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1. Introduction

1.1. Khintchine’s theorem and manifolds

To begin with, let us recall the notion of ψ -approximable points which is convenient for

introducing the problems investigated in this paper. Here and elsewhere, ψ: (0,+∞)!

(0, 1) is a function that will be referred to as an approximation function. We will say

that the point y=(y1, ..., yn)∈Rn is ψ-approximable if the system∣∣∣∣yi− pi
q

∣∣∣∣< ψ(q)

q
, 1⩽ i⩽n, (1.1)

holds for infinitely many (p1, ..., pn, q)∈Zn×N. The set of ψ -approximable points in Rn

will be denoted by Sn(ψ). In the special case of ψτ (q):=q
−τ for some τ>0, we will also

write Sn(τ) instead of Sn(ψτ ). Recall that, by Dirichlet’s theorem [42], Sn(1/n)=Rn. For

functions ψ that decay faster that q−1/n, Khintchine [32], [33] discovered the following

simple yet powerful criterion for the proximity of rational points to almost all points y

in Rn. We state it below in a modern (slightly less restrictive) form; see [3], [9], [37] for

further details and generalisations. In what follows, Ln denotes Lebesgue measure on Rn

and Ln(X)=Full means that the complement to X⊂Rn has Lebesgue measure zero.

Khintchine’s theorem. Given any decreasing approximation function ψ,(1)

Ln(Sn(ψ))=

{
0, if

∑∞
q=1 ψ(q)

n<∞,

Full, if
∑∞

q=1 ψ(q)
n =∞.

(1.2)

(1) In the original version of Khintchine’s theorem, qψ(q) is assumed to be decreasing, see [3] for
an overview.
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The convergence case of Khintchine’s theorem is a simple application of the Borel–

Cantelli lemma based on the trivial count of rational points of bounded height. However,

studying the proximity of rational points to points y lying on a submanifold M⊂Rn

gives rise to major challenges. Indeed, extending Khintchine’s proof to manifolds re-

quires solving the notoriously difficult problem of counting rational points lying close

to M [§1.6.1.2]MR3618787. This was first observed by Sprindžuk in [45, §2.6]. The

main purpose of this paper is to address the following central problem that was initially

communicated by Kleinbock and Margulis in their seminal paper on the Baker–Sprinžuk

conjecture [36, §6.3] and later stated in a more general form(2) by Kleinbock, Lindestrauss

and Weiss [35, Question 10.1].

Problem 1.1. Let M⊂Rn be a non-degenerate submanifold. Verify if, for any mono-

tonic function ψ, almost no/every point of M is ψ-approximable whenever the series

∞∑
q=1

ψ(q)n (1.3)

converges/diverges.

In this paper, we use the notion of non-degeneracy introduced in [36]. A map

f :U!Rn, defined on an open subset U⊂Rd, is said to be l-non-degenerate at x0∈U if f

is l times continuously differentiable on a neighborhood of x0, and the partial derivatives

of f at x0 of orders up to l span Rn. The map f is said to be non-degenerate at x0 if it is

l-non-degenerate at x0 for some l∈N. The map f is said to be non-degenerate if it is non-

degenerate at Ld-almost every point in U. In turn, the immersed manifold M:=f(U) is

non-degenerate (at y0=f(x0)) if the immersion f :U!Rn is non-degenerate (at x0). This

readily extends to manifolds M that do not possess a global parameterisation via local

parameterisations. As is well known, any real connected analytic manifold not contained

in a hyperplane of Rn is non-degenerate [36]. In fact, it is non-degenerate at every point.

The special case ψ(q)=q−τ , τ>0, of Problem 1.1 was posed by Sprindžuk for analytic

manifolds [46] and famously resolved in full by Kleinbock and Margulis [36]. Note that for

these approximation functions the divergence case is trivial thanks to Dirichlet’s theorem.

In [34] Kleinbock extended [36] to affine subspaces of Rn satisfying certain Diophantine

conditions and to submanifolds of such subspaces that are non-degenerate with respect

to them. In another direction, Kleinbock, Lindestrauss and Weiss [35] established the

analogue of [36] for the supports of friendly measures. We also refer the reader to [45]

and [12] for various preceding results.

(2) The general form incorporates the supports of so-called friendly measures, which essentially

generalise the notion of non-degeneracy from manifolds to fractals. See [31] for recent advances on the
version of Problem 1.1 for fractals.



khintchine’s theorem and diophantine approximation on manifolds 3

For arbitrary monotonic ψ, Problem 1.1 turned out to be far more delicate. Its

divergence case was settled for C3 planar curves [4], and then fully resolved for analytic

manifolds in arbitrary dimensions [2]. More recently, the latter was also extended to ar-

bitrary non-degenerate curves [8], while for planar curves the non-degeneracy assumption

was replaced by weak non-degeneracy in [10].(3)

The convergence case of Problem 1.1 for arbitrary ψ is a different story. It was

resolved for n=2 for all C3 non-degenerate curves in the breakthrough of Vaughan and

Velani [47]. Later, Huang [23] extended this to weakly non-degenerate planar curves.

However, known results in higher dimensions require various additional constrains on

the geometry and dimension of manifolds, predominantly as a result of the use of tools

based on Fourier analysis. A brief account of known results is as follows. Bernik [11]

proved it for the manifolds in Rdk defined as the Cartesian products of d⩾k⩾2 Ck+1

non-degenerate curves in Rk. Dodson, Rynne and Vickers [20] proved it for the manifolds

M in Rn having at least two non-zero principle curvatures of the same sign with respect

to every normal direction at y for almost all y∈M. Note that this geometric condition

requires that the dimension d=dimM satisfies the inequality (d+1)d⩾2n. Vaughan,

Velani, Zorin and the first named author of this paper [7] proved the convergence case

of Problem 1.1 for 2-non-degenerate manifolds in Rn of dimension d⩾ 1
2n+1, with n⩾4.

They also proved it for hypersurfaces in R3 with Gaussian curvature non-vanishing almost

everywhere [7, Corollary 5]. Simmons [43] further relaxed the conditions of [20] and [7]

imposed on manifolds, albeit the restrictions on their dimension remain broadly the same

and, for instance, rule out curves. In a related development Huang and Liu [27] proved a

Khintchine-type theorem for affine subspaces satisfying certain Diophantine conditions.

Thus, the convergence case of Problem 1.1 remains fully open for curves in dimen-

sions n⩾3. Indeed, it is open for subclasses of non-degenerate manifolds in Rn of every

dimension d<n. Even in the case of hypersurfaces, which are most susceptible to the

methods used in preceding papers, the problem is not fully resolved, e.g. it is open for

hypersurfaces in R3 of zero Gaussian curvature. In this paper we contrive no additional

hypotheses on non-degenerate manifolds, and resolve the convergence case of Problem 1.1

in full. Our main result reads as follows.

Theorem 1.2. Let n⩾2, a submanifold M⊂Rn be non-degenerate, ψ be monotonic,

and assume (1.3) converges. Then, almost all points on M are not ψ-approximable.

Hausdorff measure and Hausdorff dimension are often used to distinguish between

sets of Lebesgue measure zero, and thus refine the convergence case of Khintchine’s

(3) A curve C⊂R2 is weakly non-degenerate at a point p∈C if there is a neighborhood of p that can

be written as the uniform limit of a sequence of non-degenerate curves whose curvatures are uniformly
bounded away from zero and infinity; see [10] for further details.
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theorem. In this paper we make an extra step beyond Theorem 1.2 and establish such

refinements. The precise statements are provided in §2.2, while §2.1 contains an overview

of the preceding results and problems.

1.2. Rational points near manifolds

The proof of Theorem 1.2, and indeed its generalisation to Hausdorff measures stated in

§2.2, are underpinned by a new result on rational points near non-degenerate manifolds

stated in this section, which is of independent interest. For simplicity and without loss

of generality, we will assume that the manifolds M of interest are immersed by maps

f :U!Rn, where U⊂Rd denotes an open subset. Furthermore, in view of the implicit

function theorem, it is non-restrictive to assume that

f(x)= (x,f(x))= (x1, ..., xd, f1(x), ..., fm(x)), (1.4)

where d=dimM and m=codimM, x=(x1, ..., xd)∈U and

f =(f1, ..., fm):U−!Rm. (1.5)

As we are interested in non-degenerate manifolds, the maps f must necessarily be C2.

Furthermore, when proving Theorem 1.2, we can deal with the manifold locally. There-

fore, without loss of generality, we may assume that there is a constant M⩾1 such that

max
1⩽k⩽m

max
1⩽i,j⩽d

sup
x∈U

max

{∣∣∣∣∂fk(x)∂xi

∣∣∣∣, ∣∣∣∣∂2fk(x)∂xi∂xj

∣∣∣∣}⩽M. (1.6)

Given t>0, 0<ε<1 and ∆⊂Rd, let

R(∆; ε, t)=

{
(p, q)∈Zn+1 : 0<q<et and inf

x∈∆∩U

∥∥∥∥f(x)−p

q

∥∥∥∥
∞
<
ε

et

}
,

and let

N(∆; ε, t)=#R(∆; ε, t).

Thus, N(∆; ε, t) counts the rational points p/q (not necessarily written in the lowest

terms) of denominator 0<q<et lying εe−t-close to f(∆∩U)⊂M.

Counting rational points on manifolds is usually geared towards establishing esti-

mates of the form

N(U; ε, et)≪ εme(d+1)t+E(U; ε, t), (1.7)

where E(U; ε, t) is an error term. In general, E(U; ε, t) cannot be made smaller than

edt for all non-degenerate manifolds, since a d-dimensional non-degenerate manifold may
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contain a (d−1)-dimensional rational subspace. Furthermore, a non-degenerate manifold

may accumulate abnormally high number of rational points around points where it has a

very high ‘contact’ with its tangent d-dimensional plane, for example, when this tangent

plane is rational. In this case, even the estimate E(U; ε, t)≪e(d+1−δ)t may not be achiev-

able for any δ>0. Hence, establishing (1.7) with a useful error term requires imposing

conditions beyond non-degeneracy. Worse still, major limitations on the dimension d

and/or ε arise from the tools that are currently in use. In fact, the theory is only rea-

sonably complete for curves in R2, thanks to the breakthrough of Vaughan and Velani

[47], who proved (1.7) with E(U; ε, t)=O(et(1+δ)) and arbitrary δ>0 for any compact

C3 curve in R2 of non-zero curvature, and thus obtained the best possible strengthening

of Huxley’s earlier result [28]. The complementary lower bound was found in [4] and

various improvements for planar curves can be found in [10], [19], [21], [23], [26]. Results

in higher dimensions are limited to manifolds with various additional hypothesis that we

already discussed in §1.1, and can be found in [7], [27], [43]. More recently, Huang [25]

obtained essentially the best possible bound on the error term in (1.7) for a class of hy-

persurfaces in Rn with non-zero Gaussian curvature. A further generalisation of Huang

was found by Schindler and Yamagishi [39]. It is commonly believed that the biggest

challenge is establishing (1.7) is posed by the case of curves in Rn for which we have

virtually no results. In this context, it is worth mentioning the recent work of Huang

[24] on rational points near non-degenerate curves in R3 of fixed denominator and whose

main result implies (1.7) with E(U; ε, t)=O(t4/5e8t/5). However, with reference to this

bound, the main term in (1.7) becomes dominant only when ε⩾e−t/5, and so it cannot

be used to resolve Problem 1.1 for curves in R3, which requires understanding rational

points lying much closer to the manifolds in question, namely ε=o(e−t/3).

In this paper, we deal with all non-degenerate manifolds, including non-degenerate

curves by introducing a new approach, which involves splitting a manifold into a ‘generic

part’ and a ‘special part’ using diagonal actions on the space of lattices. In short, we

establish a sharp upper bound for the number of rational points lying near the generic

part, which agrees with the main term in (1.7); see (1.9) below. Regarding the special

part, we establish explicit bounds on the size of the special part which decay exponentially

and uniformly for e−3t/2n+δ⩽ε<1 as t!∞, where δ>0 is arbitrary; see (1.8) below. The

key new idea is to apply the so-called quantitative non-divergence estimate on the space

of lattices [13, Theorem 6.2] in order to demonstrate that the size of the special part is

small, and to use certain tools from homogeneous dynamics and the geometry of numbers

to count rational points near the generic part. The previous results that we discussed

above have been using tools from analytic number theory (a version of the circle method)

relying on Fourier analysis, and Huxley [28] used a version of the determinate method of
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Swinnerton–Dyer. Our main result on rational points is as follows.

Theorem 1.3. Suppose U⊂Rd is open, and let f :U!Rn be a C2 map satisfying

(1.4) and (1.6). Then, for any 0<ε<1 and every t>0, there is a subset M(ε, t)⊂U,

which can be written as a union of balls in U of radius εe−t/2 of intersection multiplicity

⩽Nd, where Nd is the Besicovitch constant, satisfying the following properties. For every

x0∈U such that f is l-non-degenerate at x0 there is a ball B0⊂U centred at x0 and

constants K0, t0>0, depending on B0 and f only, such that

Ld(M(ε, t)∩B0)⩽K0(ε
ne3t/2)−1/d(2l−1)(n+1) for t⩾ t0, (1.8)

and, for every ball B⊂U and for all sufficiently large t, we have that

N(B\M(ε, t); ε, t)⩽K1ε
me(d+1)tLd(B), (1.9)

where K1 depends on n and f only.

We now demonstrate how Theorem 1.3 is used to resolve Problem 1.1.

1.3. Proof of Theorem 1.2 modulo Theorem 1.3

To begin with, we give the following two auxiliary statements.

Lemma 1.4. If f(x)∈Sn(ψ), then there are infinitely many t∈N such that∥∥∥∥f(x)−p

q

∥∥∥∥
∞
<
ψ(et−1)

et−1
(1.10)

for some (p, q)∈Zn+1, with et−1⩽q<et.

Proof. If f(x)∈Sn(ψ), then (1.1) holds for infinitely many (p, q)∈Zn+1, with arbi-

trarily large q>0. For each q, we can define the corresponding t∈N from the inequalities

et−1⩽q<et. There are infinitely many t∈N arising this way, since q is unbounded. Fi-

nally, (1.10) follows from (1.1), since ψ is monotonically decreasing.

Lemma 1.5. Let ψ:R!R be monotonic. Then,

∞∑
q=1

ψ(q)n<∞ ⇐⇒
∞∑
t=1

ψ(et)net<∞.

Lemma 1.5 is a version of the Cauchy condensation test.
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Proof of Theorem 1.2 modulo Theorem 1.3. Without loss of generality, we consider

M of the form f(U), where f :U!Rn is a non-degenerate immersion on an open subset

U⊂Rd. Since f is non-degenerate, for almost every x0∈U the map f is non-degenerate

at x0. Hence, without loss of generality, it suffices to prove that

Ld({x∈B0 : f(x)∈Sn(ψ)})= 0 if (1.3) converges and ψ is monotonic

for a sufficiently small ball B0 centred at x0∈U, where f is l-non-degenerate at x0 for

some l∈N. Fix x0 and take B0 as in Theorem 1.2.

Without loss of generality, we will assume that ψ(q)⩾q−5/4n for all q>0, as otherwise

we can replace ψ with max{ψ(q), q−5/4n}. By Lemma 1.4, for any T⩾1,

{x∈B0 : f(x)∈Sn(ψ)}⊂
⋃
t⩾T

(At∪Bt), (1.11)

where

At :=M(eψ(et−1), t)∩B0

and

Bt :=
⋃
(p,q)

{
x∈B0 :

∥∥∥∥x−p′

q

∥∥∥∥
∞
<
ψ(et−1)

et−1

}
,

with the union in Bt running over

(p, q)∈R(B0\M(eψ(et−1), t); eψ(et−1), t).

By Theorem 1.3 and the assumption ψ(q)⩾q−5/4n, we get that

Ld(At)≪ (e(t−1)/4)−1/d(2l−1)(n+1)

and

Ld(Bt)≪ψ(et−1)me(d+1)(t−1)

(
ψ(et−1)

et−1

)d
=ψ(et−1)net−1.

Hence, by Lemma 1.5, we get that

Ld({x∈B0 : f(x)∈Sn(ψ)})≪
∑
t⩾T

(e(t−1)/4)−1/d(2l−1)(n+1)+
∑
t⩾T

ψ(et−1)net−1

which tends to zero as T!∞, since the series above are convergent. Therefore,

Ld({x∈B0 : f(x)∈Sn(ψ)})= 0,

and the proof is complete.
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2. Generalisations to Hausdorff measure and dimension

2.1. Problems and known results

To begin with, let us recall two classical results in this area due to Jarńık and Besi-

covitch, which represent the Hausdorff dimension and Hausdorff measure refinements of

Khintchine’s theorem.

Jarńık–Besicovitch theorem. ([14], [29]) Let τ⩾1/n. Then,

dimSn(τ)=
n+1

τ+1
. (2.1)

Jarńık’s theorem. ([30]) (4) Given any monotonic function ψ and 0<s<n,

Hs(Sn(ψ))=

{
0, if

∑∞
q=1 q

n(ψ(q)/q)s<∞,

∞, if
∑∞

q=1 q
n(ψ(q)/q)s =∞.

(2.2)

In the above and elsewhere, ‘dim’ denotes the Hausdorff dimension and Hs denotes

the s-dimensional Hausdorff measure. The following general problem aims at refining the

Lebesgue measure theory of ψ -approximable points on manifolds. It is geared towards

establishing the analogues of the theorems of Jarńık and Besicovitch, and it incorporates

Khintchine-type theorems for manifolds as the special case s=dimM.

Problem 2.1. Given a smooth submanifold M⊂Rn, determine the Hausdorff di-

mension s of the set Sn(ψ)∩M, and furthermore determine the s-dimensional Hausdorff

measure of the set Sn(ψ)∩M.

As before, our interest in Problem 2.1 will be focused on non-degenerate manifolds. It

is well known that, for approximation functions ψ that decay relatively fast, the problem

cannot have the same answer for all such manifolds, even if the manifolds are non-

degenerate at every point. This is easily illustrated by the following example, whose

details can be found in [2]. Let Cr be the circle in R2 defined by the equation

x2+y2 = r.

Then,

dimS2(τ)∩C1 =
1

τ+1
while dimS2(τ)∩C3 =0 for all τ > 1. (2.3)

This naturally leads to the following problem.

(4) The original statement of Jarńık’s theorem had additional constrains; see [3] for details.
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Problem 2.2. (Dimension problem) Let 1⩽d<n be integers and M̃ be a class of

submanifolds M⊂Rn of dimension d. Find the maximal value τ(M̃) such that

dimSn(τ)∩M=
n+1

τ+1
−codimM whenever

1

n
⩽ τ < τ(M̃) (2.4)

for every manifold M∈M̃. In particular, find τn,d :=τ(M̃n,d) for the class M̃n,d of

manifolds in Rn of dimension d which are non-degenerate at every point.(5)

Formula (2.4) for the dimension is informed by the volume-based expectation for

the number of rational points lying close to M; see [2] and [6, §1.6.2]. The dimension

problem was resolved for non-degenerate planar curves in [4] and [10] on establishing that

τ2,1=1. Furthermore, a Jarńık-type theorem was established in [4] and [47] regarding the

s-dimensional Hausdorff measure of S2(ψ)∩C for C3 non-degenerate planar curves C.

Theorem 2.3. (See [4], [47]) Given any monotonic approximation function ψ, any

s∈
(
1
2 , 1

)
and any C3 planar curve C non-degenerate at every point, we have that

Hs(S2(ψ)∩C)=
{

0, if
∑∞

q=1 q
1−sψ(q)1+s<∞,

∞, if
∑∞

q=1 q
1−sψ(q)1+s =∞.

(2.5)

The C3 hypothesis was removed from Theorem 2.3 in the case of divergence [10],

and for a subrange of s in the case of convergence [23], where Theorem 2.3 was extended

to weakly non-degenerate curves.

In higher dimensions, there are various speculations as to what τn,d might be. Let

us first discuss the manifolds of dimension d>1. Consider the non-degenerate manifold

M in Rn immersed by the map

(x1, ..., xd) 7−! (x1, ..., xd, x
2
d, ..., x

n+1−d
d ). (2.6)

Then, M contains Rd−1×{0}, and so dimSn(τ)∩M⩾dimSd−1(τ). Therefore, by the

Jarńık–Besicovitch theorem, we have that

dimSn(τ)∩M⩾
d

τ+1
>
n+1

τ+1
−codimM whenever τ >

1

n−d
.

This means that τn,d⩽1/(n−d) for d>1. Any improvement to this hard bound on

τn,d would require restricting M to a smaller subclass of manifolds. Nevertheless, in all

likelihood within the class M̃n,d of non-degenerate manifolds defined within Problem 2.2,

this upper bound is exact. We state this formally now as a conjecture.

(5) The hypothesis of non-degeneracy can be asked everywhere except on a set of dimension ⩽
dimSn(τ)∩M. However, this relaxation will not make the problem more general.
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Conjecture 2.4. Let 1<d<n. Then,

τn,d =
1

n−d
.

The following lower bound towards Conjecture 2.4 was established in [5]:

dimSn(τ)∩M⩾
n+1

τ+1
−codimM whenever

1

n
⩽ τ <

1

n−d
, (2.7)

which is valid literally for every C2 submanifold M⊂Rn of every dimension 1⩽d<n. In

particular, it does not require non-degeneracy or any other constrain onM. Furthermore,

in the case of analytic non-degenerate submanifolds of Rn, the following more subtle

Hausdorff measure version of (2.7) for generic ψ was obtained in [2] generalising the

divergence part of Theorem 2.3.

Theorem 2.5. ([2, Theorem 2.5]) For every analytic non-degenerate submanifold

M of Rn of dimension d and codimension m=n−d, any monotonic ψ such that

qψ(q)m!∞

as q!∞ and any s∈(md/(m+1), d), we have that

Hs(Sn(ψ)∩M)=∞ (2.8)

whenever the series
∞∑
q=1

qn
(
ψ(q)

q

)s+m

(2.9)

diverges.

The remaining problem in establishing Conjecture 2.4 is to get the upper bound for

the dimension. Partial progress was made in [7], [24], [25], [27], [39], [43] as a conse-

quence of results on counting rational points; see §1.2. However, as with Problem 1.1,

Problem 2.2 remains open for curves in dimensions n⩾3 and subclasses of non-degenerate

manifolds in Rn of every dimension d<n.

Non-degenerate curves are of special interest for various reasons. First of all, curves

cannot contain rational subspaces, and so example (2.6) is not applicable to them. Curves

can be used to analyse manifolds of higher dimensions using fibering techniques. In fact,

Theorem 2.5, and consequently the lower bound (2.7), hold in the following stronger form

for non-degenerate curves.
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Theorem 2.6. (See [2, Theorem 7.2] and [8]) For every curve C in Rn non-degenerate

at every point, any monotonic ψ such that qψ(q)(2n−1)/3
!∞ as q!∞ and any s∈

(
1
2 , 1

)
,

we have that

Hs(Sn(ψ)∩C)=∞ (2.10)

whenever the series (2.9) with m=n−1 diverges. Consequently,

dimSn(τ)∩C⩾
n+1

τ+1
−(n−1) whenever

1

n
⩽ τ <

3

2n−1
. (2.11)

Conjecture 2.7. (Curves) For every n⩾2 we have that

τn,1 =
3

2n−1
.

2.2. New results on Hausdorff measure and dimension

Here we provide generalisations of Theorem 1.2 to s-dimensional Hausdorff measures and

Hausdorff dimension, which thus contribute to resolving the problems surveyed in §2.1.
The following is our key outcome on Hausdorff measures.

Theorem 2.8. Let n⩾2 be an integer, s>0 and M be a submanifold of Rn such

that

Hs({y∈M :M is not l-non-degenerate at y})= 0. (2.12)

Let d=dimM, m=codimM and ψ be a monotonic approximation function such that

the series (2.9) converges and

∞∑
t=1

(
ψ(et)

et/2

)s−d

(ψ(et)ne3t/2)−α<∞, where α :=
1

d(2l−1)(n+1)
. (2.13)

Then,

Hs(Sn(ψ)∩M)= 0. (2.14)

The following statement is our key result on the Hausdorff dimension.

Corollary 2.9. Let n⩾2 be an integer, M be a submanifold of Rn of dimension d,

which is l-non-degenerate everywhere, except possibly on a set of Hausdorff dimension

⩽(n+1)/(τ+1)−codimM. Let τ⩾1/n satisfy

nτ−1

τ+1
⩽
α(3−2nτ)

2τ+1
, (2.15)

where α is the same as in (2.13). Then,

dim(M∩Sn(τ))=
n+1

τ+1
−codimM. (2.16)
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Similarly to Theorem 1.2, the proof of Theorem 2.8 is a rather simple consequence

of our main result on rational points. We make no delay in showing its details.

Proof of Theorem 2.8 modulo Theorem 1.3. First of all, note that, since ψ:R!R is

monotonic, by Cauchy’s condensation test we have that

∞∑
q=1

qn
(
ψ(q)

q

)s+m

<∞ ⇐⇒
∞∑
t=1

e(n+1)t

(
ψ(et)

e

t)s+m

<∞. (2.17)

As before, without loss of generality, we consider M of the form f(U), where f :U!Rn

is a non-degenerate immersion of an open subset U⊂Rd. By (2.12), it suffices to prove

that

Hs({x∈B0 : f(x)∈Sn(ψ)})= 0

whenever ψ is monotonic, (1.3) converges and (2.13) holds, where B0 is a sufficiently small

ball centred at x0∈U, where f is l-non-degenerate at x0. Fix B0 as in Theorem 1.2. By

(1.4), for any T⩾1 we have inclusion (1.11). By Theorem 1.3 with ε=eψ(et−1), the set

At can be covered by

≪ (ψ(et−1)e−(t−1)/2)−d(ψ(et−1)ne3(t−1)/2)−1/d(2l−1)(n+1)

balls of radius ψ(et−1)e−(t−1)/2. Furthermore, by Theorem 1.3, we also have that the set

Bt is the union of ≪ψ(et−1)me(d+1)(t−1) balls of radius ≪ψ(et−1)/et−1. Hence, by the

definition of s-dimensional Hausdorff measure, we get that

Hs({x∈B0 : f(x)∈Sn(ψ)})

≪
∑
t⩾T

ψ(et−1)me(d+1)(t−1)

(
ψ(et−1)

et−1

)s
+
∑
t⩾T

(ψ(et−1)e−(t−1)/2)s−d(ψ(et−1)ne3(t−1)/2)−1/d(2l−1)(n+1).

(2.18)

The first sum equals ∑
t⩾T

e(n+1)(t−1)

(
ψ(et−1)

et−1

)s+m

and, by (2.17), tends to zero. The second sum in (2.18) also tends to zero as a consequence

of (2.13). Hence,

Hs({x∈B0 : f(x)∈Sn(ψ)})= 0

and the proof is complete.
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Proof of Corollary 2.9. Let L(τ) and R(τ) denote the left- and right-hand sides of

(2.15), respectively. First, observe that L(τ) is increasing and R(τ) is decreasing. Next,

note that L(1/n)=0, while R(1/n)>0. Also, observe that L(1/(n−1))=1/n, while

R

(
1

n−1

)
<α⩽

1

n+1
<L

(
1

n−1

)
.

Hence, the set of solutions to (2.15) is a closed interval Id,l,n⊂[1/n, 1/(n−1)). In partic-

ular, for any τ∈Id,l,n, estimate (2.7) is applicable and therefore, to prove (2.16), we only

need to prove the complementary upper bound. To this end, let

s>
n+1

τ+1
−codimM

and ψ(q)=q−τ . Then, it is readily seen that (2.9) is convergent. Furthermore, by (2.15),

one easily verifies condition (2.13). Condition (2.12) is also satisfied since M is l-non-

degenerate everywhere except possibly on a set of Hausdorff dimension <s. Hence,

Theorem 2.8 is applicable and we conclude that Hs(Sn(τ)∩M)=0. By definition, it

means that dim(Sn(τ)∩M)⩽s. Since

s>
n+1

τ+1
−codimM

is arbitrary, we obtain the require upper bound and complete the proof.

Remark 2.10. It is not difficult to see that the monotonicity of ψ was only used

to apply the Cauchy condensation test to establish (2.17) and to replace ψ(q)/q with

ψ(et−1)/et−1 in Diophantine inequalities. The requirement that ψ is monotonic within

Theorems 1.2 and 2.8 can therefore be replaced by a weaker assumption. For instance,

one can replace the monotonicity of ψ with the following requirement: there exist a

constant C>0 such that

ψ(q)⩽Cψ(et−1) for et−1 ⩽ q < et.

In fact, the use of the sequence et is not critical, and it can be replaced by any other

sequence st>0 such that

1< lim inf
t!∞

st
st−1

⩽ lim sup
t!∞

st
st−1

<∞.

2.3. Spectrum of Diophantine exponents

Now, let us describe the implications of our results for a problem of Bugeaud and Laurent

regarding the spectrum of the following Diophantine exponent introduced in [17]. Given

x∈R, let
λn(x) := sup{τ > 0 : (x, x2, ..., xn)∈Sn(τ)}
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be the exponent of simultaneous rational approximations to n consecutive powers of a

real number x. By Dirichlet’s theorem, we have that λn(x)∈[1/n,+∞] for any x∈R.
The spectrum of λn is defined as

spec(λn) :=λn(R\Q)= {λ∈ [1/n,+∞] :λ=λn(x) for some x∈R\Q}.

In 2007 Bugeaud and Laurent posed the following problem.

Problem 2.11. (Bugeaud–Laurent [18, Problem 5.5]) Is spec(λn)=[1/n,+∞]?

The following more subtle version of this problem was later raised in [16].

Problem 2.12. (Bugeaud [16, Problem 3.5]) For every λ⩾1/n, determine

dim{x∈R :λn(x)=λ} and dim{x∈R :λn(x)⩾λ}.

To begin with, note that, by Sprindžuk’s theorem [44], λn(x)=1/n for almost all

x∈R. In particular, 1/n∈spec(λn) for every n. For n=1, Problem 2.11 is relatively

simple and can be solved, for instance, using continued fractions, while the answer to

Problem 2.12 is provided by the Jarńık–Besicovitch theorem stated at the start of §2.1.
For n=2, Problem 2.12, and consequently Problem 2.11, was solved in [4] and [15]. In

turn, Bugeaud [16] showed that [1,+∞]⊂spec(λn) for any n using explicit examples,

while Schleischitz [40] resolved Problem 2.12 for λ>1. The most significant challenge

within Problems 2.11 and 2.12 is posed by the values of λ in the spectrum of λn which

are <1. The first step in this direction was made by Schleischitz [41], who proved that

spec(λ3) contains points <1. Most recently, Badziahin and Bugeaud [1] made a major

achievement by showing that[
n+4

3n
,+∞

]
⊂ spec(λn) for every n⩾ 3

and resolving Problem 2.12 for λ⩾(n+4)/3n. Corollary 2.9 of our paper makes a first

step in closing the gap in the spectrum of λn from the other end, namely for the values λ

close to the Dirichlet exponent 1/n. To produce an explicit statement, we now specialise

Corollary 2.9 to curves. First of all, we state and prove the following proposition which

allows us to fix the non-degeneracy parameter l.

Proposition 2.13. Let f :U!Rn be l-non-degenerate at x0∈U, where U is an

interval in R. Then, there are an interval B0 centred at x0 and a countable subset

S⊂B0 such that f is n-non-degenerate at every point x∈B0\S.

This proposition is a standard exercise in analysis relying on the following lemma.
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Lemma 2.14. If φ:U!R is a C1 function on an interval U and

N (φ) := {x∈U :φ(x)= 0},

then N (φ)\N (φ′) consists on isolated points.

Proof. If x0∈N (φ)\N (φ′) is a limit point of N (φ), then there is a sequence xk∈
U∩N (φ)\{x0} converging to x0. By the mean value theorem,

φ′(x̃k)(xk−x0)=φ(xk)−φ(x0)= 0,

where x̃k is between xk and x0. Thus, φ
′(x̃k)=0. Letting k!∞ and using the continuity

of φ′ gives

φ′(x0)=φ′
(

lim
k!∞

x̃k

)
= lim

k!∞
φ′(x̃k)= 0.

However, x0 /∈N (φ′). Thus, x0 cannot be a limit point of N (φ).

Proof of Proposition 2.13. Since f is l-non-degenerate at x0, we have that

rank{f (i)(x0) : 1⩽ i⩽ l}=n.

Since f is Cl, there is an interval B0 centred at x0 such that

rank{f (i)(x) : 1⩽ i⩽ l}=n for all x∈B0.

If l=n, the statement is obvious. Thus, we will assume that l>n. Let

φ(x) :=det(f
(i)
j (x))1⩽i,j⩽n

be the Wronskian of f ′(x). Let S0={x∈B0 :φ(x)=0} and Si={x∈Si−1 :φ
(i)(x)=0} for

i=1, ..., l−n. By definition, S0⊃S1⊃...⊃Sl−n. By the choice of B0, we have Sl−n=∅.

By Lemma 2.14, Si−1\Si is countable for every 1⩽i⩽l−n. Hence,

S0 =(S0\S1)∪...∪(Sl−n−1\Sl−n)

is countable, and the proof is complete.

In view of Proposition 2.13, we can always apply Corollary 2.9 to non-degenerate

curves with l=n. This gives the following statement.

Corollary 2.15. Let n⩾2 be an integer, C be a curve in Rn, which is non-

degenerate everywhere except possibly on a set of Hausdorff dimension

⩽
n+1

τ+1
−n+1.

Let τ⩾1/n satisfy
nτ−1

τ+1
⩽

3−2nτ

(2τ+1)(2n−1)(n+1)
. (2.19)

Then,

dim(C∩Sn(τ))=
n+1

τ+1
−n+1. (2.20)
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On letting nτ=1+δ, (2.19) transforms into

δ

n+1+δ
⩽

1−2δ

(n+2+2δ)(2n−1)(n+1)
,

or equivalently

δ2(4n2+2n)+δ(2n3+5n2+3n−1)−n−1⩽ 0. (2.21)

Solving (2.21), we get that

0⩽ δ⩽ δn :=

√
Dn−Bn

2An
, (2.22)

where

An =4n2+2n,

Bn =2n3+5n2+3n−1,

Dn =4n6+20n5+37n4+42n3+23n2+2n+1.

By (2.21), we also have that

δn<
1

2n2+5n
.

This also means that the first term in (2.21) is <1 for n⩾3, and therefore (2.21) will

hold whenever

δ(2n3+5n2+3n−1)⩽n. (2.23)

Also, observe that 6n2⩾5n2+3n−1 for n⩾3. Hence, (2.23) is implied provided that

δ(2n2+6n)<1. Therefore,
1

2n2+6n
<δn<

1

2n2+5n
. (2.24)

Corollary 2.16. (The spectrum of λn) For every n⩾3,[
1

n
,
1

n
+
δn
n

]
⊂ spec(λn),

where δn is given by (2.22) and can be estimated by (2.24).

3. Preliminaries

3.1. Notation and conventions

First, let us agree on some notation that we will use throughout the rest of the paper. By

Ik we will denote the identity k×k matrix. Throughout, ∥ · ∥ and ∥ · ∥∞ will denote the

Euclidean and supremum norms on Rk respectively. Given r>0 and x∈Rd, by B(x, r)



khintchine’s theorem and diophantine approximation on manifolds 17

we will denote the Euclidean ball in Rd of radius r centred at x, and respectively, by

B(x, r) we will denote the ∥ · ∥∞-ball of radius r centred at x, which for obvious reasons

will be referred to as a hypercube.

We will use the Vinogradov and Bachmann–Landau notations: for functions f and

positive-valued functions g, we write f≪g or f=O(g) if there exists a constant C such

that |f |⩽Cg pointwise. We will write f≍g if f≪g and g≪f . Throughout,

G=SL(n+1,R) and Γ=SL(n+1,Z).

Then, the homogeneous space

Xn+1 := SL(n+1,R)/ SL(n+1,Z)

can be identified with the set of all unimodular lattices in Rn+1, where the coset gΓ in

Xn+1 corresponds to the lattice gZn+1 in Rn+1. Note that the column vectors of g form

a basis of gZn+1.

3.2. Preliminaries from the geometry of numbers

Given a lattice Λ∈Xn+1 and an integer 1⩽i⩽n+1, let

λi(Λ) := inf{λ> 0 :B(0, λ)∩Λ contains i linearly independent vectors}. (3.1)

In other words, λ1(Λ)⩽...⩽λn+1(Λ) are the successive minima of the closed unit ball

B(0, 1) with respect to the lattice Λ.

Recall that, given a lattice Λ∈Xn+1, its polar lattice is defined as follows:

Λ∗ = {a∈Rn+1 :a·b∈Z for every b∈Λ}. (3.2)

The following lemma is well known; see, e.g., [22, Theorem 21.5].

Lemma 3.1. Let g∈G. Then,

(gZn+1)∗ =(gT)−1Zn+1,

where (gT)−1 is the inverse of the transpose of g.

Given a convex body C in Rn+1 symmetric about 0, one defines the polar body

C∗ = {y∈Rn+1 :x·y⩽ 1 for all y∈C}.

It is readily seen that

B(0, 1)∗ =B(0, 1).

Then, the following theorem on successive minima of the polar lattice is a direct conse-

quence of a more general result of Mahler; see [22, Theorem 23.2].
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Theorem 3.2. (Mahler, see [22, Theorem 23.2]) Let Λ be any lattice in Rn+1. Then,

for every 1⩽i⩽n+1, we have that

1⩽λi(Λ)λn+2−i(Λ
∗)⩽ ((n+1)!)2.

Given k∈N, define the following square k×k matrix:

σk =



0 0 ... 0 1

0 0 ... 1 0
...

...
...

...
...

0 1 ... 0 0

1 0 ... 0 0


.

In case k=n+1, we will simply write σ instead of σn+1. Note that σk is an involution,

that is σ−1
k =σk. Also note that σk acts on row-vectors on the right and on column-vectors

on the left by placing their coordinates in the reverse order. Furthermore, we have that

gZn+1=gσZn+1 and σ−1(B(0, λ))=B(0, λ) for every λ>0. Therefore, for every g∈G,

λi(gZn+1)=λi(σ
−1gσZn+1). (3.3)

Given g∈G, we will define the dual of g, denoted by g∗, by

g∗ :=σ−1(gT)−1σ. (3.4)

It is readily seen that the dual of the product of matrices equals the product of dual

matrices, that is

(g1g2)
∗ = g∗1g

∗
2 for any g1, g2 ∈G. (3.5)

Further, in view of equation (3.3), Theorem 3.2 implies the following result.

Lemma 3.3. For any g∈G and every 1⩽i⩽n+1, we have that

1⩽λi(gZn+1)λn+2−i(g
∗Zn+1)⩽ ((n+1)!)2.

3.3. A quantitative non-divergence estimate

We will make use of a version of the quantitative non-divergence estimate on the space of

lattices due to Bernik, Kleinbock and Margulis [13, Theorem 6.2]. To be more precise, we

will use a consequence of this non-divergence estimate appearing as Theorem 1.4 in [13].

Below, we state it in a slightly simplified form which fully covers our needs. In what

follows, ∇ stands for the gradient of a real-valued function.
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Theorem 3.4. (See [13, Theorem 1.4]) Let U⊂Rd be open, x0∈U and f :U!Rn

be l-non-degenerate at x0. Then, there exist a ball B0⊂U centred at x0 and a constant

E⩾1 such that, for any choice of

0<δ⩽ 1, T ⩾ 1 and K> 0 satisfying δn<KTn−1, (3.6)

the Lebesgue measure of the set

Sf (δ,K, T ) := {x∈B0 : there exists (a0,a)∈Z×Zn such that

|a0+f(x)aT |<δ, ∥∇f(x)aT ∥∞<K and 0< ∥a∥∞<T}
(3.7)

satisfies the inequality

Ld(Sf (δ,K, T )) ⩽ E(δKTn−1)1/d(2l−1)(n+1)Ld(B0).

4. The generic and special parts

4.1. Dynamical reformulation

Recall that

R(∆; ε, t)=

{
(p, q)∈Zn+1 : 0<q<et and there is x∈∆∩U with f(x)∈B

(
p

q
,
ε

et

)}
.

Our goal is to interpret the condition f(x)∈B(p/q, ε/et) in terms of properties of the

action of gε,t on a certain lattice in Rn+1. With this goal in mind, given

y=(y1, ..., yn)∈Rn,

define

U(y) :=

 In σ−1
n yT

0 1

=


1 ... 0 yn

...
...

...

1 y1

1

∈G. (4.1)

Also, given an m×d matrix Θ=[θi,j ]1⩽i⩽m
1⩽j⩽d

∈Rm×d, let

Z(Θ) :=


Im σ−1

m Θσd 0

0 Id 0

0 0 1

=



1 ... 0 θm,d ... θm,1 0
...

...
...

...
...

1 θ1,d ... θ1,1 0

1 ... 0 0
...

...
...

1 0

1


∈G. (4.2)
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For each t>0 and 0<ε<1, define the following unimodular diagonal matrix:

gε,t := diag{ϕε−1, ..., ϕε−1︸ ︷︷ ︸
n

, ϕe−t}∈G, (4.3)

where

ϕ := (εnet)1/(n+1). (4.4)

Before moving on, we state a couple of conjugation equations involving gε,t.

Lemma 4.1. For any t>0, Θ∈Rm×d and y∈Rn, we have that

gε,tU(y)g−1
ε,t =U(etε−1y), (4.5)

gε,tZ(Θ)g−1
ε,t =Z(Θ). (4.6)

The proof is elementary and left to the reader.

Lemma 4.2. Let y∈Rn. Then, for any t>0 and any Θ∈Rm×d, if y∈B(p/q, ε/et)
for some (p, q)∈Zn+1 with 0<q<et, then

∥gε,tZ(Θ)U(y)(−pσn, q)
T∥⩽ c0ϕ, (4.7)

where

c0 =
√
n+1 max

1⩽i⩽m
(1+|θi,1|+...+|θi,d|). (4.8)

Proof. To begin with, note that, by y∈B(p/q, ε/et), we trivially have that

∥gε,tU(y)(−pσn, q)
T∥∞<ϕ. (4.9)

Then, using Lemma 4.1 we get that

∥gε,tZ(Θ)U(y)(−pσn, q)
T∥∞

(4.6)
= ∥Z(Θ)gε,tU(y)(−pσn, q)

T∥∞

⩽ ∥Z(Θ)∥∞ ·∥gε,tu(x)(−pσn, q)
T∥∞

(4.9)

⩽ ∥Z(Θ)∥∞ ·ϕ,

(4.10)

where ∥Z(Θ)∥∞ is the operator norm of Z(Θ) as a linear transformation from Rn+1

to itself equipped with the supremum norm. As is well known, ∥Z(Θ)∥∞ equals the

maximum of ℓ1 norms of its rows, that is,

∥Z(Θ)∥∞ = max
1⩽i⩽m

(1+|θi,1|+...+|θi,d|).

Now, taking into account that

∥a∥⩽
√
n+1∥a∥∞

for any a∈Rn+1, we obtain (4.7) immediately from (4.10).
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Our next goal is to produce a similar statement when y=f(x), where f is as in (1.4)

and subject to condition (1.6). To this end, for x=(x1, ..., xd)∈U, define

u(x) :=U(f(x)), (4.11)

where U is given by (4.1), and let

J(x) :=

[
∂fi
∂xj

(x)

]
1⩽i⩽m
1⩽j⩽d

∈Rm×d

denote the Jacobian of the map f(x)=(f1(x), ..., fm(x)). Next, for x∈U, define

z(x) :=Z(−J(x)), (4.12)

where Z is given by (4.2), and finally let

u1(x) := z(x)u(x). (4.13)

Explicitly, by the above definitions, we have that

u1(x)=


Im −σ−1

m J(x)σd σ−1
m h(x)T

0 Id σ−1
d xT

0 0 1

 , (4.14)

where

h(x)= (h1(x), ..., hm(x))=f(x)−J(x)xT ,

that is

hi(x)= fi(x)−
d∑

j=1

xj
∂fi(x)

∂xj
, 1⩽ i⩽m.

Lemma 4.3. Let x∈U. If f(x)∈B(p/q, ε/et) for some (p, q)∈Zn+1 with 0<q<et,

then

∥gε,tu1(x)(−pσn, q)∥⩽ c1ϕ,

and, in particular,

λ1(gε,tu1(x)Zn+1)⩽ c1ϕ, (4.15)

where

c1 =
√
n+1(d+1)M. (4.16)
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Proof. The proof is rather obvious and requires the following two observations. First,

on setting Θ to be −J(x) and y=f(x), by (4.11) and (4.12) we get that

Z(Θ)U(y)= z(x)u(x)=u1(x).

Second, the quantity

max
1⩽i⩽m

(1+|θi,1|+...+|θi,d|)

that appears in (4.8) is bounded by (d+1)M , in view of (1.6). The latter means that

c0⩽c1, and hence (4.15) follows from (4.7).

4.2. The generic and special parts of a manifold

Setting up the generic and special parts will require another diagonal action on Xn+1.

For each t∈N, define the following diagonal matrix:

bt :=

 e
dt/2(n+1)Im

e−(m+1)t/2(n+1)Id
edt/2(n+1)

∈G. (4.17)

First, define the ‘raw’ set of the special part:

M0(ε, t) := {x∈U :λn+1(btgε,tu1(x)Zn+1)>ϕedt/2(n+1)}. (4.18)

Now, define the special part as the following enlargement of M0(ε, t), which will ensure

the structural claim about M(ε, t) within Theorem 1.3:

M(ε, t) :=
⋃

x∈M0(ε,t)

B(x, εe−t/2)∩U. (4.19)

Naturally, the generic part is the complement of M(ε, t):

M′(ε, t) :=U\M(ε, t). (4.20)

Before moving on, we provide two further auxiliary statements. The first presents

two conjugation equations involving bt. For the rest of this paper, given y=(y1, ..., yk)∈
Rk for some 1⩽k<n, with reference to (4.1), we define

U(y) :=U(ỹ) with ỹ=(y1, ..., yk, 0, ..., 0)∈Rn,

while, for any A>0,

U(O(A)) :=U(y) for some y∈Rn such that ∥y∥≪A.
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Lemma 4.4. For any t>0, Θ∈Rm×d and x=(x1, ..., xd)∈Rd, we have that

btU(x)b−t =U(e−t/2x), (4.21)

btZ(Θ)b−t =Z(et/2Θ). (4.22)

The proof of these equations is elementary and obtained by inspecting them one by

one. The details are left to the reader.

Lemma 4.5. For any x∈U and x′=(x′1, ..., x
′
d)∈Rd such that the line segment join-

ing x and x+x′ is contained in U, we have that

u1(x+x′)=Z(O(∥x′∥))U(O(∥x′∥2))U(x′)u1(x).

The proof is readily obtained on using Taylor’s expansion of f(x′) and (1.6). The

details are left to the reader.

5. Proof of Theorem 1.3

5.1. Dealing with the special part

The goal is to prove (1.8), that is to give an explicit exponentially decaying bound for the

measure of the special part M(ε, t), and to establish the structural claim about M(ε, t)

that it can be written as a union of balls of radius εe−t/2 of multiplicity ⩽Nd. Specifically,

we prove the following statement.

Proposition 5.1. Suppose U⊂Rd is open, x0∈U, f :U!Rn is given as in (1.4)

and is l-non-degenerate at x0. Then, there are a ball B0⊂U centred at x0 and constants

K0, t0>0, depending on f and B0 only, with the following properties. For any 0<ε⩽1

and every t⩾t0, we have that the set defined by (4.19) satisfies

Ld(M(ε, t)∩B0)⩽K0(ε
ne3t/2)−1/d(2l−1)(n+1).

Furthermore, M(ε, t) can be written as a union of balls in U of radius εe−t/2 of inter-

section multiplicity ⩽Nd.

Proof. By definition, for any x∈M0(ε, t), we have that

λn+1(btgε,tu1(x)Zn+1)>ϕedt/2(n+1).

By Theorem 3.2 and property (3.5), we have that

λ1(b
∗
t g

∗
t u

∗
1(x)Zn+1)⩽ c2ϕ

−1e−dt/2(n+1), (5.1)



24 v. beresnevich and l. yang

where c2=((n+1)!)2. It is straightforward to see, using (3.4), (4.3), (4.14) and (4.17),

that

g∗ε,t :=ϕ−1 diag{et, ε, ..., ε︸ ︷︷ ︸
n

}, (5.2)

b∗t :=

 e
−dt/2(n+1)

e(m+1)t/2(n+1)Id
e−dt/2(n+1)Im

 (5.3)

and

u∗1(x)=


1 −x −f(x)

0 Id J(x)

0 0 Im

 . (5.4)

Therefore, by (5.1), we get that, for any x∈M0(ε, t), there exists (a0,a)∈Z×Zn\{0}
such that

|a0+f(x)aT |<c2e−t, (5.5)

∥∇f(x)aT ∥∞<c2ε
−1e−t/2, (5.6)

max{|ad+1|, ..., |an|}<c2ε−1. (5.7)

Using (5.5)–(5.7), (1.4), (1.6) and Taylor’s expansion of the function a0+f(x)aT , one has

that, for every x′∈M(ε, t),

|a0+f(x′)aT |<c2e−t+c2de
−t+ 1

2d
2mMc2εe

−t ⩽ c3e
−t, (5.8)

where

c3 = c2(1+n+n
3M)= ((n+1)!)2(1+n+n3M)

depends on n and f only. Similarly, using (5.6), (5.7), (1.4), (1.6) and Taylor’s expansion

of the gradient ∇f(x)aT , one has that, for every x′∈M(ε, t),

∥∇f(x′)aT ∥∞ ⩽ c2ε
−1e−t/2+dc2e

−t/2 ⩽ c3ε
−1e−t/2. (5.9)

Also, by (5.6), (5.7), (1.4) and (1.6), we have that

max{|a1|, ..., |an|}<c2mMε−1 ⩽ c3ε
−1. (5.10)

Combining (5.8)–(5.10) gives that

M(ε, t)⊂Sf (δ,K, T ), (5.11)
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with

δ= c3e
−t, K = c3ε

−1e−t/2 and T = c3ε
−1,

where Sf (δ,K, T ) is defined by (3.7). It is readily seen that conditions (3.6) are satisfied

for all t such that δ=c3e
−t⩽1, that is t⩾log c3=:t0. Now, fix any x0∈U such that

f is l-non-degenerate at x0, and let B0 and E be the ball and constant arising from

Theorem 3.4. By Theorem 3.4 and (5.11), we obtain that

Ld(M(ε, t)∩B0)⩽E(cn+1
3 ε−ne−3t/2)1/d(2l−1)(n+1)Ld(B0),

which gives the required bound with K0=Ec
1/d(2l−1)
3 Ld(B0).

Finally, in view of the definition of M(ε, t), the ‘Furthermore’ claim trivially follows

from Besicovitch’s covering theorem (see below) applied to the set A=M(ε, t) and B
being the collection of balls appearing in the right-hand side of (4.19).

Theorem 5.2. (Besicovitch’s covering theorem [38, Theorem 2.7]) There is an in-

teger Nd depending only on d with the following property : let A be a bounded subset of

Rd and let B be a family of non-empty open balls in Rd such that each x∈A is the center

of some ball of B. Then, there exists a finite or countable subfamily {Bi} of B covering

A of intersection multiplicity at most Nd, that is, with 1A⩽
∑

i 1Bi
⩽Nd.

5.2. Dealing with the generic part

The goal is to give a sharp counting estimate for the number of rational points of bounded

height near the generic part. Indeed, the following statement we prove here completes

the proof of Theorem 1.3.

Proposition 5.3. Let U⊂Rd be open and f :U!Rn be a C2 maps satisfying (1.4)

and (1.6). Then, for any 0<ε⩽1, any ball B⊂U and all sufficiently large t, we have

that

N(B\M(ε, t); ε, t)⩽K1ε
me(d+1)tLd(B), (5.12)

where K1 depends on n and f only.

We will make use of the following trivial property: for any ∆1,∆2⊂Rd,

N(∆1∪∆2; ε, t)⩽N(∆1; ε, t)+N(∆2; ε, t). (5.13)

This allows us to reduce the proof of Proposition 5.3 to considering domains of the form

∆t(x0) := {x∈Rd : ∥x−x0∥∞ ⩽ (εe−t)1/2},

where x0∈M′(ε, t). At the heart of the reduction is the following simple statement.
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Lemma 5.4. For all sufficiently large t>0, we have that

N(B\M(ε, t); ε, t)⩽ 2(εe−t)−d/2Ld(B) max
x0∈M′(ε,t)∩B

N(∆t(x0)∩B; ε, t).

Proof. First of all, note that εe−t
!0 as t!∞, since ε⩽1 for all t>0. Therefore,

for all sufficiently large t, the ball B can be covered by ⩽2(εe−t)−d/2Ld(B) hypercubes

∆ of sidelength (εe−t)1/2. Any of these hypercubes ∆ that intersects M′(ε, t)∩B can

be covered by a hypercube ∆t(x0) with x0∈M′(ε, t)∩B∩∆. The collection of the sets

∆t(x0)∩B is thus a cover for M′(ε, t)∩B=B\M(ε, t) of 2(εe−t)−d/2Ld(B) elements.

Applying (5.13) completes the proof.

In view of Lemma 5.4, the following statement is all we need to complete the proof

of Proposition 5.3.

Lemma 5.5. Let a ball B⊂U be given. Then, for all sufficiently large t>0 and all

x0∈M′(ε, t)∩B, we have that

N(∆t(x0)∩B; ε, t)≪ εnet(εe−t)−d/2,

where the implied constant depends on n and f only.

Proof. Let us assume that N(∆t(x0)∩B; ε, t) ̸=0, as otherwise there is nothing to

prove. Take any (p, q)∈R(∆t(x0)∩B; ε, t). By definition, there exists x∈∆t(x0)∩B such

that ∥∥∥∥f(x)−p

q

∥∥∥∥
∞
<
ε

et
.

By Lemma 4.3, we have that

∥gε,tu1(x)(−pσn, q)∥⩽ c1ϕ. (5.14)

Since x∈∆t(x0), we have that

x0 =x+(εe−t)1/2x′,

with ∥x′∥⩽1. Since x,x0∈B⊂U, the line segment joining x0 and x is contained in U.

Then, by Lemma 4.5, we have that

u1(x0)=Z(O((εe−t)1/2))U(O(εe−t))U((εe−t)1/2x′)u1(x).

By (4.5) and (4.6), we have

gε,tu1(x0)=Z(O((εe−t)1/2))U(O(1))U((εe−t)−1/2x′)gε,tu1(x).
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Therefore,

gε,tu1(x0)(−pσn, q)=Z(O((εe−t)1/2))U(O(1))U((εe−t)−1/2x′)gε,tu1(x)(−pσn, q).

Let us denote

gε,tu1(x)(−pσn, q)=v=(vn, ..., v1, v0). (5.15)

Then, by the above calculation, we get that

gε,tu1(x0)(−pσn, q)=Z(O((εe−t)1/2))U(O(1))U((εe−t)−1/2x′)v

=Z(O((εe−t)1/2))U(O(1))v′,
(5.16)

where

v′ =(vn, ..., vd+1, vd+(εe−t)−1/2x′dv0, ..., v1+(εe−t)−1/2x′1v0, v0).

By (5.14) and (5.15), we have that ∥v∥⩽c1ϕ. Furthermore, since 0<q<et, we get

that |v0|=ϕe−tq⩽ϕ. Therefore, using ∥x′∥⩽1, we get that

v′ ∈ [c1ϕ]
m×[(c1+1)ϕ(εe−t)−1/2]d×[ϕ], (5.17)

where [a] denotes the closed interval [−a, a]. After considering the action of

Z(O((εe−t)1/2))U(O(1))

on v′, we get from (5.16) and (5.17) that

gε,tu1(x0)(−pσn, q)∈ [c4ϕ]
m×[c4ϕ(εe

−t)−1/2]d×[c4ϕ],

for some constant c4>0 depending on n and f only. Then, it is easy to verify that

btgε,tu1(x0)(−pσn, q)∈ [c4ϕe
h]m×[c4ϕε

−1/2eh]d×[c4ϕe
h],

where h=dt/2(n+1). Let us denote

Ω= [c4ϕe
h]m×[c4ϕε

−1/2eh]d×[c4ϕe
h].

Then,

(−pσn, q)∈Ω∩btgε,tu1(x0)Zn+1 ⊂ (c6Ω)∩btgε,tu1(x0)Zn+1

for any c6>1. On the other hand, since x0∈M′(ε, t), we have that

λn+1(btgε,tu1(x0)Zn+1)⩽ϕeh.

This implies that there exists a constant c6>1 such that c6Ω contains a full fundamental

domain of btgε,tu1(x0)Zn+1. Therefore,

#((c6Ω)∩btgε,tu1(x0)Zn+1)≪Ln+1(c6Ω)≍ϕn+1ε−d/2e(n+1)h,

which implies the desired estimate.
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