then, α∪α′ is also a subcritical set.

Proof. As P is subcritical, we have dimLα∪α′⩾|α∪α′| and dimLα∩α′⩾|α∩α′| (note
that the latter holds even when α∩α′=∅, unlike in Lemma 9.2). Thus,

|α∪α′|⩽dimLα∪α′ =dimLα+dimLα′−dim(Lα∩Lα′)

⩽dimLα+dimLα′−dimLα∩α′

⩽ |α|+|α′|−|α∩α′|

= |α∪α′|,

where we used that dimLα=|α| and dimLα′=|α′| as α and α′ are subcritical. It follows

that dimLα∪α′=|α∪α′|, so α∪α′ is subcritical.

Corollary 12.6. There is a unique maximal subcritical set η, that is, a subcritical

set η such that α⊆η for every subcritical set α.

Proof. By Lemma 12.5, we may choose η to be the union of all subcritical sets.

We now claim that applying Lemma 12.4 to the set η of Corollary 12.6 reduces the

Alexandrov–Fenchel inequality to the critical case.

Lemma 12.7. Let η be as in Corollary 12.6. Then, PL⊥
η
P\η is critical.

Proof. Suppose that the conclusion is false; then there must exist α⊆[n−2]\η, α ̸=∅,
such that dimPL⊥

η
Lα⩽|α|. Now, note that

dimPL⊥
η
Lα =dimLα−dim(Lα∩kerPL⊥

η
)=dimLα−dim(Lα∩Lη).

Therefore,

dimLη∪α =dimLη+dimLα−dim(Lα∩Lη)⩽ |η|+|α|= |η∪α|,

where we used that η is subcritical and η∩α=∅. Thus, we have shown that η∪α is

subcritical, which contradicts the maximality of η.

12.2. Proof of Theorem 2.13

We are now finally ready to conclude the proof.

Proof of Theorem 2.13. The “if” direction follows from Lemmas 2.5, 2.7, 2.8, and 2.11,

so only the “only if” part requires proof.
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By translation-invariance, we may assume without loss of generality that each Pi

contains the origin in its relative interior. The assumption Vn(K,L,P)>0 implies that

P cannot be null by Lemma 12.2. We now consider the remaining cases.

Suppose first that P is supercritical. Then, the conclusion follows immediately from

Corollary 2.16 (which was proved in §8) and Lemma 2.15.

Now suppose that P is critical but not supercritical, and denote by α0, ..., αℓ the

P-maximal sets. By Lemma 2.5, the equality condition in Theorem 2.13 implies that

there exists a>0 such that Sf,P=0 for f=hK−ahL. Thus,

hK+N0+...+Nℓ
(x)=haL+s+M0+...+Mℓ

(x) for all x∈ suppSB,P

by Theorem 11.1, where s∈Rn and (Mj , Nj) is an αj-degenerate pair for every j=0, ..., ℓ.

The conclusion follows readily from Lemma 9.6.

Finally, suppose that P is subcritical but not critical, and let η be the maximal

subcritical set of Corollary 12.6. Then, the assumption and equality condition of Theo-

rem 2.13 imply that VL⊥
η
(PL⊥

η
K,PL⊥

η
L,PL⊥

η
P\η)>0 and

VL⊥
η
(PL⊥

η
K,PL⊥

η
L,PL⊥

η
P\η)

2

=VL⊥
η
(PL⊥

η
K,PL⊥

η
K,PL⊥

η
P\η)VL⊥

η
(PL⊥

η
L,PL⊥

η
L,PL⊥

η
P\η)

by Lemma 12.4. As PL⊥
η
P\η is critical by Lemma 12.7, we can apply the critical case of

Theorem 2.13 in L⊥
η to conclude that we have

hK+N0+...+Nℓ
(x)=haL+s+M0+...+Mℓ

(x) for all x∈ suppSPL⊥
η
B,PL⊥

η
P\η (12.1)

for some a>0, s∈L⊥
η , and PL⊥

η
P\η-degenerate pairs (Mj , Nj) for j=0, ..., ℓ, where we

used that

hPL⊥
η
K(x)=hK(x) and hPL⊥

η
L(x)=hL(x) for x∈L⊥

η .

But, as (
n−1

|η|

)
SB,P =VLη

(Pη)SPL⊥
η
B,PL⊥

η
P\η (12.2)

by applying Lemma 12.4 as in Remark 8.6, and as VLη (Pη)>0 by Lemma 12.4, it follows

that (12.1) remains valid for x∈suppSB,P . Moreover, it follows readily from Defini-

tion 2.10 and Lemma 12.4 that any PL⊥
η
P\η-degenerate pair is also a P-degenerate pair.

Thus the conclusion of Theorem 2.13 is proved.
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Part 3. Complements and applications

13. The extremal decomposition

Theorem 2.13 gives a very general description of the extremals of the Alexandrov–Fenchel

inequality in terms of degenerate pairs. There is significant redundancy in this formu-

lation, however: the same extremal bodies may be decomposed into degenerate pairs in

different ways. A much more informative description of the extremals arises as a conse-

quence of the theory developed in the previous sections. The aim of the present section

is to extract from the proof of Theorem 2.13 a non-redundant characterization of the

extremal decomposition. This formulation may be viewed as the definitive form of the

main result of this paper.

13.1. A unique extremal characterization

Throughout this section, we fix polytopes P=(P1, ..., Pn−2) in Rn. By translation-

invariance, we may assume without loss of generality that each Pi contains the origin

in its relative interior. We also assume without loss of generality that P is subcritical

(Definition 12.1), as otherwise the extremal problem is vacuous by Lemma 12.2.

The following structural properties of P were introduced in the previous sections.

Recall that subcritical and maximal sets are defined in Definitions 12.3 and 9.1.

• P has a unique maximal subcritical set η⊆[n−2] by Corollary 12.6; we define

L := span
∑
i∈η

Pi.

If P is critical (Definition 4.1), then η=∅ and L={0}.
• The collection PL⊥P\η is critical by Lemma 12.7. Thus, by Corollary 9.3, there

are c⩾0 disjoint PL⊥P\η-maximal sets β1, ..., βc⊆[n−2]\η; we define

Lj := span
∑
i∈βj

Pi.

If PL⊥P\η is supercritical (Definition 2.14), then c=0.

Let us now introduce the spaces of degenerate functions (Definition 9.5)

Dj := {f :Sn−1
!R : f is a (PL⊥P\η, βj)-degenerate function and

f ⊥⟨v, ·⟩ in L2(SB,P) for every v ∈PL⊥Lj}

for j=1, ..., c. By introducing the orthogonality condition with respect to linear functions,

we eliminate one source of redundancy: that part of the linear term in Theorem 11.1
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may be absorbed in the definitions of the degenerate functions. We will presently show

that this is in fact the only source of redundancy; once it is eliminated, the extremal

decomposition is uniquely determined on suppSB,P . That is, we have the following

unique characterization of the extremals of the Alexandrov–Fenchel inequality (in the

formulation of part (b) of Lemma 2.5).

Theorem 13.1. Let f :Sn−1
!R be any difference of support functions. Then,

Sf,P =0

holds if and only if

f(x)= ⟨s, x⟩+
c∑

j=1

fj(x) for all x∈ suppSB,P

holds for some s∈L⊥ and fj∈Dj , j=1, ..., c. Moreover, in this representation, s is unique

and f1, ..., fc are uniquely determined on suppSB,P .

Before we prove Theorem 13.1, let us first record a basic property. Analogous

arguments appeared already several times in the proof of Theorem 2.13.

Lemma 13.2. We have

span suppSB,P =L⊥.

Proof. We first observe that span suppSB,P⊆L⊥ (this is trivial if η=∅, and follows

directly from (12.2) otherwise). Now suppose this inclusion is strict. Then, we must have

suppSB,P⊆w⊥ for some w∈L⊥, so that

0=

(
n

|η|

)
1

n

∫
⟨w, x⟩+ SB,P(dx)=VL(Pη)VL⊥([0, w],PL⊥B,PL⊥P\η)

by (2.1) and Lemma 12.4 (if η=∅, this expression remains valid with VL(Pη)≡1). This

contradicts criticality of PL⊥P\η by Lemma 2.2, establishing the claim.

We now turn to the proof of Thereom 13.1.

Proof of Theorem 13.1. We first note that Sf,P=0 if and only if SPL⊥f,PL⊥P\η=0

by applying Lemma 12.4 as in Remark 8.6. Thus, as PL⊥P\η is critical, we can use either

Theorem 8.1 or Theorem 11.1 in L⊥ to show that Sf,P=0 if and only if

f(x)= ⟨s̄, x⟩+
c∑

j=1

gj(x) for all x∈ suppSPL⊥B,PL⊥P\η
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for some s̄∈L⊥ and (PL⊥P\η , βj)-degenerate function gj , j=1, ..., c. The conclusion re-

mains valid for all x∈suppSB,P , as suppSB,P=suppSPL⊥B,PL⊥P\η (this is trivial when

η=∅, and follows from (12.2) otherwise).

Now note that, for every j=1, ..., c, there exists sj∈PL⊥Lj such that

fj := gj−⟨sj , ·⟩ ⊥ span{⟨v, ·⟩ : v ∈PL⊥Lj} in L2(SB,P).

Then, fj∈Dj by construction. Moreover, let us write

s := s̄+s1+...+sc ∈L⊥.

Then, we have shown that Sf,P=0 holds if and only if

f(x)= ⟨s, x⟩+
c∑

j=1

fj(x) for all x∈ suppSB,P

for some s∈L⊥ and fj∈Dj , j=1, ..., c. It remains to show uniqueness.

To this end, let us suppose that

f(x)= ⟨s, x⟩+
c∑

j=1

fj(x)= ⟨s′, x⟩+
c∑

j=1

f ′
j(x) for all x∈ suppSB,P

holds for s, s′∈L⊥ and fj , f
′
j∈Dj , j=1, ..., c. Then, we certainly have

⟨s−s′, x⟩+
c∑

j=1

(fj(x)−f ′
j(x))= 0 for all x∈ suppSB,P =suppSPL⊥B,PL⊥P\η .

Suppose first that c⩾1. Then, by Lemma 2.4, we may apply Proposition 11.9 in L⊥ to

show that, for every j=1, ..., c, there exists wj∈PL⊥Lj such that

fj(x)−f ′
j(x)= ⟨wj , x⟩ for all x∈ suppSB,P .

But the definition of Dj then implies that wj=0, so that each fj is uniquely determined

on suppSB,P . Moreover, for any c⩾0, we now obtain ⟨s−s′, x⟩=0 for all x∈suppSB,P .

Thus, s=s′ by Lemma 13.2, so that s is unique as well.

13.2. The space of extremals

In addition to the spaces Dj , let us denote by

X := {f :Sn−1
!R : f is a difference of support functions such that Sf,P =0}
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the space of extremals of the Alexandrov–Fenchel inequality, and by

L := {f :Sn−1
!R : f = ⟨v, ·⟩ for some v ∈L⊥}

the space of linear functions. In the present section, we will view X, L, and Dj as

subspaces of L2(SB,P); in particular, we identify the elements of these spaces that agree

SB,P -a.e. In these terms, we may reformulate Theorem 13.1 as

X=L⊕D1⊕...⊕Dc in L2(SB,P).

That is, L,D1, ...,Dc are linearly independent subspaces of L2(SB,P) that span X.
Despite the definitive form of this result, its continuous formulation belies the es-

sentially combinatorial nature of the extremals of the Alexandrov–Fenchel inequality for

polytopes P. For example, Proposition 5.7 implies that the extremals are fully described

by the kernel of a matrix, so that X must be finite-dimensional; this fact is not evident

above. To illustrate that this kind of information is indeed contained in the above char-

acterization, let us presently compute the dimensions of the subspaces L, Dj , and X of

L2(SB,P) in terms of the geometry of P.

Proposition 13.3. Let Ωj :=suppSPL⊥Pβj
. Then,

dimL=n−|η| and dimDj = |Ωj |−|βj |−2

for j=1, ..., c. In particular,

dimX=n−|η|+
c∑

j=1

(|Ωj |−|βj |−2).

Remark 13.4. Note that |Ωj |<∞, and that Ωj may be computed by Lemma 3.4.

To prove Proposition 13.3, we begin by characterizing the affine hull of Ωj .

Lemma 13.5. We have

aff Ωj =PL⊥Lj .

Proof. The fact that

spanΩj =span suppSPL⊥Pβj
=PL⊥Lj

follows as PL⊥P\η is critical by exactly the same argument as in the proof of Lemma 13.2.

On the other hand, by part (d) of Lemma 3.2, there is a vanishing linear combination of

the elements of Ωj with positive coefficients, so 0∈aff Ωj . Thus, aff Ωj=spanΩj .
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Next, we observe that the support functions of convex bodies in PL⊥Lj are uniquely

determined, up to SB,P -a.e. equivalence, by their values on Ωj .

Lemma 13.6. Let f=hM−hN for convex bodies M,N⊂PL⊥Lj. Then, we have f=0

SB,P -a.e. if and only if f(x)=0 for all x∈Ωj. Moreover, for any z∈RΩj , there exists a

function f of this form such that f(x)=zx for x∈Ωj.

Proof. We first apply (12.2) and Lemma 9.7 to write(
n−1

|η|

)(
n−|η|−1

|βj |

)∫
|f | dSB,P

=

(
n−|η|−1

|βj |

)
VL(Pη)

∫
|f | dSPL⊥B,PL⊥P\η

=VL(Pη)VL⊥∩L⊥
j
(PL⊥∩L⊥

j
B,PL⊥∩L⊥

j
P\{η,βj})

∫
|f | dSPL⊥Pβj

.

(13.1)

Now note that Lemma 12.4 implies that VL(Pη)>0. On the other hand, we have

VL⊥(PL⊥Bj ,PL⊥B,PL⊥P\η)> 0

by Lemma 2.2 as PL⊥P\η is critical, where Bj denotes the unit ball in Lj . Thus, applying

(13.1) with f=hPL⊥Bj
, shows that the mixed volumes on the last line of (13.1) are

positive. We have therefore shown that∫
|f | dSB,P > 0 if and only if

∫
|f | dSPL⊥Pβj

> 0.

To prove the second claim, it suffices to note that, as Ωj is a finite set, there exists

for any z∈RΩj a C2 function g:Sn−1∩PL⊥Lj!R such that g(x)=zx for all x∈Ωj . Then,

f(x):=g(PPL⊥Lj
x) has the requisite form by Lemma 2.1.

We can now conclude the proof of Proposition 13.3.

Proof of Proposition 13.3. We first note that, for any v∈L⊥, we have ⟨v, ·⟩=0

SB,P -a.e. if and only if v=0, by Lemma 13.2. Thus,

dimL=dimL⊥ =n−|η|,

where we used that dimL=|η| as η is a subcritical set.

Now note that, by Definition 9.5, a (PL⊥P\η, βj)-degenerate function f is defined

by f=hM−hN for convex bodies M,N⊂PL⊥Lj satisfying one linear constraint∫
f dSPL⊥Pβj

=0.
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Thus, by Lemma 13.6, the subspace of L2(SB,P) defined by

D̃j := {f :Sn−1
!R : f is a (PL⊥P\η, βj)-degenerate function}

has dimension dim D̃j=|Ωj |−1. Moreover, it follows from Lemmas 13.5 and 13.6 that

span{⟨v, ·⟩:v∈PL⊥Lj} is a subspace of D̃j of dimension dimPL⊥Lj=|βj |+1, where we

used that βj is a PL⊥P\η-critical set. Thus,

dimDj = |Ωj |−|βj |−2

by the definition of Dj . The remaining claim follows as X=L⊕D1⊕...⊕Dc.

Remark 13.7. It has been emphasized throughout this paper that the distinction

between the supercritical and critical cases of Theorem 2.13 is that non-linear extremals

appear in the latter case. It is sometimes possible, however, that no non-linear extremals

exist even in the critical case, because it may be the case that |Ωj |=|βj |+2, and thus

Dj={0} as a subspace of L2(SB,P) by Proposition 13.3. For example, this is the case

when Pβj
=(Q, ..., Q), where Q is a simplex in L⊥ of dimension |βj |+1. By the same

token, however, Proposition 13.3 shows that this situation can occur only in very special

cases: as soon as enough normal directions are in play, non-linear extremals will always

appear in the critical case.

14. Extensions to quermassintegrals, smooth bodies, and zonoids

In the proof of Theorem 2.13, the assumption that P are polytopes was used extensively in

the proof of the local Alexandrov–Fenchel inequality. However, most other arguments of

this paper are not specific to polytopes. As a byproduct of our methods, we will presently

extend our main result to more general situations. In particular, we will characterize the

extremals of Theorem 1.1 in the following cases:

• C1=...=Cm is arbitrary and Cm+1, ..., Cn−2 are smooth (Theorem 14.6); in par-

ticular, this settles the case of quermassintegrals (Corollary 14.8).

• C is any combination of polytopes, smooth bodies, and zonoids (Theorem 14.9).

In the interest of space, we will consider in this section only the supercritical case.

Results may also be obtained for the critical case with additional work.

It should be emphasized that the analysis of this section will rely on the special

structure of smooth bodies and zonoids; it does not address the main missing ingredient

for extending our main results to general convex bodies, which is a general form of the

local Alexandrov–Fenchel inequality (see §16). However, the results of this section further

illustrate the methods developed in this paper, and capture a number of cases that are

important in applications.
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14.1. A smooth local Alexandrov–Fenchel principle

A convex body C in Rn is called smooth if it has a unique normal vector at every point

of its boundary. The main observation behind the extension of our results to cases that

include smooth bodies is that an analogue of the local Alexandrov–Fenchel inequality

may be obtained in this case by a direct argument. That this situation is rather special

will be evident from the statement of the following result: in the smooth case, the naive

inequality (4.1) holds, and none of the subtleties of Theorem 4.3 arise.

Proposition 14.1. Let C=(C1, ..., Cn−2) be any convex bodies in Rn such that

Vn(B,B, C)>0, and suppose that Cr is smooth for a given r∈[n−2]. Then, for any

difference of support functions f such that Sf,C=0, we have Sf,f,C\r=0.

The proof is based on an idea due to Schneider, whose basic step is the following.

Lemma 14.2. Let C and M be smooth convex bodies in Rn. Then there exist ε, δ>0

and a family {Cτ}τ∈[−ε,ε] of convex bodies in Rn so that ∥hCτ −hC∥∞⩽δ|τ | and

lim
τ!0

hCτ (u)−hC(u)

τ
=hM (u) for all u∈Sn−1.

Proof. We define

Cτ :=

{
C+τM , for τ ⩾ 0,

C÷(−τ)M , for τ < 0,

where

C÷A := {x∈Rn :x+A⊆C}

denotes Minkowski subtraction. That ∥hCτ −hC∥∞⩽δ|τ | is trivial for τ⩾0, and is shown

in [30, p. 425] for τ<0. The remaining statement follows from [30, Lemma 7.5.4].

We can now conclude the proof of Proposition 14.1.

Proof of Proposition 14.1. Let M be any smooth body, and define the family Cτ
r as

in Lemma 14.2 (with C Cr). Define the function

φ(τ) :=Vn(f,B, C\r, Cτ
r )

2−Vn(f, f, C\r, Cτ
r )Vn(B,B, C\r, Cτ

r ).

Then, φ(τ)⩾0 by Lemma 3.11, and φ(0)=0 as C0
r=Cr and Sf,C=0. Thus, τ=0 is a local

minimum of φ. It follows that

0=
dφ(τ)

dτ

∣∣∣∣
τ=0

=−Vn(f, f, C\r,M)Vn(B,B, C),
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where we used Lemma 14.2, (2.1) and Sf,C=0 to compute the derivative. As M was an

arbitrary smooth body and Vn(B,B, C)>0, we have shown that

0=Vn(f, f, C\r, g)=
1

n

∫
g dSf,f,C\r

for every function g that is a difference of support functions of smooth bodies. As any

g∈C2 may be written in this manner by Lemma 2.1, the conclusion follows.

One of the consequences of Proposition 14.1 is that for the characterization of ex-

tremals of the Alexandrov–Fenchel inequalities, all smooth bodies are indistinguishable.

This conclusion is a variant of [30, Theorem 7.6.7].

Corollary 14.3. Let C=(C1, ..., Cn) be convex bodies in Rn such that C1, ..., Cm

are smooth and Vn(B,B, C)>0. Let C′=(C ′
1, ..., C

′
m, Cm+1, ..., Cn) for smooth bodies

C ′
1, ..., C

′
m. Then, suppSB,C=suppSB,C′ and, for any difference of support functions f ,

we have Sf,C=0 if and only if Sf,C′=0.

Proof. It suffices to prove the case m=1, as the general case then follows by applying

the result repeatedly. Note also that, since smooth bodies are full-dimensional, we have

Vn(B,B, C)>0 if and only if Vn(K,K, C′)>0 for any smooth body K.

Let f be a difference of support functions such that Sf,C=0. By integrating the mixed

area measures in Proposition 14.1 (with r=1) against hC′
1
, we obtain Vn(f, C1, C′)=0 and

Vn(f, f, C′)=0. Thus, Lemma 3.12 implies Sf,C′=0. The converse implication follows by

reversing the roles of C1 and C ′
1.

Now note that x /∈suppSB,C holds if and only if there is a non-negative C2 function f

such that f(x)>0 and f(u)=0 for all u∈suppSB,C . Suppose that this is the case. Then,

Sf,C=0 by Lemma 2.8, so Sf,C′=0 as well. Integrating against hB and using the symmetry

of mixed volumes yields
∫
f dSB,C′=0, and thus f(u)=0 for u∈suppSB,C′ as f is non-

negative and continuous. It follows that x /∈suppSB,C′ . The converse implication follows

again by reversing the roles of C1 and C ′
1.

14.2. Quermassintegrals

Quermassintegrals of a convex body K, defined by

Wi(K) :=Vn(K, ...,K︸ ︷︷ ︸
n−i

, B, ..., B︸ ︷︷ ︸
i

),

play a special role in convexity and in integral geometry; see, e.g., [16, §6.4]. The

Alexandrov–Fenchel inequality implies that quermassintegrals form a log-concave se-

quence, that is, Wi(K)2⩾Wi−1(K)Wi+1(K). Even in this very special case, the ex-

tremal bodies K have been characterized only in the presence of symmetry assumptions
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[30, Theorem 7.6.20]. In this section, we will settle this problem as a special case of a

much more general result.

In the remainder of this section, we fix the following setting. Let m∈[n−2], and let

M be any convex body in Rn such that dimM⩾m+2. We further let Cm+1, ..., Cn−2 be

any smooth convex bodies in Rn, and denote by

C=(M, ...,M︸ ︷︷ ︸
m

, Cm+1, ..., Cn−2). (14.1)

The main result of this section will characterize the extremal bodies K and L such that

Vn(K,L, C)2 =Vn(K,K, C)Vn(L,L, C).

The reason we are able to do this for a general convex body M (rather than a polytope)

relies on two observations. First, note that the gluing argument of §8 works verbatim for

general convex bodies, as long as a local Alexandrov–Fenchel inequality is available. We

may therefore use the gluing argument together with Proposition 14.1 to reduce to the

case m=n−2. The latter case, known as Minkowski’s quadratic inequality, was settled

in complete generality in [32], which enables us to conclude the proof.

Before we formulate this result precisely, let us provide a geometric characterization

of the support of SB,C in the present setting.

Definition 14.4. A vector u∈Sn−1 is called an r-extreme normal vector of a convex

body M in Rn if there do not exist linearly independent normal vectors u1, ..., ur+2 at a

boundary point of M such that u=u1+...+ur+2.

For example, if M is a polytope, then u is an r-extreme normal vector of M if and

only if it is an outer normal of a face of K of dimension at least n−1−r.

Lemma 14.5. Let m∈[n−2], let M be a convex body in Rn with dimM⩾m, let

Cm+1, ..., Cn−2 be smooth convex bodies in Rn, and let C be as in (14.1). Then,

suppSB,C =cl{u∈Sn−1 :u is an (n−1−m)-extreme normal vector of M}.

Proof. That Vn(B,B, C)>0 follows from dimM⩾m and Lemma 2.2. Therefore, by

Corollary 14.3, we may assume without loss of generality that Cm+1=...=Cn−2=B. In

the latter case, the result was proved in [25, Satz 4].

We can now formulate the main result of this section.
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Theorem 14.6. Let m∈[n−2], let M be a convex body in Rn with dimM⩾m+2,

let Cm+1, ..., Cn−2 be smooth convex bodies in Rn, and let C be as defined in (14.1).

Then, for any convex bodies K and L in Rn such that Vn(K,L, C)>0, we have

Vn(K,L, C)2 =Vn(K,K, C)Vn(L,L, C)

if and only if there exist a>0 and v∈Rn such that K and aL+v have the same supporting

hyperplanes in all (n−1−m)-extreme normal directions of M .

Proof. By Lemmas 2.5 and 14.5, the conclusion is equivalent to the statement that,

for any differences of support functions f , we have Sf,C=0 if and only if there exists s∈Rn

such that f(x)=⟨s, x⟩ for all s∈suppSB,C . The “if” direction follows from Lemmas 2.7

and 2.8, so it remains to prove the “only if” direction.

We will fix m⩾1, and prove this statement by induction on n. The base case of the

induction, n=m+2, is the main result of [32]. We now suppose n>m+2, and assume

the induction hypothesis that the conclusion has been proved in dimension n−1. We

aim to show that the conclusion then also holds in dimension n.

To this end, let f be a difference of support functions such that Sf,C=0, and let

r=n−2. Then Cr is smooth, so Sf,f,C\r=0 by Proposition 14.1. Moreover, C is super-

critical as dimM⩾m+2. The argument of §8 now applies verbatim in the present setting

with P C and g≡f (indeed, that P are polytopes was used in §8 only to apply the local

Alexandrov–Fenchel inequality). In particular, it follows from Lemma 8.10 that there ex-

ists s∈Rn such that f(x)=⟨s, x⟩ for all x∈suppSB,B,C\r , and the conclusion now follows

from Lemma 2.4.

When specialized to quermassintegrals, we obtain the following. In the case that K

is centrally symmetric, this result was proved in [30, Theorem 7.6.20].

Definition 14.7. A convex body K in Rn is a (n−1−i)-tangential body of a ball

if there exist a>0 and v∈Rn, with aB+v⊆K, such that aB+v and K have the same

supporting hyperplanes in all i-extreme normal directions of K.

Corollary 14.8. Let K be any convex body in Rn, and let i∈[n−1]. Then, we

have equality Wi(K)2=Wi−1(K)Wi+1(K) if and only if either dimK<n−i, or K is an

(n−1−i)-tangential body of a ball.

Proof. By Lemma 2.2, we have Wi(K)=0 if and only if dimK<n−i; in this case

equality always holds. On the other hand, if dimK=n−i, then

Wi(K)> 0 and Wi−1(K)= 0,
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so equality cannot hold; also, K cannot be a tangential body, since aB+v⊆K implies

that any tangential body satisfies dimK=n. Finally, if dimK⩾n−i+1, Theorem 14.6

implies that equality Wi(K)2=Wi−1(K)Wi+1(K) holds if and only if there exist a>0

and v∈Rn such that aB+v and K have the same supporting hyperplanes in all i-extreme

normal directions of K.

It remains to show that the latter condition implies a fortiori that aB+v⊆K. Indeed,

if K⊂w⊥ for some w∈Sn−1, then both w and −w are i-extreme, so aB+v⊂w⊥ as well.

As that cannot be, we must have dimK=n. But then [30, Theorem 2.2.6] implies that

K is the intersection of its regular (and thus i-extreme) supporting half-spaces. As these

also support aB+v, it follows that aB+v⊆K.

14.3. Zonoids

A zonotope is a polytope that is the Minkowski sum of a finite number of segments. A

convex body Z is called a zonoid if it is a limit of zonotopes. For simplicity, we assume

by convention that all zonoids are symmetric Z=−Z (this entails no loss of generality

for our purposes, as any zonoid is symmetric up to translation). Then, Z is a zonoid if

and only if [30, Theorem 3.5.3]

hZ(x)=

∫
|⟨u, x⟩| ρ(du)

for some even finite measure on ρ on Sn−1, called the generating measure of Z.

When the reference bodies in the Alexandrov–Fenchel inequality are zonoids, their

additive structure enables an inductive approach to the analysis of the extremals that is

very special to this case. Such arguments were exploited by Schneider [27] to characterize

the extremals for full-dimensional zonoids under additional symmetry assumptions. In

this section, we will fully characterize the extremals for any supercritical collection of

zonoids (the analysis of the critical case is more delicate, and is omitted here in the

interest of space). In fact, the proof of the following more general result will present no

additional difficulties.

Theorem 14.9. Let m∈[n−2], let C1, ..., Cm be convex bodies in Rn such that each

Ci is either a zonoid or a smooth body, and let Pm+1, ..., Pn−2 be any polytopes in Rn.

Assume that C :=(C1, ..., Cm, Pm+1, ..., Pn−2) is supercritical. Then, for any convex bodies

K and L in Rn such that Vn(K,L, C)>0, we have

Vn(K,L, C)2 =Vn(K,K, C)Vn(L,L, C)

if and only if there exist a>0 and v∈Rn such that K and aL+v have the same supporting

hyperplanes in all directions in suppSB,C.
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It must be emphasized that, in contrast to the settings of Theorems 2.13 and 14.6,

we have not given a geometric characterization of suppSB,C in the general setting of

Theorem 14.9. This problem is in fact not yet fully settled [30, Conjecture 7.6.14],

and its analysis is outside the scope of this paper. However, we will provide such a

characterization in Proposition 14.13 for the case m=n−2 that all reference bodies are

zonoids (or smooth), completing an analysis due to Schneider [27].

The basis for the proof of Theorem 14.9 is a kind of analogue of Corollary 14.3.

Analogous arguments may be found in [30, Lemma 7.4.7] and in [27, §4].

Lemma 14.10. Let K=(K1, ...,Kn−3) be convex bodies in Rn and Z be a zonoid

with generating measure ρ. Assume that (Z,K) is supercritical. Then, any difference of

support functions f such that Sf,Z,K=0 satisfies Sf,[−u,u],K=0 for all u∈supp ρ.

Proof. Let f be a difference of support functions such that Sf,Z,K=0. Then,∫
Vn(f, f, [−u, u],K) ρ(du)=Vn(f, f, Z,K)= 0,

where we used the fact that h[−u,u](x)=|⟨u, x⟩| and the definition of ρ. On the other hand,

for any u∈Sn−1, we have Vn(f, Z, [−u, u],K)=0 by (2.1) and Vn(Z,Z, [−u, u],K)>0

by supercriticality and Lemma 2.2. Thus, Vn(f, f, [−u, u],K)⩽0 for any u∈Sn−1, by

Lemma 3.11. We may therefore conclude that

Vn(f, f, [−u, u],K)= 0 for all u∈ supp ρ,

where we used that u 7!Vn(f, f, [−u, u],K) is continuous by Lemma 3.3. In particular, it

follows from Lemma 3.12 that Sf,[−u,u],K=0 for every u∈supp ρ.

We can now complete the proof of Theorem 14.9.

Proof of Theorem 14.9. By Corollary 14.3, we may assume without loss of generality

that each Ci that is a smooth body satisfies Ci=B. But, as B is a zonoid, we may

assume in the remainder of the proof that C1, ..., Cm are zonoids with generating measures

ρ1, ..., ρm, respectively. We also fix a difference of support functions f such that Sf,C=0;

by Lemmas 2.5, 2.7, and 2.8, it suffices to prove that there exists s∈Rn such that

f(x)= ⟨s, x⟩ for all s∈ suppSB,C .

For each i∈[m], we may choose (for example, using the law of large numbers) a

sequence {uj
i}j⩾1⊆supp ρi such that the zonotopes

Cj
i := j−1{[−u1

i , u
1
i ]+...+[−uj

i , u
j
i ]}
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satisfy Cj
i!Ci as j!∞ in Hausdorff distance. In particular, aff Cj

i =aff Ci for sufficiently

large j, so that Cj :=(Cj
1 , ..., C

j
m, Pm+1, ..., Pn−2) is supercritical for sufficiently large j.

Using linearity of mixed area measures, and applying Lemma 14.10 repeatedly, it follows

that Sf,Cj=0, for sufficiently large j. Therefore, as Cj consists entirely of polytopes,

Theorem 8.1 yields, for every sufficiently large j, a vector sj∈Rn such that

f(x)= ⟨sj , x⟩ for all x∈ suppSB,Cj .

Now note that, by linearity of mixed area measures, suppSB,Cj is increasing in j. In

particular, we have ⟨sj , x⟩=f(x)=⟨sj+1, x⟩ for all x∈suppSB,Cj and sufficiently large j.

It follows, from Lemma 13.2 and supercriticality, that sj=sj+1 for all sufficiently large j.

Thus, we have shown that there exists s∈Rn such that the statement

f(x)= ⟨s, x⟩ for all x∈ suppSB,Cj

holds for all sufficiently large j. To conclude, note that∫
|f(x)−⟨s, x⟩|SB,C(dx)= lim

j!∞

∫
|f(x)−⟨s, x⟩|SB,Cj (dx)= 0

by Lemma 3.3, so that f(x)=⟨s, x⟩ for all x∈suppSB,C as well.

Remark 14.11. We exploited Lemma 14.10 above to approximate zonoids Ci by

zonotopes Cj
i . However, one could also attempt to use Lemma 14.10 as a replacement

for the local Alexandrov–Fenchel inequality: by Remark 8.6, it implies that, for any

extremal f of the Alexandrov–Fenchel inequality with reference bodies (Z,K) and any

u∈supp ρ, the projection Pu⊥f is extremal in u⊥ with reference bodies Pu⊥K. Such an

argument was used by Schneider in [27]. The difficulty with this approach is that Pu⊥K
need not be supercritical for ρ-a.e. u if we only assume that K is supercritical. On the

other hand, this method works well when all the bodies in K are full-dimensional, and

yields some more general results in this case (for example, an analogue of Theorem 14.6,

where some of the bodies Ci are zonoids).

We now revisit the problem of characterizing suppSB,C geometrically. When C are

polytopes, such a characterization is given in Lemma 2.3 in terms of their faces. It

has been conjectured by Schneider that suppSB,C is characterized in general by a local

analogue of Lemma 2.3, in which the faces are replaced by certain “tangent spaces” of

the convex bodies C. Let us recall the relevant notions.

A convex body C in Rn associates with each of its boundary points a cone of outer

normal vectors. These cones generate a partition of Rn into relatively open convex cones,

which are the touching cones of C. We denote by T (C, u) the unique touching cone of C

that contains u∈Rn. One may think of T (C, u)⊥ as the “tangent space” of C with outer

normal vector u. In analogy with Lemma 2.3, we give the following definition.
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Definition 14.12. Let C=(C1, ..., Cn−1) be convex bodies in Rn. Then, u∈Sn−1 is a

C-extreme normal direction if there are segments Ii⊂T (Ci, u)
⊥ for i∈[n−1] with linearly

independent directions.

The above notions are due to Schneider (see [30, §2.2] for equivalent definitions).

In particular, Schneider has conjectured [30, Conjecture 7.6.14] that suppSC always

coincides with the closure of the set of C-extreme normal directions. It is readily verified

that this conjecture agrees with the special cases of Lemmas 2.3 and 14.5. We will

presently verify this conjecture for the case m=n−2 of Theorem 14.9. This is essentially

proved in [27], up to a minor observation.

Proposition 14.13. Let C=(C1, ..., Cn−2) be convex bodies in Rn such that each

Ci is either a zonoid or a smooth body. Then,

suppSB,C =cl{u∈Sn−1 :u is a (B, C)-extreme normal direction}.

In the proof we will need the following simple measure-theoretic fact.

Lemma 14.14. Let X and Y be Polish spaces, ρx be a finite measure on Y for each

x∈X, and η be a finite measure on X. Assume that x 7!ρx is weakly continuous. Then,

the measure µ:=
∫
ρx η(dx) on Y satisfies supp ρx⊆suppµ for every x∈supp η.

Proof. Let x∈supp η and y∈supp ρx. Let f :Y![0, 1] be a continuous function such

that f(y)>0. Then, ε:=
∫
f dρx>0. Since x 7!

∫
f dρx is continuous, there is an open

neighborhood W∋x such that
∫
f dρz⩾ 1

2ε for z∈W . Thus
∫
f dµ⩾ 1

2εη(W )>0. As this

holds for any function f as above, it follows that y∈suppµ.

We can now complete the proof of Proposition 14.13.

Proof of Proposition 14.13. Note that, when Vn(B,B, C)=0, there exist no (B, C)-
extreme directions by Lemma 2.2, and the conclusion is trivial. When Vn(B,B, C)>0,

Corollary 14.3 shows that suppSB,C is unchanged if each smooth Ci is replaced by B.

On the other hand, for smooth Ci, we have T (Ci, u)=T (B, u)=posu for all u, so the

(B, C)-extreme directions are also unchanged by this replacement. Thus, we may assume

that C1, ..., Cn−2 are zonoids with generating measures ρ1, ..., ρn−2, respectively.

That suppSB,C⊆cl{(B, C)-extreme directions} is shown in [27, Proposition 3.8]. We

will prove the converse inclusion by induction on n. For n=3, the conclusion is a spe-

cial case of Lemma 14.5. From now on, we assume that the claim has been proved in

dimension n−1, and show that the result follows in dimension n.

Let v∈Sn−1 be a (B, C)-extreme normal direction. Then, it is shown in [27, p. 125]

that there exist j∈[n−2] and u∈v⊥∩supp ρj such that v is also a (Pu⊥B,Pu⊥C\j)-
extreme normal direction (as defined in u⊥). It remains to show that the latter are
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included in suppSB,C . To this end, note that

SB,C =

∫
SB,[−u,u],C\j ρj(du),

and that u 7!SB,[−u,u],C\j is continuous by Lemma 3.3. Thus,

suppSB,[−u,u],C\j ⊆ suppSB,C

for every u∈supp ρj , by Lemma 14.14. But the induction hypothesis and Remark 8.6 im-

ply that v∈suppSP
u⊥B,P

u⊥C\j=suppSB,[−u,u],C\j . Thus, we have shown that any (B, C)-
extreme normal direction is contained in suppSB,C , and the conclusion follows as the

latter is a closed set.

15. Application to combinatorics of partially ordered sets

A sequence N1, ..., Nn of positive numbers is log-concave if

N2
i ⩾Ni−1Ni+1 for all i∈{2, ..., n−1}.

It was noticed long ago that log-concave sequences arise in a surprisingly broad range

of combinatorial problems [35]. One explanation for this phenomenon appears in the

work of Stanley [33], who observed that if one can represent the relevant combinato-

rial quantities in terms of mixed volumes, log-concavity arises as a consequence of the

Alexandrov–Fenchel inequality. This provides a common mechanism for the emergence

of log-concavity in several combinatorial problems that appear to be otherwise unrelated.

In recent years, it has been realized that this idea extends to a much broader setting:

even for combinatorial problems that may not be represented in terms of classical con-

vexity, one may often develop algebraic analogues of the Alexandrov–Fenchel inequality

that explain the emergence of log-concavity. Such ideas have led to a series of recent

breakthroughs in combinatorics due to Huh et al. [17].

As was explained in the introduction, one may view the Alexandrov–Fenchel in-

equality as a generalized isoperimetric inequality. In particular, associated with any

instance of the Alexandrov–Fenchel inequality, there is a corresponding extremal prob-

lem: what bodies minimize the left-hand side in Theorem 1.1 when the right-hand side

is fixed? One may analogously associate with any log-concave sequence of combinatorial

quantities (Ni) a corresponding extremal problem: what combinatorial objects achieve

equality

Ni =Ni−1Ni+1
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for a given i? This question was already posed by Stanley in [33]. Despite deep advances

in understanding log-concavity through Alexandrov–Fenchel-type inequalities, the anal-

ysis of the associated extremal problems appears to be inaccessible by currently known

methods.

In this section, we will show how the theory developed in this paper makes it possible

to settle such extremal problems in Stanley’s original setting. For sake of illustration, we

focus on one particular example from [33] that arises in the combinatorics of partially

ordered sets; other combinatorial applications of the Alexandrov–Fenchel inequality may

be investigated analogously. Whether the theory of this paper has analogues outside

convexity is an intriguing question (cf. §16).

15.1. Linear extensions and extremal posets

Let α:={x, y1, ..., yn−1} be a partially ordered set (poset) that will be fixed throughout

this section. We denote by Ni the number of order-preserving bijections σ :α![n] such

that σ(x)=i; that is, Ni is the number of linear extensions of the partial order of α

for which x has rank i. The following result was conjectured by Chung, Fishburn, and

Graham [6].

Theorem 15.1. (Stanley [33]) The sequence N1, ..., Nn is log-concave.

Proof. The poset α defines polytopes K and L in Rn−1 by

K := {t∈ [0, 1]n−1 : tj ⩽ tk if yj ⩽ yk, and tj =1 if yj >x},

L := {t∈ [0, 1]n−1 : tj ⩽ tk if yj ⩽ yk, and tj =0 if yj <x}.

Let us denote

Kl := (K, ...,K︸ ︷︷ ︸
l

) and Lm := (L, ..., L︸ ︷︷ ︸
m

).

Then, it is shown in [33, Theorem 3.2] that

Ni =(n−1)!Vn−1(Ki−1,Ln−i).

The conclusion is now immediate by the Alexandrov–Fenchel inequality.

The extremal question associated with Theorem 15.1 is: given i∈{2, ..., n−1}, which
posets α attain equality N2

i =Ni−1Ni+1? The proof of Theorem 15.1 reduces this ques-

tion to a special case of Theorem 2.13. To obtain a result of combinatorial interest,

however, one must deduce from the geometric conditions of Theorem 2.13 a combina-

torial characterization of the corresponding poset α. We presently state the resulting

theorem, whose proof will occupy the remainder of this section.
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As in Theorem 2.13, we must distinguish between trivial and non-trivial extremals.

WhenNi=0, log-concavity implies that we always haveN2
i =Ni−1Ni+1 for trivial reasons.

Let us first characterize when this happens. In the following, we set

αRz := {y ∈α : yRz}

for any relation R∈{<,⩽, >,⩾} of α.

Lemma 15.2. (Trivial extremals) For any i∈[n], we have

Ni =0 if and only if |α<x|>i−1 or |α>x|>n−i.

This simple lemma, which will be proved in §15.2, is intuitively obvious: it states

that no linear extension of α can give x rank i if there are i elements of α that are smaller

than x (as these elements must have smaller rank than x), or analogously if there are

n−i+1 elements larger than x. This statement has an easy direct proof. In contrast,

the characterization of the non-trivial extremals is not obvious. The following theorem

is the main result of this section.

Theorem 15.3. (Non-trivial extremals) Let i∈{2, ..., n−1} be such that Ni>0.

Then, the following conditions are equivalent :

(a) N2
i =Ni−1Ni+1;

(b) Ni=Ni+1=Ni−1;

(c) every linear extension σ:α![n] with σ(x)=i assigns ranks i−1 and i+1 to

elements of α that are incomparable to x;

(d) |α<y|>i for all y∈α>x, and |α>y|>n−i+1 for all y∈α<x.

The formulation of condition (d) of Theorem 15.3 was derived by the authors from

the analysis of the associated Alexandrov–Fenchel inequality (§15.3). Once the correct

statement has been realized, however, it is straightforward to find a direct proof of the

easy directions (d)⇒ (c)⇒ (b)⇒ (a) of Theorem 15.3.

Proof of Theorem 15.3, implications (d)⇒ (c)⇒ (b)⇒ (a). Fix i∈{2, ..., n−1} such

that Ni>0, and assume that condition (d) holds. We first show that this implies (c).

Indeed, suppose to the contrary that σ(y)=i−1 for some y∈α<x; then we have

|α>y|⩽ |{z ∈α :σ(z)>σ(y)}|=n−i+1,

contradicting (d). We can analogously rule out that σ(y)=i+1 for some y∈α>x.

We now show that condition (c) implies (b). Denote byNi the set of linear extensions

σ:α![n] with σ(x)=i (so that Ni=|Ni|). We further set

N±
i := {Πi,i±1σ :σ ∈Ni},
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Ni

i

I1 I2 I3 I4 I5

: constant
: strictly log-concave

Figure 15.1. Structure of the sequence N1, ..., Nn.

where Πi,j denotes the permutation of [n] that exchanges i and j. Condition (c) now

implies that N±
i ⊆Ni±1, so that Ni=|N±

i |⩽|Ni±1|=Ni±1. Thus,

N2
i ⩾Ni−1Ni+1 ⩾Ni−1Ni ⩾N2

i ,

where the first inequality follows from Theorem 15.1. As Ni>0, condition (b) follows

readily. This completes the proof, as the implication (b)⇒ (a) is trivial.

Condition (c) of Theorem 15.3 identifies one particular combinatorial mechanism

that gives rise to equality in Theorem 15.1. It is far from obvious, however, why this

suffices to yield a complete solution to the extremal problem. The hard part of Theo-

rem 15.3 is to show that this is the only mechanism that gives rise to equality, which will

be proved in §15.3 below.

Let us emphasize that the combinatorial characterization of the equality cases of

Stanley’s inequality has strong consequences beyond the solution of the extremal prob-

lem itself: it provides detailed information on the shape of the log-concave sequences

N1, ..., Nn that can arise in Theorem 15.1. For example, the implication (a)⇒ (b) in

Theorem 15.3 shows that such sequences cannot contain any 3-term geometric progres-

sions. Since any positive log-concave sequence is unimodal, it follows from Lemma 15.2

and Theorem 15.3 that one can decompose [n]=I1∪...∪I5 into consecutive (possibly

empty) intervals Ik such that the sequence N1, ..., Nn has the form that is illustrated

in Figure 15.1. Furthermore, Lemma 15.2 and Theorem 15.3 enable us to compute the

length of each interval explicitly for any given poset.

Example 15.4. For any k, l, r, s, t⩾1, consider the poset

α= {x, (yi)i∈[k], (zi)i∈[l], (ui)i∈[r−1], (vi)i∈[s−1], (wi)i∈[t+1]}

defined by the following relations:

y1 < ...< yk <x<z1 < ...< zl, yk <w1 < ...<wt+1 <z1,

yk <u1 < ...<ur−1, v1 < ...< vs−1 <z1.



190 y. shenfeld and r. van handel

Then, |α<x|=k, |α>x|=l, miny∈α<x
|α>y|=l+r+t+1, and miny∈α>x

|α<y|=k+s+t+1.

Therefore, Lemma 15.2 and Theorem 15.3 imply that the sequence N1, ..., N|α| has the

form that is illustrated in Figure 15.1, with

|I1|= k, |I2|= s, |I3|= t, |I4|= r, and |I5|= l.

Thus, any decomposition [n]=I1∪...∪I5 with I1, ..., I5 ̸=∅ is achievable. This example is

readily modified to construct situations where some Ik may be empty.

15.2. Order polytopes

The convex bodies K and L that appear in the proof of Theorem 15.1 are examples of

order polytopes. Before we proceed to the proof of Theorem 15.3, we must recall some

basic properties of such polytopes.

We fix once and for all the poset α:={x, y1, ..., yn−1}, and define �α:=α\{x}. For

any β⊆α (with the induced partial order) and z∈α, we will denote by βRz :={y∈β :yRz}
for R∈{<,⩽, >,⩾}, by β ̸∼z the set of elements of β that are not comparable to z, and

by β" (resp. β#) the set of maximal (resp. minimal) elements of β.

For y, z∈β, we say that z covers y in β if z∈(β>y)
#. Moreover, β⊆α is called an

upper (resp. lower) set in α if α>y⊆β (resp. α<y⊆β) for every y∈β.
Now, consider β⊆�α. By a slight abuse of notation, we will define the subspace

Rβ := {t∈Rn−1 : ti =0 for yi /∈β}.

The order polytope Oβ is defined as

Oβ := {t∈Rβ : tj ∈ [0, 1], and tj ⩽ tk if yj ⩽ yk, for all yj , yk ∈β}.

The following basic facts may be found in [34, §1].

Lemma 15.5. For any β⊆�α, we have dimOβ=|β|. The (|β|−1)-dimensional faces

of Oβ are precisely the following subsets of Oβ :

(1) Oβ∩{tj=0} for yj∈β#;
(2) Oβ∩{tj=1} for yj∈β";
(3) Oβ∩{tj=tk} for yj , yk∈β such that yk covers yj in β.

In the sequel, we denote by e1, ..., en−1 the coordinate basis of Rn−1, and we let

1β :=
∑
yj∈β

ej

for any β⊆�α. We can now formulate the following basic fact.
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Lemma 15.6. If β⊆�α is a lower set in �α, then

O
�α\β = {t∈ [0, 1]n−1 : tj ⩽ tk if yj ⩽ yk, and tj =0 if yj ∈β}.

Analogously, if β⊆�α is an upper set in �α, then

O
�α\β+1β = {t∈ [0, 1]n−1 : tj ⩽ tk if yj ⩽ yk, and tj =1 if yj ∈β}.

Proof. Suppose that β is a lower set and that t∈[0, 1]n−1 satisfies tj=0 for all yj∈β.
Then, tj⩽tk holds trivially for yj⩽yk with yj∈β. On the other hand, as β is a lower set,

yj⩽yk with yj /∈β implies yk /∈β. Thus, the only non-trivial constraints tj⩽tk for yj⩽yk

are those that appear in the definition of O
�α\β , which concludes the proof when β is a

lower set. The proof when β is an upper set is analogous.

In the remainder of this section, we will define the polytopes K and L as in the

proof of Theorem 15.1. By Lemma 15.6, we can write equivalently

K =O
�α\α>x

+1α>x and L=O
�α\α<x

,

where we used that α>x is an upper set and α<x is a lower set in �α.

Lemma 15.7. dimK=n−1−|α>x|, dimL=n−1−|α<x|, and dim(K+L)=n−1.

Proof. Lemma 15.5 shows that K−1α>x
is a full-dimensional polytope in R�α\α>x ,

and that L is a full-dimensional polytope in R�α\α<x . It follows that dimK=|�α\α>x|,
dimL=|�α\α<x|, and dim(K+L)=|(�α\α>x)∪(�α\α<x)|=|�α|.

Let us finally prove Lemma 15.2. While a direct combinatorial proof is a simple

exercise, we find it instructive to show how it arises from the mixed volumes.

Proof of Lemma 15.2. The representation in the proof of Theorem 15.1 shows that

Ni=0 if and only if Vn−1(Ki−1,Ln−i)=0. By Lemma 2.2, this is the case if and only

if either dim(K+L)<n−1, dim(K)<i−1, or dim(L)<n−i. The conclusion now follows

immediately from Lemma 15.7.

15.3. Combinatorial characterization of the extremals

We now complete the proof of Theorem 15.3. We have already proved the implications

(d)⇒ (c)⇒ (b)⇒ (a); the remainder of this section is devoted to the proof of the impli-

cation (a)⇒ (d).

We begin by reducing the problem to an extremal case of the Alexandrov–Fenchel

inequality in Rn−1. While the polytopes K,L⊂Rn−1 generally have empty interior, it

turns out that non-trivial extremals can only arise in the present setting from a super-

critical case of the Alexandrov–Fenchel inequality.
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Lemma 15.8. Let i∈{2, ..., n−1} be such that Ni>0 and N2
i =Ni−1Ni+1. Then,

|α<x|+1<i<n−|α>x|, and there exist a>0 and v∈Rn−1 such that

hK(x)=haL+v(x) for all x∈ suppSB,Ki−2,Ln−i−1 .

Proof. We first note thatNi>0 andN2
i =Ni−1Ni+1 imply thatNi−1>0 andNi+1>0.

It therefore follows from Lemma 15.2 that |α<x|+1<i<n−|α>x|. Moreover, this implies

by Lemma 15.7 that dimK⩾i, dimL⩾n−i+1, and dim(K+L)=n−1. Therefore, the

collection (Ki−2,Ln−i−1) is supercritical.

Now note that, by the mixed volume representation in the proof of Theorem 15.1,

Ni>0 and N2
i =Ni−1Ni+1 imply Vn−1(K,L,Ki−2,Ln−i−1)>0 and

Vn−1(K,L,Ki−2,Ln−i−1)
2 =Vn−1(K,K,Ki−2,Ln−i−1)Vn−1(L,L,Ki−2,Ln−i−1).

The conclusion therefore follows from Corollary 2.16.

To exploit Lemma 15.8, there are two distinct difficulties: we must gain some un-

derstanding of which vectors lie in suppSB,Ki−2,Ln−i−1
, and we must understand how

to exploit the fact that the supporting hyperplanes of K and aL+v coincide in these

directions. We begin by addressing the first issue.

Lemma 15.9. Let i∈{2, ..., n−1} be such that Ni>0. Then, the following hold :

(a) −ej∈suppSB,Ki−2,Ln−i−1
for yj∈�α#;

(b) −ej∈suppSB,Ki−2,Ln−i−1
for yj∈(α>x)

# such that |α<yj
|⩽i;

(c) ej∈suppSB,Ki−2,Ln−i−1
for yj∈�α";

(d) ej∈suppSB,Ki−2,Ln−i−1
for yj∈(α<x)

" such that |α>yj
|⩽n−i+1;

(e) ejk :=2−1/2(ej−ek)∈suppSB,Ki−2,Ln−i−1
when the following conditions are all

satisfied :

(i) yk covers yj in �α;

(ii) if yj∈α<x, yk∈�α\α<x then yk∈(�α\α<x)
#;

(iii) if yk∈α>x, yj∈�α\α>x, then yj∈(�α\α>x)
".

Proof. As Ni>0, Lemma 15.2 implies that

|α<x|+1⩽ i⩽n−|α>x|.

Moreover, by Lemma 2.3, we have u∈suppSB,Ki−2,Ln−i−1
if and only if

dimF (K,u)⩾ i−2, dimF (L, u)⩾n−i−1, and dimF (K+L, u)⩾n−3.

The latter condition will be verified in each part of the lemma.
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(a) We begin by noting that, for any j∈[n−1],

F (K,−ej)=K∩{tj =1yj∈α>x
} and F (L,−ej)=L∩{tj =0}.

Indeed, it is readily seen by the definitions of K and L that

hK(−ej)=− inf
t∈K

tj =−1yj∈α>x and hL(−ej)=− inf
t∈L

tj =0,

so the claim follows from (2.2).

Now let yj∈�α#. We claim that the following statements hold:

(1) F (K,−ej) is a full-dimensional polytope in R�α\(α>x∪{yj})+1α>x ;

(2) F (L,−ej) is a full-dimensional polytope in R�α\(α<x∪{yj}).

Indeed, recall first that K=O
�α\α>x

+1α>x
by Lemma 15.6. If yj∈α>x, then

F (K,−ej)=K,

and the first claim follows directly from Lemma 15.5. On the other hand, if yj∈�α\α>x,

then

F (K,−ej)=K∩{tj =0}=O
�α\α>x

∩{tj =0}+1α>x
.

But then yj∈�α# implies yj∈(�α\α>x)
#, and the first claim follows again from Lemma 15.5.

The proof of the second claim is completely analogous.

To conclude the proof of part (a), it suffices to note that the above claims imply

dimF (K,−ej)= |�α\(α>x∪{yj})|⩾n−2−|α>x|⩾ i−2,

dimF (L,−ej)= |�α\(α<x∪{yj})|⩾n−2−|α<x|⩾n−i−1,

dimF (K+L,−ej)= |(�α\(α>x∪{yj}))∪(�α\(α<x∪{yj}))|= |�α\{yj}|=n−2,

where we used |α<x|+1⩽i⩽n−|α>x| and α>x∩α<x=∅.

(b) Let yj∈(α>x)
# with |α<yj

|⩽i. We already showed in part (a) that

F (K,−ej)=K and F (L,−ej)=L∩{tj =0},

and that F (K,−ej) is a full-dimensional polytope in R�α\α>x+1α>x (the proofs of these

facts for yj∈α>x did not use the assumption of part (a)).

Now note that, as yj∈α>x, we have yi⩽yj for all yi∈α<x. It follows that

L∩{tj =0}= {t∈ [0, 1]n−1 : ti ⩽ tk if yi ⩽ yk, and ti =0 if yi ⩽ yj}=O
�α\�α⩽yj

,

where we used Lemma 15.6 and the fact that �α⩽yj is a lower set in �α. It therefore follows

from Lemma 15.5 that F (L,−ej) is a full-dimensional polytope in R�α\�α⩽yj .
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To conclude the proof of part (b), note that, as i⩽n−|α>x|, we have

dimF (K,−ej)= |�α\α>x|=n−1−|α>x|⩾ i−1.

On the other hand, as yj∈α>x, we have |�α⩽yj
|=|α<yj

|⩽i, so that

dimF (L,−ej)= |�α\�α⩽yj |=n−1−|�α⩽yj |⩾n−i−1.

Finally, we note that

dimF (K+L,−ej)= |(�α\α>x)∪(�α\�α⩽yj
)|= |�α\{yj}|=n−2,

where we used that α>x∩�α⩽yj
={yj} as yj∈(α>x)

#.

The proofs of parts (c) and (d) are completely analogous to those of (a) and (b).

(e) We begin by noting that

F (K, ejk)=K∩{tj = tk} and F (L, ejk)=L∩{tj = tk}

whenever yj<yk. Indeed, as yj<yk implies tj⩽tk for any t∈K, it follows readily from

the definition of K that

hK(ejk)= 2−1/2 sup
t∈K

(tj−tk)= 0.

That hL(ejk)=0 follows analogously, and the claim now follows from (2.2).

Now suppose that yj and yk satisfy conditions (i)–(iii) of part (e). We claim that

the following statements hold:

(1) F (K, ejk)⊂R�α\α>x+1α>x , with dimF (K, ejk)⩾|�α\α>x|−1;

(2) F (L, ejk)⊂R�α\α<x , with dimF (L, ejk)⩾|�α\α<x|−1.

Indeed, as K=O
�α\α>x

+1α>x by Lemma 15.6, the first part of the first claim is

immediate. For the second part of the first claim, we consider three cases.

• If yj , yk∈α>x, then F (K, ejk)=K, so dimF (K, ejk)=|�α\α>x| by Lemma 15.5.

• If yj∈�α\α>x and yk∈α>x, then F (K, ejk)=O
�α\α>x

∩{tj=1}+1α>x
, and (iii) states

that yj∈(�α\α>x)
". Thus, dimF (K, ejk)=|�α\α>x|−1 by Lemma 15.5.

• If yj , yk∈�α\α>x, then F (K, ejk)=O
�α\α>x

∩{tj=tk}+1α>x
, and (i) implies that

yk covers yj in �α\α>x. Thus, dimF (K, ejk)=|�α\α>x|−1 by Lemma 15.5.

This proves the first claim. The proof of the second claim is completely analogous

(using condition (ii) rather than condition (iii)).

To conclude the proof of part (e), note that the above claims imply

dimF (K, ejk)⩾n−2−|α>x|⩾ i−2,

dimF (L, ejk)⩾n−2−|α<x|⩾n−i−1,
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as |α<x|+1⩽i⩽n−|α>x|. On the other hand, we have

dimF (K+L, ejk)⩾ dimF (K, ejk)+dimF (L, ejk)−|(�α\α>x)∩(�α\α<x)|

⩾ |(�α\α>x)∪(�α\α<x)|−2

=n−3,

where we used the fact that α>x∩α<x=∅. The proof is now complete.

From this point onwards, we place ourselves in the setting of Lemma 15.8. In

particular, we will assume without further comment that i∈{2, ..., n−1} with Ni>0 and

N2
i =Ni−1Ni+1, and that a>0 and v∈Rn−1 have been fixed so that

hK(x)=haL+v(x) for all x∈ suppSB,Ki−2,Ln−i−1
.

Let us begin by formulating a first consequence of Lemma 15.9.

Lemma 15.10. The following statements hold :

(a) vj=0 for yj∈�α#\α>x;

(b) vj=1−a for yj∈�α"\α<x;

(c) vj=vk whenever conditions (i)–(iii) of Lemma 15.9 are all satisfied.

Proof. For part (a), note that −ej∈suppSB,Ki−2,Ln−i−1
by Lemma 15.9, so that

hK(−ej)=ahL(−ej)−vj . But as yj /∈α>x, we have hK(−ej)=hL(−ej)=0 as in the proof

of part (a) of Lemma 15.9, so the conclusion follows.

The argument for (b) is analogous: we have ej∈suppSB,Ki−2,Ln−i−1
by Lemma 15.9,

so that hK(ej)=ahL(ej)+vj . But, as yj /∈α<x, it follows readily that hK(ej)=hL(ej)=1,

and the conclusion follows.

Finally, for part (c), we have ejk∈suppSB,Ki−2,Ln−i−1 by Lemma 15.9, so that

hK(ejk)=ahL(ejk)+2−1/2(vj−vk). But condition (i) implies hK(ejk)=hL(ejk)=0 as in

the proof of part (e) of Lemma 15.9, so the conclusion follows.

We can now use Lemma 15.10 as a basic step to compute a and v.

Corollary 15.11. a=1.

Proof. We first note that α̸∼x ̸=∅. Indeed, if every element of α were comparable to

x, then |α<x|+|α>x|=n−1, which would imply, by Lemma 15.2, that Ni=0 whenever

i ̸=|α<x|+1. The latter contradicts N2
i =Ni−1Ni+1>0.

Fix any yj0∈α̸∼x. We construct a chain

yj−s
< ...< yji <yji+1

< ...< yjt
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according to the following algorithm. For the upper part of the chain, we iteratively

choose yji+1
∈(α>yji

)# for i⩾0 under the constraint that we select yji+1
∈α̸∼x whenever

possible. The chain is extended until a maximal element of α is reached. The lower

part of the chain is constructed by iteratively choosing yji−1
∈(α<yji

)" for i⩽0 under the

constraint that we select yji−1
∈α̸∼x whenever possible. The chain is extended until a

minimal element of α is reached.

We claim that this construction ensures the following properties:

(1) yj−s∈�α#\α>x and yjt∈�α"\α<x;

(2) conditions (i)–(iii) of Lemma 15.9 hold with j=ji, k=ji+1 for all i.

Indeed, it is impossible that yji∈α⩽x for some i⩾0, or that yji∈α⩾x for some i⩽0,

as that would violate yj0∈α̸∼x. Thus, the first claim follows as yj−s
is minimal and

yjt is maximal by construction. To prove the second claim, consider first i⩾0, so that

yji , yji+1
/∈α⩽x. Then (i) holds as yji+1

covers yji in �α by construction, and (ii) holds

automatically. Finally, as we chose yji+1
∈α̸∼x whenever possible, we can only have

yji∈�α\α>x and yji+1
∈α>x if yji∈(�α\α>x)

", which establishes condition (iii). The proof

of the second claim for i⩽0 is completely analogous.

To conclude the proof, we observe that the above claims and Lemma 15.10 imply

that vj−s=0, vjt=1−a, and vji=vji+1 for all i. Thus, a=1.

Corollary 15.12. vj=0 for all yj∈α<x∪α>x.

Proof. Fix any yj0∈α>x, and construct an increasing chain yj0<...<yjt by iteratively

choosing yji+1
∈(α>yji

)# until a maximal element is reached. Then, yji∈α>x for all i, so

yjt∈�α"\α<x and conditions (i)–(iii) of Lemma 15.9 hold with j=ji and k=ji+1 for all i.

Thus, Lemma 15.10 and Corollary 15.11 imply that vjt=0 and vji=vji+1
for all i. We

have thus shown that vj=0 for any yj∈α>x. The proof for the case yj∈α<x follows in a

completely analogous manner by constructing a decreasing chain from any yj0∈α<x.

We are now ready to complete the proof of Theorem 15.3.

Proof of Theorem 15.3, implication (a)⇒ (d). Fix i∈{2, ..., n−1} such that Ni>0

and N2
i =Ni−1Ni+1. Then, Lemma 15.8 and Corollaries 15.11 and 15.12 imply that

hK(x)=hL(x)+⟨v, x⟩ for all x∈ suppSB,Ki−2,Ln−i−1

holds for a vector v∈Rn−1 with vj=0 for all yj∈α<x∪α>x.

Now consider any yj∈α>x. Then, we claim that −ej /∈suppSB,Ki−2,Ln−i−1
. Indeed,

if −ej did lie in the support, then we would have hK(−ej)=hL(−ej). But this entails

a contradiction, as we showed in the proof of Lemma 15.9 (a) that hK(−ej)=−1 and

hL(−ej)=0. It follows by a completely analogous argument that ej /∈suppSB,Ki−2,Ln−i−1

when yj∈α<x.
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On the other hand, Lemma 15.9 implies that −ej∈suppSB,Ki−2,Ln−i−1
whenever yj∈

(α>x)
# is such that |α<yj

|⩽i. Consequently, we have shown that yj satisfying the latter

condition cannot exist, that is, |α<y|>i whenever y∈(α>x)
#. As α<y can only increase

if we increase y, it follows that |α<y|>i for all y∈α>x. By applying the same reasoning

to ej for yj∈(α<x)
", it analogously follows that |α>y|>n−i+1 for all y∈α<x.

16. Discussion and open questions

The main results of this paper completely settle the extremals of the Alexandrov–Fenchel

inequality for convex polytopes. Analogous extremal problems also arise, however, in

other situations where Alexandrov–Fenchel-type inequalities appear. The aim of the

final section of this paper is to briefly discuss a number of basic open questions in this

direction that arise from our results.

16.1. General convex bodies

The Alexandrov–Fenchel inequality (Theorem 1.1) applies to arbitrary reference bodies

C1, ..., Cn−2. While the main results of this paper require that the reference bodies are

polytopes, the statements of our main results (Theorems 2.13 and 13.1) make sense for

general convex bodies. One may therefore conjecture that the statements of our main

results extend verbatim to the general setting. This conjecture is due to Schneider [26]

for full-dimensional bodies, to which our results add detailed predictions on the lower-

dimensional cases.

While we have made essential use of the polytope assumption in this paper, it should

be emphasized that many of our arguments are already completely general: neither the

gluing arguments nor the statement of the local Alexandrov–Fenchel inequality (Theo-

rem 4.3) rely fundamentally on the polytope assumption, a fact that we already exploited

in §14. The main obstacle to extending the theory of this paper to general convex bodies

therefore lies in the proof of Theorem 4.3: if such a result could be proved in the general

setting, this would essentially complete the extremal characterization for general convex

bodies.

16.1.1. The local Alexandrov–Fenchel inequality

Let us now briefly recall how the polytope structure was used in the proof of Theorem 4.3.
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In §5 and §6 above, we used the combinatorial structure of polytopes to reduce

Theorem 4.3 to a finite-dimensional problem. However, the actual proof of the local

Alexandrov–Fenchel inequality in §7 does not make direct use of the geometry of poly-

topes. What is really exploited here is that the mixed area measures Sg,P and Sg,g,P\r

are supported in a finite set {ui}i∈[N ], which has two key consequences: the existence

problem of Theorem 4.3 can be formulated as the solution of a system of linear equations;

and the masses Sg,P({ui}) satisfy Alexandrov–Fenchel inequalities

Sg,P({ui})2 ⩾Sg,g,P\r ({ui})SPr,Pr,P\r ({ui})

by Lemma 3.4.

In principle, however, one may conjecture that similar objects could be defined di-

rectly for general convex bodies in a suitable functional-analytic framework. For example,

it was shown in [32] that for any convex bodies C=(C1, ..., Cn−2) in Rn, there exists a

self-adjoint operator AC on the Hilbert space L2(SB,C) such that

Vn(K,L, C)= ⟨hK ,AChL⟩L2(SB,C)

for any convex bodies K and L in Rn. The operator AC may be viewed as an infinite-

dimensional analogue of the Alexandrov matrix A (in the sense of Corollary 6.7), and one

might therefore attempt to use such objects as a replacement for the finite-dimensional

computations in the proof of Theorem 4.3. The problem with this construction, however,

is that not only AC but also the underlying space L2(SB,C) depend on C, while the proof of
Theorem 4.3 requires us to consider several such objects simultaneously. For example, an

analogue “(ACf)
2⩾Af,C\rf ·AChCr

” of the Alexandrov–Fenchel inequality for Sg,P({ui})
does not make sense in this form, as the operators AC and Af,C\r are defined on different

spaces.

A basic question in this context is therefore whether one may construct analogues

of the self-adjoint operators AC for different choices of C on the same space, and whether

these operators satisfy an appropriate analogue of the Alexandrov–Fenchel inequality.

Such analytic questions on the structure of mixed volumes are in principle completely

independent from the study of the extremals. The development of such a functional-

analytic framework could, however, provide a foundation for the extension of the proof

of Theorem 4.3 to the general setting.

16.1.2. Supports of mixed area measures

The main results of this paper characterize the extremal functions f such that Sf,C=0 on

the support of SB,C . To obtain a fully geometric interpretation of these results, however,
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they must be combined with a geometric characterization of suppSB,C . The latter is

elementary in the setting of polytopes (Lemma 2.3), but remains open in general.

The fundamental conjecture in this direction, due to Schneider [26], is that a local

analogue of Lemma 2.3 (as formulated after Definition 14.12) remains valid in the general

setting. Let us emphasize, however, that the characterization of suppSB,C played essen-

tially no role in the proofs of our main results: this problem appears to be essentially

orthogonal to the theory developed in this paper.

16.2. Algebraic analogues

Beyond its fundamental role in convex geometry, the Alexandrov–Fenchel inequality has

deep connections with other areas of mathematics. It was realized in the 1970s by Teissier

and Khovanskii (cf. [5], [13], [15]) that the Alexandrov–Fenchel inequality has natural

analogues in algebraic and complex geometry. More recently, it has been realized that

such connections extend even further: various combinatorial problems, which cannot

be expressed directly in terms of convex or algebraic geometry, nonetheless fit within

a general algebraic framework in which analogues of the Alexandrov–Fenchel inequality

hold [17].

The rich algebraic theory surrounding the Alexandrov–Fenchel inequality raises the

intriguing question whether our results might extend to a broader context. This question

arises, for example, if we aim to develop combinatorial applications as in §15 in situations

that cannot be formulated in convex geometric terms. Related questions in algebraic

geometry date back to Teissier [37], [4].

It may not be entirely obvious, however, how to even formulate algebraic analogues

of the main results of this paper. The aim of this section is to sketch how our main

results may be expressed in algebraic terms, which could (conjecturally) carry over to

analogues of the Alexandrov–Fenchel inequality outside convexity. To the best of our

knowledge, such problems are at present almost entirely open.

16.2.1. Polytope algebra

In order to describe our main results algebraically, we must first recall some aspects of

the polytope algebra due to McMullen [21], [39].

Let us fix, as in §5, a simple polytope P in Rn. Define the linear space

D := {hQ−hR :Q and R are strongly isomorphic to P}.

For f, g∈D, we will write f∼g if f−g is a linear function, and denote by [f ] the equiva-

lence class of f with respect to this equivalence relation.



200 y. shenfeld and r. van handel

The polytope algebra generated by P is a graded algebra

A(P )=

n⊕
k=0

Ak,

with A1≃D/∼ and An≃R. Moreover, the (commutative) multiplication of A(P ) has the

property that F ·G∈Ak+l for F∈Ak and G∈Al, and

[f1]·...·[fn] =n!Vn(f1, ..., fn)

for any f1, ..., fn∈D. By (2.1), one may therefore view [f1]·...·[fn−1]∈An−1 as the alge-

braic formulation of the mixed area measure (n−1)!Sf1,...,fn−1
.

Several different notions of positivity are defined by convex cones in A1:

• Amp:={[hQ]:Q is strongly isomorphic to P} (the ample cone);

• Nef :=cl(Amp)={[hQ]:Q is homothetic to a summand of P} (the nef cone);

• Big:={[f ]:f∈D, f>0} (the big cone);

• Eff:=cl(Big)={[f ]:f∈D, f⩾0} (the pseudoeffective cone).

The terminology used here is borrowed from algebraic geometry [19]. In these terms,

two classical algebraic properties admit a familiar interpretation in convexity [17]. The

Hodge–Riemann relation of degree 1 states that

(η ·L0 ·...·Ln−2)
2 ⩾ (η ·η ·L1 ·...·Ln−2) (L0 ·L0 ·...·Ln−2)

for any η∈A1 and L0, ..., Ln−2∈Amp. This is nothing other than the Alexandrov–Fenchel

inequality for polytopes strongly isomorphic to P . On the other hand, the hard Lefschetz

theorem of degree 1 states that

η ·L1 ·...·Ln−2 =0 if and only if η=0

for any η∈A1 and L0, ..., Ln−2∈Amp. This statement is equivalent to the fact (which

was proved in the original work of Alexandrov [1]) that Sf,P=0 if and only if f is a linear

function when f=hK−hL and K,L, P1, ..., Pn−2 are strongly isomorphic polytopes; in

other words, it states that the Alexandrov–Fenchel inequality has no non-trivial extremals

in the strongly isomorphic setting.

With this algebraic language in hand, one may describe various notions of convexity

in algebraic terms. To give one further example, if we associate with any η∈Nef a

numerical dimension dim η :=max{k :η·k ̸=0} (cf. [20]), then it follows from Lemma 2.2

that [hQ]∈Nef satisfies dim[hQ]=dimQ. One can therefore readily describe algebraically

notions such as critical sets, supercriticality, etc.
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16.2.2. Extremals

While the Hodge–Riemann inequality extends readily to the setting L1, ..., Ln−2∈Nef by

continuity, this is not the case for the hard Lefschetz theorem. Indeed, the main results

of this paper are concerned with the case that P=(P1, ..., Pn−2) are summands of P (see

§5), and it is precisely in this case that non-trivial extremals appear. Our results may

therefore be viewed as refined forms of the hard Lefschetz theorem for nef classes.

To express our results algebraically, we must understand the algebraic meaning of the

condition f(x)=0 for all x∈suppSB,P . To this end, let us make the following observation

(we freely use the notation of §5 and §6 in the proof).

Lemma 16.1. f∈D satisfies f(x)=0 for all x∈suppSB,P if and only if there exist

f1, f2∈D, with f1, f2⩾0, such that f=f1−f2 and Sf1,P=Sf2,P=0.

Proof. For the “if” direction, note that Sfi,P=0 implies∫
fi dSB,P =

∫
hB dSfi,P =0.

As fi⩾0, it follows that fi(x)=0 for all x∈suppSB,P and i=1, 2.

For the “only if” direction, suppose that f(x)=0 for all x∈suppSB,P . Applying

Lemma 6.4 to the vectors z1=(f(ui)+)i∈[N ] and z2=(f(ui)−)i∈[N ], we obtain f1, f2∈D
such that f1(ui), f2(ui)⩾0 and f(ui)=f1(ui)−f2(ui) for all i∈[N ], and f1(ui)=f2(ui)=0

for i∈V . As any function in D is linear on the normal cones of P , it follows that

f1, f2⩾0 and f=f1−f2 everywhere, and that f1=f2=0 on suppSB,P (by Lemma 5.5).

The conclusion follows from Lemma 2.8.

For sake of illustration, let us consider the simplest setting where L1, ..., Ln−2 are

big and nef, that is, Li=[hPi
] for full-dimensional polytopes P1, ..., Pn−2. The conclusion

of Theorem 8.1 may then be reformulated as follows.

Corollary 16.2. Let L1, ..., Ln−2∈Nef ∩Big and η∈A1. Then, η ·L1 ·...·Ln−2=0

if and only if η=η1−η2 for some η1, η2∈Eff, so that ηi ·L1 ·...·Ln−2=0, i=1, 2.

One may analogously reformulate the result of Theorem 2.13 in algebraic terms

to characterize any η∈A1 and L1, ..., Ln−2∈Nef such that η ·L1 ·...·Ln−2=0 (in Defini-

tion 2.10, one may then replace B by any ample class).

From the perspective of convex geometry, there is of course nothing new in the

present formulation. The point of the algebraic formulation is, however, that the same

algebraic structures carry over to other mathematical problems [17]. The statement of

Corollary 16.2 (for example) therefore gives rise to natural conjectures on what analogues

of the results of this paper might look like in other contexts.
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Example 16.3. A structure similar to A(P ) arises in algebraic geometry: here D is

the space of divisors, Ak is the space of k-cycles modulo numerical equivalence, and the

operator · is the intersection product on a projective variety [14]. The ample, nef, big,

and pseudoeffective cones are described in [19]. One might therefore ask whether a result

such as Corollary 16.2 carries over to this setting, at least in sufficiently nice situations.

To the best of our knowledge this question is entirely open, except for toric varieties

which admit a precise correspondence with convex geometry [13], [9] (for which such a

conclusion follows from the results of this paper).

Example 16.4. A structure similar to A(P ) arises in the theory of mixed discrimi-

nants [38]. This is a much simpler setting: for example, here Amp=Big is the cone of

positive definite matrices, so Corollary 16.2 reduces to the hard Lefschetz theorem. On

the other hand, it was shown by Panov [23] that this setting admits degenerate extremals

in complete analogy to Theorem 2.13. This setting therefore provides an example outside

convexity in which analogous structures appear.
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