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1. Introduction

Random planar geometry has been a central topic in probability in the last two decades.
One of the main goals is to construct and study random surfaces. A natural approach is
to consider the scaling limit of random planar maps. Inspired by Riemannian geometry, a
natural point of view is to consider a planar map as an abstract metric measure space. In
this regard, Le Gall [LG1], Miermont [M], and others (e.g. [BIM], [Ab], [ABA], [BLG])
proved that a large class of uniformly sampled random planar maps converge in the
scaling limit to a random metric measure space with the topology of the sphere, known
as the Brownian map. In the case where the random planar map has a macroscopic
boundary, the scaling limit is the Brownian disk [BM], which is a metric measure space
with the topology of a disk.

Liowville quantum gravity (LQG) is another approach for constructing a random
surface, which takes the perspective of conformal geometry. Since the foundational work
of Polyakov [P], LQG has been an active research area in theoretical physics. The
mathematical study of LQG was initiated by Duplantier and Sheffield [DS]. The idea is
to consider an instance h of the Gaussian free field (GFF) on a planar domain D and
study the surface with volume measure e’ d2z. This definition does not make rigorous
sense, since h is a distribution and not a function. However, by first regularizing h and
then taking a limit, for each v€(0,2), the random area measure pj:=e"*d?z on D is
well defined and non-trivial. If D has a non-trivial boundary, the measure &,:=e""/2 dz
on JD can also be defined. Very recently, Ding, Dubédat, Dunlap, and Falconet [DDDF]
and Gwynne and Miller [GM3] proved that one may construct a unique metric (i.e., a
distance function) dj, by regularizing the metric tensor

2Vh/dimy (402 | go2).
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where dim,, is the Hausdorff dimension of the surface [GP]. For 'y:\/g, this metric
agrees with the metric constructed earlier by Miller and Sheffield [MS4]-[MS6], which
gives a metric space with the law of a Brownian surface, namely the random metric
measure spaces which describe the scaling limits of uniform planar maps as mentioned in
the previous paragraph. There is a coordinate change rule depending on v that relates
fields on two conformally equivalent domains such that (dp, un,&p) is invariant under
conformal maps. The random geometry defined by (h,dp, un,&r) is called v-LQG. We
refer to §2.3 for more details.

A fundamental belief in random planar geometry which has been guiding its devel-
opment is the following. Given any v€(0,2), there is a family of random planar maps
whose scaling limit under discrete conformal embeddings is v-LQG. In particular, uni-
form random planar maps converge to \/g—LQG in this sense. Here a discrete conformal
embedding means a discrete approximation of the Riemann mapping. Notable examples
include the circle packing and the Tutte embedding. See e.g. [DS], [LG2], [DKRV] for
precise conjectures. Before the current paper, this convergence had not been verified for
any natural combinatorial random planar maps under any discrete conformal embedding.
See §1.5 for results on planar maps obtained from coarse graining of a v-LQG surface.

As pointed out in in [LPSA], it was conjectured by Aizenman that critical planar
percolation is conformally invariant. This conjecture was checked numerically for the
crossing probability in [LPSA]. Cardy [Ca] then predicted an explicit formula for the
left /right crossing probability for rectangles of any aspect ratio. Cardy’s formula was
proved by Smirnov [Sm] in the case of site percolation on the triangular lattice. A
by-product of Smirnov’s proof is a discrete conformal embedding based on percolation
observables, which we call the Cardy embedding (see Definition 1.1). In this paper, we
prove that large uniform triangulations converge to \/g—LQG under the Cardy embedding
(see Theorem 1.3).

This paper is the culmination of a seven-paper research program which also includes
[HLLS], [HLS], [BHS], [AHS], [GHS1], [GHSS]. Other papers that are important to this
program include [GPS1]-[GPS3], [DMS], [GM4]. See §1.4 for an overview of the program

and an outline of this paper.

1.1. The Cardy embedding as a discrete conformal embedding

The Riemann mapping theorem asserts that any two simply connected planar domains
with boundary are related by a conformal map. The Riemann mapping admits natu-
ral discrete approximations which we call discrete conformal embeddings. As a notable

example, Thurston conjectured that the circle packing gives an approximation of the
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Riemann mapping from a simply connected domain to the unit disk. This conjecture
was proved by Rodin and Sullivan [RSu].

Consider the equilateral triangle
A:={(z,y,2):x+y+2z=1and z,y,2 >0}

We view A as an oriented surface with disk topology and boundary OA, where the
orientation is such that (1,0,0), (0,1,0), and (0,0, 1) are ordered counterclockwise. See
Figure 1.1 for an illustration. Given a Jordan domain D with three distinct boundary
points a, b, and ¢ in counterclockwise order, there exists a unique Riemann mapping from
D to A that maps a, b, and ¢ to (1,0,0), (0,1,0), and (0,0, 1), respectively. We denote
this mapping by Cdyp. The dependence on (a,b,c) is dropped to lighten the notation.
Smirnov’s elegant proof of Cardy’s formula provides an approximation scheme for Cdyp
based on percolation observables. This gives another example of a discrete conformal
embedding which we call the Cardy embedding.

We now define the Cardy embedding in the general setting of triangulations of poly-
gons. Recall that a planar map is a planar graph (multiple edges and self-loops allowed)
embedded into the sphere, viewed modulo orientation-preserving homeomorphisms. For
a planar map M, we write V(M), £(M), and F(M) for the set of vertices, edges, and
faces, respectively. A map is rooted if one of its edges, called the root edge, is distin-
guished and oriented. The face to the right of the root edge is called the root face. Given
an integer £>2, a rooted planar map M is called a triangulation with boundary length ¢
if every face in F(M) has degree 3, except the root face, which has degree £. We write
OM for the graph consisting of the edges and vertices on the root face of M. A vertex
on M is called a boundary vertex if it is on M. Otherwise, it is called an inner vertex.
We similarly define boundary edges and inner edges. If 9M is simple, namely, consists of
¢ distinct boundary vertices, we say that M is a triangulation of an (-gon. Let T({¢) be
the set of triangulations of an (-gon and define T:=[J,5, T(¢). We call an element in T
a triangulation of a polygon.

Given M €%, a site percolation on M is a coloring of V(M) in two colors, say, red
and blue. The Bemoulli—% site percolation on M is the random site percolation w on M
such that each inner vertex is independently colored red or blue with equal probability.
The coloring of the boundary vertices is called the boundary condition of w and can be
prescribed arbitrarily.

Given a triangulation of a polygon M with three distinct boundary edges a, b, and ¢
ordered counterclockwise, we denote by (a, b) the set of boundary vertices of M situated
between a and b in counterclockwise order (including one endpoint of a and one endpoint
of b). Define (b,c) and (c,a) similarly. For a vertex v€V(M), let E,(v) be the event
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Figure 1.1. Left: Illustration of A as an oriented surface with disk topology. The arrow
indicates the counterclockwise orientation of OA. Right: Illustration of the event Eq(v).

that there exists a simple path (i.e., a sequence of distinct vertices on M where any two
consecutive vertices are adjacent) P on M such that

(a) P contains one endpoint in (c¢,a) and one endpoint in (a,b), while all other
vertices of P are inner blue vertices;

(b) either v€P or v is on the same side of P as the edge a.

See Figure 1.1 for an illustration. We define the events Ej(v) and E.(v) similarly.
Note that E,(v), Ey(v), and E.(v) do not depend on the boundary condition of w.

Given any non-negative vector (,y, z)€[0,00)3, let

(Z, Y, Z)A = ($+y+2)71(l’, Y, Z)v
with the convention that (0,0,0)a:= (%, %, %) In other words, (z,y, z) is the projection
of (z,y, z) onto the equilateral triangle A along its own direction. The Cardy embedding
is a mapping from the vertex set of a triangulation of a polygon to the closed triangle

A:=AUOA, defined using observables of site percolation on top of it.

Definition 1.1. (Cardy embedding) Given a triangulation of a polygon M with three
distinct boundary edges a, b, and c ordered counterclockwise, let Ber; be the probability
measure corresponding to the Bernoulli—% site percolation on M. The Cardy embedding
Cdy,, of (M, a,b,c) is the function from V(M) to A given by

Cdy,; (v) = (Berp[Eq(v)], Berp[Ep(v)], Beras[Ec(v)])a  for all ve V(M).

Smirnov’s theorem [Sm| can be phrased in terms of the Cardy embedding as follows.
Suppose that D is a Jordan domain with three distinct marked boundary points a, b,

and c ordered counterclockwise. Let T denote the triangular lattice. Given a small mesh
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size §>0, let D? be a lattice approximation of D via 6T such that D° is a triangulation
of a polygon (see §2.1 for a precise definition). Let a®, ?, and ¢® be points on dD? that
approximate a, b, and c, respectively. Let Cdy‘s be the Cardy embedding of (D?,a’,b°, c%)
and recall the Riemann mapping Cdyp from D to A defined above.

THEOREM 1.2. (Smirnov) In the setting above, (')

lim sup |Berps[Eys (v)]4+Berps[Eys (v)]+Berps [Ees (v)]—1] =0
6—0 veED?S

and

lim sup |Cdy’(v)—Cdyp(v)|=0.

60 yey(D9)

In Definition 1.1, let e be an edge lying on the arc (c,a), and let v be the endpoint

of e closer to a. Then, Bery[E,(v)] is the so-called crossing probability between (c, e)
and (a,b). Let D=[0, R]x[0,1] for some R>0, and let the marked boundary points of
D be (R,0), (R,1), and (0,1). By Theorem 1.2, the = coordinate of Cdy(0,0) is the
5—0 limit of the crossing probability between the left and right sides of D°. By the
Schwarz—Christoffel formula, the value of Cdy,(0,0) can be expressed explicitly as a
function of R, which agrees with Cardy’s formula for this crossing probability in [Ca].
Therefore, Theorem 1.2 gives a rigorous proof of Cardy’s formula, which explains why

we call our embedding the Cardy embedding.

1.2. Main result
1.2.1. Scaling limit of uniform triangulations under the Cardy embedding

Our main result is that large uniform triangulations of polygons converge to \/g—LQG
under the Cardy embedding. We will focus on a particular variant where self-loops are
not allowed while multiple edges are allowed; these are often called type-II triangulations
of polygons. See Remark 1.7 for extensions to other variants. We consider the critical
Boltzmann measure, which is defined as follows. For >3, let T(¢) be the set of maps in
T (¢) with no self-loops (but multiple edge are allowed). Given ¢23, it is well known that if
each element M €%5(¢) is assigned weight (22—7)n, where n is the number of vertices of M,
then the resulting measure on T3(¢) is finite. Let Boly(¢) be the probability measure
obtained by normalizing this measure. Following [AS], we call a map with law Boly(¢) a

Boltzmann triangulation of type II with boundary length £.

(1) Smirnov’s definition of crossing probabilities is slightly different from ours, but the difference
between the definitions is negligible in the scaling limit.
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Fix a sequence of integers {¢"},en such that £*>3 for all neN and
(3n) 712" 51 as n— .

Let M™ be sampled from Boly(¢™). Denote the root edge of M™ by a™ and sample two
other boundary edges "™ and ¢" uniformly at random, conditioning on a™, b"
being distinct and ordered counterclockwise. Let dfy,: V(M™)xV(M™)—NU{0} be the

graph distance of M™ and define

, and c"

dm = (3n) V.

Let p™ be (2n)~! times the counting measure on V(M™). Let £ be 1/¢™ times the
counting measure on V(OM™). We obtain a random compact metric space endowed with
two measures, which we denote by M"™=(M", d", u™,£"). In collaboration with Albenque
[AHS], we proved that M™ converge in law to a variant of the Brownian disk called
the free Brownian disk with unit perimeter, which we denote by BD; (see Theorem 1.5).
Moreover, the marked edges (a™, b™, ¢") converge to three marked points on the boundary
of BD;. By works of Miller and Sheffield [MS4]-[MS6] (see [MS5, Corollary 1.5]), there

exists a variant ha of the Gaussian free field on A such that

(Aa dA7 ma, €A) = (A7 CddhA y CmMhp s th)

has the law of BD; with the three marked points being (1,0,0), (0,1,0), and (0,0, 1).
Here (dp s ptha,Ena) is the metric/measure triple in \/g—LQG corresponding to ha as
mentioned above §1.1, and ¢q and ¢, are implicit positive constants coming from Miller
and Sheffield’s theorem. See Theorem 2.7 and Definition 2.8 for precise definitions.

Let Cdy" be the Cardy embedding of (M™,a™ b™, c"). Now, we define a triple
(d'%, wk, &%) which is the pushforward of M™ onto A under Cdy”™. To be precise, for
r€A, let v(z) be the vertex of M™ which is closest to # under the Cardy embedding, i.e.,
we let v(z) be the vertex veV(M™) such that |Cdyy» (v) —z| is minimized over veV(M™);

if there is a tie we resolve it in some arbitrary way. Let(?)

dA (2,y) :=d"(o(z),0(y)), for z,y € A,
pA () :=p"{v e V(M™): Cdyyn (v) €U}), for each Borel set U C A,
EX(U):=£"({veV(OM™): Cdyy. (v) €U}), for each Borel set U C A.

Our main result can be stated as follows.

(2) By Theorem 2.9 and (1.1), the measure &X concentrates near A, although we view it as a
measure on A.
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Figure 1.2. Left: The loop ensemble I'(M,w) of the percolation w is shown in purple. The
vertex v marked in orange is a pivotal point since two of the loops will be joined together to
form a longer loop if the color of v is flipped. Right: The subgraph with bold edges is reg(¢)
as defined in §1.4.2.

THEOREM 1.3. In the setting above, we have that (X, Wk, &R) converge jointly in law
to (da, pia,€n) as n—o00, where we equip the first coordinate with the uniform topology

and the latter two coordinates with the Prokhorov topology on Borel measures on A.

To draw an analogy with Theorem 1.2, Theorem 1.3 asserts that the Cardy embed-
ding of M™ provides a discretization of the conformal embedding of the Brownian disk
onto A.

Theorem 1.6 still holds under slight modifications to the definition of the Cardy
embedding in Definition 1.1. For example, by Proposition 4.4, we have the following

analogue of the first equation of Theorem 1.2:

r{}?&( ) |Berpn (Egn (v))+Berpmn (Epn (v))+Berpn (Een (v)) — 1] = 0,(1). (1.1)
ve "
Therefore, the projection (-, -, -)a in Definition 1.1 is not essential. We can also modify

some details in the definition of E,(v), such as letting a, b, and ¢ be vertices instead of
edges, or requiring that v does not lie on P. Using ideas from a recent alternative proof
of Cardy’s formula on the triangular lattice [Kh], it is possible to modify in such a way

that the three crossing probabilities in (1.1) always sum to exactly 1.

1.3. Quenched scaling limits of site percolation

We prove Theorem 1.3 by establishing quenched scaling limit results for site percola-
tion on uniform triangulations. To explain what we mean by quenched, let us start by
considering the simplest percolation observable, namely the crossing probability between

two boundary arcs. Let (M™, a™, b"™,¢") and ha be as in Theorem 1.3. Conditioning on
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(M™ @™, b"™, ¢"), uniformly sample an edge €™ on the arc (¢",a™) and let v™ be the end-
point of e” which is closer to a™. By the discussion below Theorem 1.2, Beryn [Eqn (v™)]
is the crossing probability between the arcs (¢”,e™) and (a™,b™). In the continuum,
let v be a point on the counterclockwise arc on A from (0,0,1) to (1,0,0) sampled
according to the measure A on OA restricted to this arc. In other words, v is a random
point on this arc such that, conditioning on ha, the ratio between the £A-masses of the
counterclockwise arcs from (0,0, 1) to v and the one from (0,0, 1) to (1,0,0) is uniformly
distributed between 0 and 1. Let x(v) be the z-coordinate of v. Then, we have the

following result.

THEOREM 1.4. In the setting described above, we have that Beryn [Eqn (v™)] converge

in law to x(v).

It is clear from Theorem 1.4 that the following more symmetric looking variant
holds. Let (e}, e, e3,e}) be four uniformly sampled edges on OM™, conditioning on
the edges being distinct and ordered counterclockwise. Then, the crossing probability
between the arcs (e, e}) and (e}, e}) converge in law to a random variable, whose law is
straightforward to describe in terms of the measure £A. We skip a more formal statement
to avoid extra notation.

Earlier scaling limit results for percolation on random planar maps have considered
observables involving both the randomness of the planar map and the percolation. This
includes for example [GM4], [BHS], [CK], [An2] and Theorem 1.9 below. In the context
of random processes in random environment, these types of statements are referred as
annealed scaling limit results. Alternatively, we can consider percolation observables
which are functions only of the environment, in our case, the underlying planar map. The
crossing probability Beryn» [E4n (v™)] in Theorem 1.4 is an example of such an observable.
Convergence of such observables are referred to as quenched scaling limit results.

Smirnov’s proof of Cardy’s formula is famously difficult to adapt to percolation in
other settings [Bf1], even for bond percolation on Z?. To our best knowledge, this paper
is the first work where quenched scaling limit results for percolation on random planar
maps are established. Even for general environments beyond the triangular lattice, the
only other quenched scaling limit result we are aware of is for the crossing probability
of squares for Poisson Voronoi percolation [AGMT]. We also note that a variant of
Theorem 1.4 with SLEg¢ in place of percolation is stated in [Cu] as a theorem conditional
on an unproven assertion.

There is a close relationship between quenched scaling limit results and the con-
vergence of certain embeddings, which is well known in the context of random walk in

random environment. There the embedding is the so-called Tutte embedding. See [BB],
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[GMS2] and reference therein. Our proof of Theorem 1.3 is also based on this connection.
More precisely, by the disk variant of Le Gall [LG1], Miermont [M] (see Theorem 1.5),
and Miller—Sheffield [MS4], [MS5], there exists a sequence of embeddings {Eb,,} of M"
to A such that Theorem 1.3 holds with Cdyy. replaced by Eb,,. One example of {Eb,,}
can be obtained from the framework of mating of trees [BHS], [GHS1]. However, the
embeddings {Eb,,} are rather implicit and a priori do not carry any information about
the conformal structure of M™. Our approach to Theorem 1.3 can be understood as first
proving that under the random environment obtained by embedding M™ via Eb,,, the
critical site percolation has a quenched scaling limit as if the environment is just the
regular triangular lattice. Then since the Cardy embedding is defined via percolation
observables, the difference between Eb,, and Cdy» must vanish as n— oo, hence Theo-
rem 1.3 follows. In §1.3.1, we formulate a variant of this approach without introducing
the extra embeddings {Eb,}.

1.3.1. Scaling limit of multiple site percolations on uniform triangulations

Recall M™ in Theorem 1.3. Conditioning on M™, let {w! };en be a sequence of independent
samples from Bery~. In this section we formulate a convergence result for {(M™, w?)}ien
(Theorem 1.6) which is sufficient for the proof of Theorem 1.3.

Recall that M™ is sampled from Bols(¢™) and has a root edge denoted by a™. Also
recall that M"™=(M",d", ™, &™), where £" is the uniform measure on V(OM™). In this
section, instead of a measure £, we consider a curve E” of duration [0, 1], tracing OM™
clockwise starting and ending at a™ such that each boundary edge is traced 1/¢" units of
time. This way, we view M"™ as a compact metric measure space decorated by a curve.
The natural topology for such objects is the so-called Gromov—Hausdorff—Prokhorov-
uniform (GHPU) topology, which is introduced in [GM1]. It is the natural variant of
the Gromov—Hausdorff topology for spaces which are also equipped with a measure and
a curve. In the continuum, the free Brownian disk with unit perimeter BD; can also be
naturally viewed as a compact metric measure space decorated by a curve. See §2.2 for
more details on the GHPU topology and the Brownian disk.

With Albenque, we proved the following.

THEOREM 1.5. ([AHS]) We have that M™ converge in law to BDy in the GHPU
topology as n—oo.

In order to capture the full information of the percolation, we consider the loop
ensemble observable [CN], which is defined as follows. Given a triangulation of a poly-

gon M, let w be a site percolation on M with monochromatic blue boundary condition.
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Namely, the color of each boundary vertex is blue. Removing all edges on M whose end-
points have opposite colors, we call each connected component in the remaining graph a
percolation cluster, or simply a cluster, of w. By definition, vertices in each cluster have
the same color. Moreover, each pair of neighboring vertices that are on different clusters
must have opposite colors. We call the cluster containing OM the boundary cluster. If C
is a non-boundary cluster of w, one can canonically define a loop on M surrounding C as
a path of vertices in the dual map of M. We orient the path such that the vertices to the
left (resp. right) of the path are red (resp. blue). The collections of such loops is called
the loop ensemble of w, and we denote it by I'(M,w). See Figure 1.2 for an illustration.
Note that w is uniquely determined by I'(M, w).

Given a Jordan domain D, a loop ensemble in D is a collection of oriented loops,
each viewed as a curve in DUJD modulo monotone reparametrization and rerooting.
Let L£L(D) denote the space of loop ensembles in D. Recall the lattice approximation
D% to D in Theorem 1.2. Let w’ be sampled from Berps with monochromatic blue
boundary condition. It was proved in [CN] that I'(D°,w®) converge in law as §—0 to a
random variable I' taking values in £(D) which is called a conformal loop ensemble with
parameter k=6 (CLEg) on D.(®) See Theorem 2.9 for a precise statement of this result
including the topology of convergence.

Given M™ and {w!'}ien as above, let YT?:=I'(M",w!) be the loop ensemble asso-
clated with w} as defined in §1.2. Then, (M™,T™) can be viewed as a compact met-
ric measure space decorated by a (boundary) curve and a loop ensemble. The natu-
ral topology for such objects is the so-called Gromov—Hausdorff—Prokhorov-uniform-loop
(GHPUL) topology, which was first introduced in [GHS1]. This is the natural variant
of the GHPU topology for cases where the metric space is further decorated by a loop
ensemble; see §2.2.

In the continuum, there exists a variant of the GFF on the unit disk D, denoted
by h, such that

(DUAD, cqdn, cm fins En)

has the law of BD; as a metric measure space decorated by a curve [MS4]-[MS6], where
the constants ¢q and ¢y, are as in the definition of (da, ua) in Theorem 1.3. The curve gh
is defined by tracing 0D clockwise, starting and ending at 1, with the speed prescribed
by the boundary measure &y,. Since (A, ha) in Theorem 1.3 and (D, h) both correspond
to BDq, the two fields are related (in law) by a conformal map between D and A and the

change of coordinates formula for \/g—LQG (see (2.6) below). Let {I';};en be a sequence

(3) In §2.4, T is called a CLEg with monochromatic blue boundary condition.
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of independent samples of CLEg on D which are also independent of h. Then,
(DUAD, cadi, Cmfins En, Ti) (1.2)

can be viewed as a compact metric measure space decorated by a curve and a loop
ensemble; see §2.4. For simplicity, we write (1.2) as (D, h,T;). The following theorem is

a precise formulation of the aforementioned convergence of {(M™,w!)}en.

THEOREM 1.6. In the setting of the paragraph above, for each k€N, {(M™, T7) h<i<k
jointly converge in law to {(D,h,T;)}1<ick in the GHPUL topology.

We point out that Theorem 1.6 for k>1 does not easily follow the k=1 case. The
reason is that the macroscopic behavior of the percolation could depend on microscopic
details of the map which disappear in the limit. This way, two independent copies of
percolation on the same map could have some correlation in the scaling limit. In general,
conditional distributions do not behave well under convergence in law.

Theorems 1.3 and 1.4 are easy consequences of Theorem 1.6. We briefly explain the
idea here and refer to §4 for details.

For Theorem 1.4, recall v™ defined there. For i€N, let El,(v") be defined as
E.n(v™), with w! being the site percolation on M™. Our proof of Theorem 1.6 im-
plies that {1 B, (Un)}lgig , also converge jointly to their continuum counterparts. By the

law of large numbers,
k
BerMn [Ean ('I_}n)} — k_l Z 1Eén (v™)
i=1

converge to zero in probability as k— oo uniformly in n. This proves Theorem 1.4.
Now, suppose we are in the setting of Theorem 1.3. By the same reasoning as in
the previous paragraph, if v™ is sampled uniformly from V(M™), then Beryn (Eq»(v™)),
Beryn (Epn (v™)), and Berya (Een (v™)) jointly converge to their continuum counterparts.
This essentially gives the convergence of X to pa. A similar argument gives the con-
vergence of {X. For the metric d, let (v™,u™) be a pair of vertices uniformly sampled
from V(M™)x V(M™). Then, by the GHPU convergence of M", we have that d™(v", u™)
converge to its continuum counterpart. Now, the uniform convergence of d’y follows from

the continuity of da. This gives Theorem 1.3.

1.3.2. On the universality

We now comment on the universality of our results within the realm of uniform maps
and percolation observables. See §1.5 for discussion of (non-uniform) planar map models

decorated by other statistical physics models.
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Remark 1.7. (Other variants of uniform triangulations) Recall that a triangulation
is of type I (resp. type II, type III) if multi-edges and self-loops are allowed (resp. multi-
edges are allowed but not self-loops, neither multi-edges nor self-loops are allowed). In
[AHS] we consider natural couplings between Boltzmann triangulations of types I-III,
and prove that triangulations of polygons of all three types converge in the scaling limit to
the Brownian disk. In these couplings triangulations of different types are related by col-
lapsing self-loops or multiple edges. On the other hand, whether a crossing event occurs
for a site percolation does not change under these operations. Thus, Theorems 1.3, 1.4,
and 1.6 still hold for Boltzmann triangulations of types I and III. We also expect these
results to hold for uniformly sampled planar maps with other local constraints (quadran-
gulations, general maps, etc). Establishing these results require non-trivial work. The
main ingredient which is missing is convergence of the pivotal measure on the planar

map. In the case of type-II triangulations, we obtain this via the bijection in [BHS].

Remark 1.8. (Surfaces with other topologies) Our proof techniques can also give
variants of Theorem 1.6 on uniform triangulations with other topologies. More precisely,
given some surface topology (sphere, torus, etc.), if one knows that a uniformly sampled
triangulation with this topology converges to a Brownian surface, then one can establish
a variant of Theorem 1.6. Furthermore, we get quenched scaling limit results for macro-
scopic observables of Bernoulli—% site percolation, similar to Theorem 1.4. For example,
for uniform triangulation on the sphere with four uniformly sampled vertices a, b, ¢,
and d, in which case the convergence to the Brownian surface has been established, our
method gives that the probability that a, b and ¢, d are separated by a red cycle has
a scaling limit. For uniform triangulation on the torus, if the convergence to Brownian
torus is shown, then the probability that there exists a non-contractible red cluster has
a scaling limit. Although the Cardy embedding is specific to surfaces conformally equiv-
alent to the disk, for other surfaces we can use other percolation observables to define
discrete conformal embeddings.

1.4. Outline of the program

Recall that the current work is the final paper in a program also involving [HLLS], [HLS],
[BHS], [AHS], [GHS1], [GHSS]. See Figure 1.3 for an overview of the dependencies
between these papers and other papers relevant for the program. The bulk of this paper
(83, 85, and §6), as well as the bulk of the whole program, is to establish Theorem 1.6.
In this section we give an overview of this program by giving an outline of the proof of
Theorem 1.6.
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[GMS2]
\

[GHS1] (GHSS] «— [GPS1]-[GPS3]

N /
VN

[Brn] —— [BHS] [HLS] ¢———— [HLLS]

This paper

Figure 1.3. The figure shows other papers in our program (purple), other papers directly
relevant for our program (blue), and the dependencies between these papers (black arrows).
In addition to the papers shown in the figure, several stages of our program rely heavily on
the fundamental papers [Schr], [Sm], [CN], [LG1], [M], [DMS], [MS4]-[MS6].

1.4.1. Annealed scaling limit for one site percolation

The k=1 case of Theorem 1.6 is proved in our joint work with Gwynne.
THEOREM 1.9. (|[GHS1]) Theorem 1.6 holds when k=1.

The single interface variant of Theorem 1.9 was proved in [GM4], conditioning on
Theorem 1.5, which was proved in [AHS]. Based on this variant, Theorem 1.9 was proved
in [GHS1] via an iterative construction of CLEg with chordal SLEg (see Lemma 2.11 for
this construction) and its discrete analog.

Theorem 1.9 is an example of an annealed scaling limit result for percolated trian-
gulations, where the convergence is in the sense of GHPUL. In another paper of this
program [BHS], we discovered, together with Bernardi, a bijection between lattice walks
with steps in {(0,1),(1,0),(—1,—1)} and percolated type-II triangulations. This bijec-
tion builds on an earlier bijection of Bernardi [Brn] between lattice walks in the first
quadrant and trivalent maps decorated by a depth-first-search tree. Many percolation
observables are encoded nicely in this bijection. The two most relevant examples are the
crossing events in Definition 1.1, along with the counting measure on self-intersection
and mutual-intersection points of macroscopic loops in the loop ensemble. These points
are called pivotal points. See §1.4.2.

The bijection in [BHS] is an example of a mating-of-trees bijection. Its continuum
counterpart is an encoding of a CLEg and an independent \/g—LQG surface by a 2D
Brownian motion. This encoding was introduced in a foundational paper by Duplantier,
Miller, and Sheffield [DMS]. See also [BHS, §7] and [GHS2]. Using this bijection and
the continuum theory in [DMS], the scaling limit of many percolation observables were

established in [BHS], including those concerning crossing events and pivotal points. This
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type of scaling limit result is sometimes referred to as convergence in the mating-of-trees
sense. In [GHSI1], it was proved that the GHPUL convergence in Theorem 1.9 holds
jointly with the mating-of-trees convergence in [BHS]. See Proposition 6.34 and (4.4) for
consequences of such joint convergence.

The two works [BHS] and [GHS1] give a rather complete annealed scaling limit result
for percolation on triangulations. This was achieved by employing the full strength of the
continuum theory of SLEg and CLEg coupled with \/g—LQG (including [DMS], [GM2]
and [BHS, §7]), as well as three powerful tools in the discrete: a labeled tree encoding
of the graph metric in the spirit of Schaeffer [Schf] (see [AHS]), a Markovian exploration
of uniform triangulations called the peeling process [Anl] (also see [GM4]), and the
mating-of-trees bijection in [BHS].

When attacking Theorem 1.6 for k>2, the toolbox becomes quite limited. The main
methodological innovation of this paper is to supply an approach for doing so, which we
explain in §1.4.2 and §1.4.3.

1.4.2. Dynamical percolation on uniform triangulations

It will be apparent from §3 that all the difficulties with proving Theorem 1.6 for general
keN are present already in the k=2 case. Therefore, we focus on this case.

Our high-level idea is the following. Let (D,h,T';);=1,2 be a subsequential limit of
(M™,T7);=1,2, whose existence is guaranteed by Theorem 1.9. It suffices to show that
I’y and I's are independent. Suppose that we have a dynamic (@}");> which is stationary
conditioned on M™ and has 1-time conditional marginal law Bery~». Moreover, suppose
the process (M"™,T'(M™, @}"))¢>0 has a GHPUL scaling limit whose 1-time marginal law
is given by (D,h,T1). We denote this process by (D,h,T;);>o. For ¢>0, since w} and
wy are completely independent while w{ and @}’ may not be, the correlation between I'y
and 'y should be no stronger than that of ['y and T;. If we further know that (T';);>0 is
ergodic, then, by sending t— 0o, we must have that I'y and I'; are independent. See §3
for a precise version of this reasoning.

It remains to establish the existence of a dynamic as described in the previous
paragraph. The most natural candidate is the following. Let M™ be as in Theorem 1.6
and let @™ be sampled from Bery». Given (M™,@"), put i.i.d. exponential clocks of rate
n~1/4 at each interior vertex.(*) When the clock at v rings, flip the color of v. For ¢>0,

let @}* be the site percolation at time ¢. We call (@}');>0 a dynamical percolation on M™.

(*) An exponential clock of rate r>0 is a clock which rings at a discrete set of times such that
the time between two consecutive rings is given by independent exponential random variables with
parameter r. In other words, the set of times at which the process rings has the law of a Poisson process
on (0, 00) of intensity 7.
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We set the clock rate to be n~/# because the number of vertices on M” governing
macroscopic changes is of order n'/4 (see the discussion on pivotal points below), so that
under this rate the number of updates for these vertices is of constant order. We expect
that the scaling limit of (M™, @}");>¢ satisfies the desired ergodic property described in
the second paragraph. If M" is replaced by 0T for §>0, then the same dynamic was
studied by Garban, Pete, and Schramm [GPS2], [GPS3], who established the existence
of a scaling limit. However, their proof is hard to adapt to the random triangulation case
since it relies on the fact that T is nicely embedded into C (see [GPS3, §8] in particular).
We expect that proving the aforementioned convergence of (M™,@}");>¢ is a technically
challenging problem.

To get around this difficulty, we introduce a cutoff variant of (@})>0. In this variant
of the process, we only update vertices that cause macroscopic changes.

Let us first quantify the notion of macroscopic change. Let w™ be a site percolation
on M™ with monochromatic blue boundary condition. Given a non-boundary cluster C
of w™, let =C be the connected component of V(M™)\V(C) containing OM™. Let C be the
largest subgraph of M™ such that v€V(C) if and only if v¢—C. For each loop £€T'(M™, w™),
let reg(¢)=C, where C is the cluster of w™ surround by £. We call area(f):=u"(reg(f)) the
area of £. For veV(M™)\V(OM™), let w} be obtained from w™ by flipping the color of v,
and let L7 be the symmetric difference between I'(M™, w™) and T'(M™, w?). For £>0, we
say that v is an e-pivotal point of w™ if there are at least three loops in £ with area at
least €. Morally speaking, v is an e-pivotal point if flipping the color of v results in a
macroscopic change of “size” at least ¢.

We now consider the following modification of (M™, @} );>0: when the clock of a
vertex v rings at time ¢, the color of v is flipped if and only if v is an e-pivotal point of
wj'. We denote this modified dynamic by (M",w;"")¢>o.

Let h be as in Theorem 1.6 and let I' be a CLEg on D independent of h. We can mimic
the definition in the discrete to define the e-pivotal points of (h,T") (see Definition 2.14).
Let P. be the set of e-pivotal points of (h,I'). Then (J,.,

all self-intersections and mutual intersections of loops in I'. We call points in J..,Pe

Pe is simply the collection of

the pivotal points of I'. The analogue of color flipping in the continuum is merging and
splitting of loops of T'; see §2.4.

In [BHS], a measure vy, . supported on the e-pivotal points of (h,I'), called the \/g—
LQG e-pivotal measure, was defined based on the theory of mating of trees [DMS]. (See
Definition 5.18 for a precise definition.) Let z/g;:f be n~1/* times the counting measure
on the e-pivotal points of @§. As alluded to in §1.4.1, it was proved in [BHS], [GHSI]

that for some constant c,>0,

(M™,v50, T(M™, @) converge in law to (D, h, ¢y, 1, T)). (1.3)

» Upivo
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Here the convergence is for a variant of the GHPUL topology that takes into account the
additional measure v,

The Markovian dynamic (@;"):>o can be described as follows. Starting from the
configuration at time ¢t=0, we wait for an exponential clock of rate ;7 (V(M")) to ring.

™ and the color of v is flipped.

Once the clock rings, a vertex v is chosen according to I/Eiv

Then we iterate this procedure. In light of this description and (1.3), we can show that
(M™ T (M™, @;™))i>0 has a GHPUL scaling limit whose 1-time marginal law is given by
(D,h,T;). We denote this process by (D, h,T%);>0. For each >0, the process (I'f);>¢ is

not ergodic. However, we will prove in §1.4.3 that
(T'¢)4>0 converge to an ergodic process as € — 0. (1.4)

Recall the setting of the second paragraph. The correlation between I'y and I's should
be no stronger than that of T'§ and I'{ for each e>0 and ¢>0. In light of (1.4), by first
sending € —0 and then t— o0, we can still establish the k=2 case of Theorem 1.6. Again

see §3 for how to make this reasoning rigorous.

1.4.3. Quantum pivotal measure and Liouville dynamical percolation

The proof of (1.4) is done in §5 and §6, based on [HLLS], [HLS], [GHSS].

The first key step is to achieve a good understanding of the measure vy, . Recall
(D,h,T') in (1.3) and the set P, of e-pivotal points of (h,I') in §1.4.2. By (1.3), v}, - is the
scaling limit of u™ restricted to the discrete analog of P, under a proper renormalization.

Fix 6>0, and let D? be the lattice approximation of I via dT. Let w’ be sampled
from Berps. In [GPS2], it was proved that the counting measure on the pivotal points
of w® under proper rescaling converge to a random measure m; see the discussion below
Definition 6.24 for a precise description of m. The convergence is joint with the loop
ensembles. Now, suppose {w’}s~¢ are coupled such that the loop ensemble convergence
holds almost surely. Suppose h is independent of {w’}s~o. For each loop ¢ of w® let
pn(reg(£)) be the area of £ and define the e-pivotal points for (h,w?) as in §1.4.2 with
this notion of loop area. Let Pf be the union of all hexagons corresponding to e-pivotal
points of (h,w?). It is not hard to show that under proper rescaling, as 6 —0, the Gaussian
multiplicative chaos (GMC) measure M/ V842, restricted to Pf converge in probability to
a random measure M, r; see §6.5. Moreover, Mirz(eh/‘/gmﬂps a.s., where the right
side is understood as the restriction of a GMC; see [RV], [Brs] and Definition 5.25. It is

3

well-known that P; is a fractal of dimension § (see e.g. [SWe]). The so-called Knizhnik-

Polyakov-Zamolodchikov (KPZ) relation (see e.g. [DS] and Remark 5.31) suggests that

Vhr = tMj, 1 a.s. for a deterministic constant c. (1.5)
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Here the exponent 1/v/6 in M, is precisely related to the dimension % of P, via the
KPZ relation. We restate (1.5) as Proposition 5.1 and prove it in §6.5. Most of the work
is carried out in §5, where we prove Proposition 5.44, a local version of Proposition 5.1.
We say that it is local because we will cover P. by finitely many sets which are the
scaling limits of the pivotal points of the crossing event for certain topological quads (see

Lemma 6.14), and Proposition 5.44 is the variant of (1.5) for these sets.

Although the argument is quite technical, the underlying idea behind Proposi-
tions 5.1 and 5.44 is simply that both vf . and M, » are canonical in the sense that
they satisfy a few natural properties that uniquely determine the measure. To carry out
this idea, we need an intrinsic characterization of the aforementioned measure m that
does not refer to the limiting procedure. With this in mind, we proved with Lawler
and Li [HLLS] that 792 times the Lebesgue measure restricted to the r-neighborhood
of cut points of a planar Brownian motion has a scaling limit as r—0, which we call
the %-dimensional occupation measure. Using a connection between Brownian cut points
and the scaling limit of pivotal points of quad-crossing events (see Proposition 5.35),
we proved with Li [HLS] that restricting to the scaling limit of the pivotal points of
quad crossing events, the measure m equals the corresponding %—dimensional occupation

measure on these points.

With the results from [HLLS], [HLS] at hand, we first prove the variant of (1.5)
with P, replaced by Brownian cut points (i.e. Lemma 5.39). This is based on the theory
of quantum zippers in [Sh2], [DMS] and the coordinate change formula for GMC over
occupation measures. Then using the connection between Brownian cut points and
the scaling limits of pivotal points of quad crossing events, we conclude the proof of

Proposition 5.44. We finally prove (1.5) (i.e. Proposition 5.1) via a covering argument.

Given (1.5), we will approximate the process (I'f);>0 in (1.4) by a variant of dynam-
ical percolation on the triangular lattice T. This enables us to use powerful tools that
are only available for site percolation on T, including various scaling limit results and
the sharp noise sensitivity established in [GPS1].

Fix >0, and suppose that w® is sampled from Berps independently of h. In light
of (1.5), we can consider a variant of the dynamical percolation on D?, where the rate of
the exponential clock at a vertex v is proportional to (a regularized version of) eh()/ V6,
This is the so-called discrete Liouville dynamical percolation (LDP) driven by eh/ Ve
introduced by Garban, Sepulveda, and us in [GHSS]; see §6.2. Now we can define an
e-cutoff dynamic of the discrete LDP on the triangular lattice by mimicking the definition
of (@;™)i>0 in §1.4.2, and then use (1.5) to argue that the loop ensemble evolution of

this cutoff dynamic converge to the process (I'f)¢>o in (1.4).
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Now to conclude the proof of (1.4), we just need to show that as e —0, the e-cutoff
dynamic of the discrete LDP driven by eP/ V6 stabilize to a limiting ergodic process.
The paper [GHSS] achieved this goal modulo two differences. First, following [GPS2],
[GPS3], in [GHSS] we work under a different cutoff on the pivotal points which is based on
alternating four arm events. (See the notion of p-important points in §6.4.2.) Compared
to the e-pivotal points, this cutoff is not so natural in the context of random planar maps
because it relies on the ambient space. However, it is convenient for fine multi-scale
analysis on T, which gives the desired stability when removing the cutoff. The limiting
process is called the continuum Liowville dynamical percolation driven by eP/ V6. In §6
we study the relation between the two cutoffs and show that

lim (1) 0
exists and is given by the continuum Liouville dynamical percolation driven by e?/ Ve,

The second difference from [GHSS] is that there the planar percolation is not encoded
by the loop ensemble, but rather by crossing information for all topological rectangles in
the plane. The latter is called the quad-crossing configuration. Similarly as above, the
quad crossing configuration is not so natural in the context of random planar maps due to
its dependence on the ambient space. On the other hand, the quad crossing perspective
is crucial in our proof of the ergodicity of continuous LDP in [GHSS], which relies on
Fourier analysis of Boolean functions following [GPS1]. This difference in observable will
not be a problem if we know that the CLEg and the scaling limit of the quad-crossing
configuration of w® determine each other. This has long been conjectured to be true (see
[SSm]). The fact that the CLEg determines quad-crossing configuration is essentially
proved in [CN], as pointed out in [GPS2]. We establish measurability in the reverse

direction in this paper; see Theorem 6.10. This concludes our proof.

1.5. Related works and outlook

Theorem 1.3 solves a special case of the aforementioned conjecture that Liouville quan-
tum gravity describes the scaling limit of random planar maps under discrete conformal
embeddings. The general version of the conjecture can be formulated as follows.

For the ease of discussion, assume that there are m; different ways to sample a
random planar map of a given size. The map can be required to be a triangulation,
quadrangulations, simple map, etc., and the probability measure can be uniform (like in
our paper) or non-uniform. For example, we can reweight the uniform distribution by
the partition function of a statistical physics model such as the uniform spanning tree
(UST), the (critical) Ising model, or the Fortuin-Kasteleyn (FK) random cluster model.
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We also assume that there are ms different ways to conformally embed a planar map
into C. Besides the Cardy embedding considered in this paper and the aforementioned
circle packing and the Tutte embedding, one can also consider the square tiling and the
embedding obtained by applying the uniformization theorem to the planar map viewed
as a piecewise smooth 2D Riemannian manifold.

The general conjecture predicts convergence of random planar maps under conformal
embedding to 7-LQG in each of the m1ms situations obtained by specifying the law of the
random planar map and the embedding method, where the value of v depends on the law
of the planar map. For example, uniformly sampled planar maps give ’yz\/g . Consider
a statistical physics model on a planar map whose partition function is approximately
(det A)_C/ 2, where det A represents the determinant of the Laplacian of the planar map
and c€R is the so-called central charge of the model. Suppose our random planar map
is sampled such that the probability of sampling a particular map is proportional to the

partition function of the statistical physics model on the planar map. Choose y€(0,2)

such that
2 72
c=25—-6|—+-|.
v 2

Then the scaling limit of the random planar map is conjecturally given by v-LQG. For
example, the UST has central change c=—2, and therefore the scaling limit of UST
weighted random planar maps is v/2-LQG. For the Ising model, we have CZ% and y=+/3.
Our paper is the first work which solves one version of this conjecture.

We remark that convergence to LQG under a conformal embedding (namely, the
Tutte embedding) has been established earlier for a large class of random planar maps
obtained from coarse-graining an LQG surface, e.g. the so-called mated-CRT map [GMS2]
and the Poisson Voronoi tessellation of the Brownian disk [GMSI1] and its extension to
general 7-LQG in [AFS], except that the convergence established there is only for the
vertex counting measures, not for the measures and the graph metric jointly.

The Cardy embedding is a representative for a class of embeddings which are defined
using observables of statistical physics models on planar maps. The Tutte embedding is
another such example, where the model is simple random walk and the observables are
given by the harmonic measure. One can define natural embeddings of planar maps in
other universality classes by using observables of other statistical physics models. For
example, in the case of the FK random cluster model one can use properties of the FK
loops to define an embedding similarly to the case of percolation. For a UST weighted
map with sphere topology one can first send three uniformly sampled vertices vy, vo, and
vg to 0, 1, and oo, respectively, and then determine the position in C of an arbitrary

vertex w by considering the topology of the tree branches connecting w, vy, v9, and v3. In
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light of this, the “number” ms of possible discrete conformal embeddings is quite large.

Using the aforementioned m; random planar map models and ms discrete conformal
embeddings, we obtain mimsy random environments in which we can consider statisti-
cal physics models, such as random walk or percolation. We conjecture the following
universality. If the random process converges to a conformally invariant process on a
regular lattice, then the same convergence holds for the random process in one of these
myme random environments, in a quenched sense. For example, our results in §1.3 imply
this type of convergence where the random process is site percolation, while the random
environment is provided by the uniform triangulation under the Cardy embedding, or
any other embedding for which the analog of Theorem 1.3 holds. As another example,
we expect that since random walk on regular lattices converge to planar Brownian mo-
tion, the random walk in one of these mims environments converge to planar Brownian
motion in a quenched sense. Our results in §1.3 are the only such quenched scaling limit
results in the literature for natural model-decorated combinatorial random planar maps.
The quenched scaling limit of random walk has been established in [GMS3] for a large

class of random planar maps obtained by coarse graining LQG.

It may be possible to use the approach introduced in this paper to prove the con-
jectures above when the random planar map is weighted by a statistical physics model
and the discrete conformal embedding is defined using observables of the same model.
In this case, if one can establish the analogue of Theorem 1.6, then one can prove the
analogue of Theorem 1.3. Note that in our case, uniform planar maps can be thought of
as percolation weighted planar maps and the Cardy embedding is defined via percolation
observables. At a conceptual level, our dynamical approach should still work in the more
general setting. However, carrying out this approach beyond the setting of our current
paper is a challenge. In particular, we use the metric convergence of uniform triangula-
tions to the Brownian disk and a sharp mixing property for the scaling limit of dynamical
percolation on the planar map. Both of these ingredients are currently missing for other
planar maps and statistical physics models, each of which is a major open question in its

own right.

Convergence of model-decorated random planar maps to LQG has been established
for a much more general class of planar map models in the so-called peanosphere sense.
This convergence is based on the mating-of-trees framework of [DMS]. In the discrete, a
number of mating-of-trees type bijections have been discovered, similar in spirit as the
one we discovered with Bernardi [BHS]. With such kind of bijections and the mating-of-
trees framework for LQG coupled with SLE/CLE, convergence in the peanosphere sense
means convergence to Brownian motion of the random walk encoding the decorated map.

This idea was first proposed and carried out in [Sh3]. See [GHS2, §5.1] for a survey with
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further examples. Here we point out that this convergence does not concern the metric
or conformal structure of the map. Moreover, it is an annealed instead of quenched result
if we view it as a convergence result for a random process in a random environment.
Dynamical percolation is an important tool in the current paper, and we prove a weak
notion of convergence of dynamical percolation on the random planar map to Liouville
dynamical percolation; namely, we prove convergence of the variant of the process where
only e-pivotal points change color, and we prove that the limiting process stabilizes to
the continuous LDP as e—0. An interesting open problem is to prove convergence of true
dynamical percolation on the random planar map to the continuous LDP. One can also
attempt to establish similar scaling limit results for models closely related to dynamical
percolation, such as the minimal spanning tree, invasion percolation, and near-critical
percolation. See [GPS3], [GPS4] for scaling limit of results for these models on the

triangular lattice.

Structure of the paper

In §2 we provide necessary background on \/g—LQG, SLEg, CLEg, and the topological
spaces relevant for the convergence results. In §3 we prove Theorem 1.6, assuming two
lemmas which are proved in §6. In §4 we conclude the proof of Theorems 1.3 and 1.4
using Theorem 1.6. In §5 we establish a preliminary version of (1.5) via an extensive
analysis of the CLEg pivotal points. In §6 we establish the two aforementioned lemmas

using Liouville dynamical percolation, in addition to concluding the proof of (1.5).

Acknowledgements

We are grateful for enlightening discussions with Ewain Gwynne and Scott Sheffield at
the early stage of this project. We also thank Vincent Tassion for pointing us to the paper
[AGMT], and we thank an anonymous referee for careful reading of the paper and many
helpful comments. The research of N. H. is supported by the Norwegian Research Council,
Dr. Max Rossler, the Walter Haefner Foundation, and the ETH Ziirich Foundation. The
research of X.S. is supported by the Simons Foundation as a Junior Fellow at the Simons
Society of Fellows, by NSF grant DMS-1811092, and by Minerva fund at the Department

of Mathematics at Columbia University.



114 N. HOLDEN AND X. SUN

2. Preliminaries
2.1. Basic notation

Sets. Let N={1,2,...} be the set of positive integers. Let C be the complex plane. Let
D={z€C:|z|<1}, H={z:Rez>0}, and S=Rx (0, 7).

Domains. A (planar) domain is a connected open subset of C. Given a domain D, let
0D denote the set of prime ends of D. If 9D is a simple closed curve, we call D a Jordan
domain. Given a simply connected domain D, we say that D is C° if any conformal
map ¢:D— D can be extended continuously to dD. (Here, if D is unbounded, we use the
spherical metric on CU{oo}). If D is C° and the continuous extension of ¢ is smooth
except for finitely many points, we say that D is piecewise smooth. Given two domains
D1, D> CC we write D1 €D5 if D;UOD;C Ds. For two distinct points a and b on 9D, let

Oa.pD be the counterclockwise arc on 9D from a to b.

Lattice. Let T denote the regular triangular lattice where each face is an equilateral
triangle and the points (0,0) and (1, 0) belong to T. For §>0, let 6T be T rescaled by 4.
A Jordan domain D is called a §-polygon if 0D lies on 6T. If D is a general Jordan
domain, let D? be the largest §-polygon whose set of inner vertices (namely, vertices on
ST that are inside the §-polygon) is contained in D and forms a connected set on 6T.(°)
Including all vertices and edges in D?NdT, we obtain a triangulation of a polygon, which

we call the §-approzimation of D and still denote by D?°.

Measures. Given measurable spaces F and F, a measure y on E, and a measurable
map ¢: E—F, the pushforward of p under ¢ is denoted by ¢,u. Let f be a measurable
non-negative function on E. We let fu denote the measure whose Radon—Nikodym with
respect to p is f.

Random variables. Given two random variables X and Y, we write X Ly if X and
Y have the same law. If Z and W are two random variables on the same probability
space, we say that Z (almost surely) determines W' if and only if there exists a random
variable W' measurable with respect to the o-algebra generated by Z such that W=W"'
almost surely.

2.2. Topological preliminaries

In this section we define the topologies used in Theorems 1.5 and 1.6, following [GHS1].
We start by defining the GHPU topology in Theorem 1.5. Given a metric space (X, d),

(®) In case of a draw, we choose D? arbitrarily from the set of largest §-polygons, but note that
D9 will be uniquely determined for all sufficiently small 4.
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for two closed sets F1, Fo C X, their Hausdorff distance is given by

dg(El,Eg)::maX{ sup inf d(x,y), sup inf d(x,y)}.
zeE, YEE2 yEE, €L

For a closed set ACX and £>0, define
A.={z€X:d(x,z) <e for some z € A}

to be the e-neighborhood of A. Then, for two finite Borel measures p; and pe on X,

their Prokhorov distance is given by

df (11, o)
=inf{e >0: 1 (A) < p2(A:)+e and po(A) < pi(Ag)+e for all closed sets A C X}.

Let Cy(RR, X) be the space of continuous curves £: R— X which extend continuously
to the extended real line [—o0, c0], i.e., the limits lim; o £(¢) and lim;, o £(t) exist.
The uniform distance between &1, &2 €Co(R, X) is given by

d (&, &)= sup d(&1(t), & (1))

For a finite interval [a, b], we can view a curve &: [a,b]— X as an element of Cy(RR, X) by
defining
£(a), fort<a,
e ={ &)
&(b), fort>b.

Let MSHPU he the set of quadruples X=(X, d, u, &) where (X, d) is a compact met-
ric space, p is a finite Borel measure on X, and £€Cy(R, X). If we are given ele-
ments X1= (X1, d', pt, &) and X2=(X2,d?, 2, £2) of MEHPU and isometric embeddings
(X1 dY)— (W, D) and *: (X2, D?)— (W, D) for some metric space (W, D), we define
the GHPU distortion of (i,:?) by

Dis{l'%s (W, D, o', %) i =d P (M (X?), 2(X?))
(D)t (P)ups®)) (2.1)
1

The Gromov-Hausdorff-Prokhorov-uniform distance between X! and X2 is given by

dSHPU (%1 %2) = w gfl DisERY (W, D, 0?), (2.2)

where the infimum is over all compact metric spaces (W, D) and isometric embeddings
X Woand 2 X2 W. By [GMI1, §2], d9HPU is a complete separable metric
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on MSHPU provided we identify any two elements of MGHPU which differ by a measure-
preserving and curve-preserving isometry.

Given a graph G, identify each edge of G with a copy of the unit interval [0,1]. We
define a metric d; on G by requiring that this identification is an isometric embedding
of [0,1] into (G, dg, ue). Let pe denote the counting measure on the vertex set of G.
For a discrete interval [a, b]z:=[a, b]NZ, a function p: [a, bz —E(G) is called an edge path
if p(7) and p(i+1) share an endpoint for each i€[a,b—1]z. We can extend an edge path p
from [a, b]z to [a—1,b] in such a way that p is continuous and p([i—1,4]) lies on the edge
p(i). Note that there are multiple ways to extend p, but any two different extensions
result in curves with uniform distance at most 1.

Recall the Boltzmann triangulation M™ in Theorem 1.5, whose boundary length
(" satisfies (3n)~1/2¢"—1. Then, OM™ can be viewed as an edge path 3" tracing the

boundary clockwise(®) starting and ending at the root edge. Set
d" .= (%n)71/4dﬁn, p"i=(2n) e, and  E7() =B (H0) for te[0,1].  (2.3)

Then, M™:=(M" d", u™, 5") is a random variable in MGHPU | Now, the precise meaning
of Theorem 1.5 becomes clear. It states that M™ converge in law to a random variable
BD; in the GHPU topology. A random variable with the law of BD; is called a free
Brownian disk with unit perimeter. We refer to [BM] for an explicit construction of BD;
using the Brownian snake. For the purpose of this paper, we can take Theorem 1.5 as
our definition of BD;. Alternatively, Theorem 2.7 below specifies BD; as well.

We now define the GHPUL topology used in Theorem 1.6. Given a metric space
(X, d), an unrooted oriented loop on X is a continuous map from the circle to X identified
up to reparametrization by orientation-preserving homeomorphisms of the circle. Define

the pseudo-distance between two continuous maps from the circle R/Z to X by

dy(¢, 0"y =inf sup d(l(t),¢ (¢(t)),

Y teR/Z

where the infimum is taken over all orientation-preserving homeomorphisms

:R/)Z — R/ L.

(®) In contrast to some other papers [AHS], [GHS1], we orient OM™ clockwise because in Theo-
rem 1.9, the percolation has monochromatic blue boundary condition. We want to be consistent with
the orientation induced by the percolation where blue color is on the right-hand side. Also see §2.4,
where we require the domain to have clockwise oriented boundary when the CLEg has monochromatic
blue boundary condition. Note that the law of (M™, d",,u",g") in MGHPU j5 unchanged if we swap the
orientation of IM™.
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A closed set of unrooted oriented loops on X with respect to the djj-metric is called
a loop ensemble on X. We let £L(X) be the space of loop ensembles on X equipped with

the Hausdorff metric
d% (e, ) =max{dy (¢, &), d}° (¢, ¢)}, (2.4)
where
d¥°(¢c,¢') =inf{e > 0:for all £ € ¢ there exists £ € ¢ such that di((, ') <e}.  (2.5)

Let MGHPUL 16 the set of 5-tuples ¥= (X,d, p,n,c), where (X, d) is a compact metric
space, p is a finite Borel measure on X, n€Cy(R, X), and c€L(X). If we are given
elements X'=(X1,d*, ut,n', ) and X2=(X2,d?, p2,n?,c*) in MEHPUL and isometric
embeddings ¢1: (X1, dY)— (W, D) and %: (X2, d?)— (W, D) for some metric space (W, D),
we define the GHPU-loop (GHPUL) distortion of (:!,:?) by

Dis%{)gyL(VV, Dt %)= DngEQE(VV, D, ) +d (e, 2 (),

where Disggl;g(-) is the GHPU distortion as defined in (2.1).
The GHPUL distance between X! and ¥? is given by
GHPUL (41 42y _ . GHPUL 12
d (xH,x )_(W,LI)I;,fLI,LZ Disyi xz (W, D, 07, 0%),
where the infimum is over all compact metric spaces (W, D) and isometric embeddings
1 X1 W and 2: X2—W. Following the same argument for the completeness and
separability of (MSHPU (GHPU) in [GMI1, Proposition 1.3 and §2.2], we see that the

space (INIGHPUL7 dGHPUL)

is a complete separable metric space.

Recall M™ in Theorem 1.6. Let w™ be sampled from Bery» with monochromatic
blue boundary condition and let T™:=I'(M™ w™) be the loop ensemble of w™ defined
in §1.3. Given a loop £€Y", the edges traversed by ¢ form an edge path. Therefore ¢
can be viewed as an unrooted oriented loop on M". This way, T™ can be viewed as an
element in £(M™) and (M", d’ﬂp”,@, T") is a random variable in MEHPUL We write
(M™,d™, ™ €7 ™) as (M™,T") for simplicity. In Theorem 1.6, {(M™, T™)};cn should
be understood as a sequence of identically distributed random variables in MGHPUL with
the law of (M™,T™).

2.3. %-Liouville quantum gravity

Let us recall the definition of the Gaussian free field (GFF). Let DCC be a simply

connected domain and let & be a random distribution on D. We call h a zero-boundary
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GFF on D if, for any compactly supported smooth function f: D—R, (h, f) is a centered

Gaussian with variance

[ 160 sy,

where Gp(-, -) is the Green’s function on D with Dirichlet boundary condition. We call

h a free-boundary GFF on D if, for any smooth function g on D with

(h, g) is a centered Gaussian with variance

[ 1651w Eacy,

where Gn (-, -) is the Green’s function on D with Neumann boundary condition. The
law of the zero-boundary GFF is unique, while the law of free-boundary GFF is only
unique up to additive constant. The zero-boundary GFF and the free-boundary GFF are
not pointwise defined functions, but almost surely belong to the Sobolev space H (D).
We refer to [Shl], [Sh2], [DMS] for more details on the GFF.

Let

DH={(D,h): D&C is a simply connected C° domain, h is a distribution on D}.

Fix v€(0,2). Given (D, h), (D, h)eDH, let ¢: D—D be a conformal map. We write

o - 2
(D,h) 2, (D, k) if and only if h=hop+Qlog|d'] forQ:Tr%. (2.6)

We write (D, h)~., (D, h) if and only if there exists a conformal map ¢: D— D such that
(D, h) gﬂy (D,h). Then, ~., defines an equivalence relation on DH. Let DH..:=DH /~,.
By the Riemann mapping theorem, DH, is in bijection with distributions on H if we
identify distributions h and h on H satisfying (H, h)~ (H, iz) This allows us to define
a topology on DH. from the natural topology on distributions on H so that we can
consider the Borel o-algebra and probability measures on DH,. An element in DH,
is called a generalized surface with disk topology. A random variable taking values in
DM, is called a ~y-Liouville quantum gravity surface (y-LQG surface). More generally,
we can define generalized surfaces decorated with additional structures, such as metrics,

measures, points, and curves.
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Definition 2.1. For i=1,2, let (D?, h*)€DH. Let d*, u’, 2, and n° be a metric, a
measure, a point, and a curve on DUJD, respectively. Let ¢: D?— D' be a conformal
¢
map. If (Dlv hl)N’Y(D2, h2)7 d2('v ):d1(¢()a ¢())v :u1:¢*/uf27 1'1:(25(1'2)7 and 771:¢°772>
we write

(Dla hladla ,u'la xlanl) ,?,’Y (DQ, hza d27M27x277]2)‘

If there are multiple metrics, measures, points, and/or curves, define i’w similarly. We

define the equivalence relation ~., for these tuples in the same way as we defined

(D’h) ~y (Dvﬁ)

Convention 2.2. In this paper we focus on ’y:\/g Accordingly, Q=5//6 in (2.6).

We will simply write DH, i, and ~ instead of DH NG L N and ~ N respectively.
In particular, if S is an element in DH, possibly with decorations as in Definition 2.1,

then we write its equivalence class under ~ as S/~.

Next, we introduce a general class of random distributions which covers all GFF

type distributions considered in this paper, such as the ones in Definition 2.4 and in
§5.1.1.

Definition 2.3. (Free Liouville field) A random distribution i on H is called a free
Liouwille field on H if there exists a pair (h', g) such that the following conditions hold:

(1) A’ is a free-boundary GFF on H and g is a random function on HUOH which is
continuous except at finitely many points on 0Hi

(2) the law of h is absolutely continuous with respect to the law of A+ g|.

Given a simply connected domain D, a random distribution h on D is called a free
Liouville field on D if there exists a free Liouville field h on H such that

(D, h) ~ (H,h).

Set 7:\/§ as in Convention 2.2. Let D be a simply connected C° domain and
let h be a free Liouville field on D. According to [DS], one can define the \/§—LQG

area measure jip=: “erh @27 by a regularization procedure lim._;q 5’72/267h57 where h, is
the circle average modification of h; see Definition 5.25. Let ¢:H—D be a conformal
map and h be such that (D, h)il(]HI7 h). One can similarly define a non-trivial measure
§;L::“evﬁ(z)/2 dz” on OH and then define &,:=(¢~1).¢&;,. By [DS], the definition of &,
does a.s. not depend on the choice of ¢ (see also [SWa]). We call &, the \/g—LQG
boundary measure of (D,h). By [MS4], [MS5] a metric dj, corresponding to the metric
tensor (e7"/*)2(dz?+dy?) may be defined on DUJD using a growth process called the
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quantum Loewner evolution (QLE). Recently, [GM3], [DDDF] constructed dj, via a direct

regularization procedure similar to the area case. We list two important properties of
(dha Hh, gh):

fhae=2¢€"Lp, fhﬂ:e”cﬂfh, and dh+c:e“/4dh a.s. for all ceR. (2.7)

and
(Dah7dha,uha§h)£(H7 ila dﬁ7/~1'ﬁ7§ﬁ) a.s. (28)

We now introduce the main \/g-LQG surface that will be considered in this paper.
It will be most convenient to introduce it on the horizontal strip S=Rx (0,7). Let h
be a free-boundary GFF on S. Then, h can uniquely written as h=h°+h?, where h° is
constant on vertical lines of the form u+[0,iw] for u€R, and h’ has mean zero on all
such vertical lines. Since the law of the free-boundary GFF is unique modulo an additive
constant, the law of ¢ does not depend on the choice of additive constant for h, and we

call h’ the lateral component of the free-boundary GFF on S.

Definition 2.4. (\/g—LQG disk) Let v= %, Q=5/v6, and a=Q—~y=1/v6. Let
(X¢)ier be such that (X;);>0 has the law of By, —at, where B, is a standard Brownian
motion starting at the origin. Furthermore, (X_;)¢>0 is independent of (X;);>¢ and has
the law of Bg;—at conditioned on being negative.(”) Let h!(z)=X; for each z€S and
teR with Rez=t. Let h? be a random distribution on S independent of X, which has
the law of the lateral component of the free-boundary GFF on S. Let h*=h'+h? and

M :=sup,cg X;. Let h¢ be a random distribution on S, whose law is given by
h* =27~ log &1, (9S) reweighted by 6_2(Q_7)M§hs(88)4/72_1. (2.9)

Remark 2.5. (Equivalence of definitions of \/g—LQG disk) Various equivalent defini-
tions of the unit boundary length %—LQG disk are given in [DMS], [MS3]. We choose to

work with Definition 2.4 because the field is described explicitly. Here we show the equiv-
alence of Definition 2.4 and the construction in [DMS, §4.5]. In the notation of Defini-
tion 2.4, the construction in [DMS] can be described as follows. Let P be the probability
measure given by h* before the reweighting in (2.9) and let hs:=h®— M. Let 9:=£z(0S)
so that e 2(Q@=MM¢, (9S)=0d. Let the pair (e*,h*) be sampled from the product mea-
sure 1I>03n4/“’2 dx®dP°. Then, the conditional law of (S, hs+2vy~!loge*, +00) given the
event e*0=1 is the unit boundary |/5-LQG disk as defined in [DMS].

(") Here we condition on a zero-probability event. This can be made sense of via a limiting
procedure.
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To see the equivalence with Definition 2.4, we first note that when e*9=1, we have
hs+2y tloge* =hs—2y log 0 =h®—27 log &4+ (0S).

Moreover, for each £>0, by Bayes’ rule, the conditional law P*[-|e*0€[1, 1+¢]] equals
o471 dP®, where c is a normalizing constant not depending on £. Sending £—0, we

obtain the equivalence.
We now give the precise definition of the field h in Theorem 1.6.

Definition 2.6. Let ¢:D—S be the conformal map satisfying
$(0)=24mi and ¢(1)=+ooc.
Let h be the free Liouville field on D such that
(8,h%) £ (D, ),
where h9 is as in Definition 2.4.

By (2.8), Theorem 1.6 remains true if we replace ¢ by another conformal map from
D to 8. We choose this particular definition both for concreteness and for technical
convenience in §6 (see Lemma 6.2).

The Brownian disk BD; can be identified with (D, h) in Theorem 1.6 as follows.

THEOREM 2.7. ([MS5]) Let h be as in Definition 2.6, let (dn, pn,&n) be as above
(2.7), and let 5, be a curve of duration 1 which traces 0D clockwise starting from 1 in

the speed specified by &n. Then, there exist constants cq,cm >0 such that

(DU@D, Cd dh, Cm Uh, gh)?

MGHPU

viewed as a random variable in , s a free Brownian disk with unit perimeter.

We conclude this section by the precise description of the law of ha in Theorem 1.3.
Let h be as in Definition 2.6. Conditioning on h, independently sample two points vy
and vg on 0D according to the measure &,. By possibly relabeling v; and v, we assume
that 1, vq, and vy are ordered counterclockwise. Let ¢: D— A be the conformal map that
maps 1, v1, and vs to (1,0,0), (0,1,0), and (0,0, 1), respectively.

Definition 2.8. In Theorem 1.3, ha denotes a random distribution with the law of
hoy+Qlog|vy’'|, where (h, ) is defined as in the paragraph above. Moreover,

dA =Cq dhAa HA = Cm Uha> and é-A ::tha

with dp., fiha, Ena as described above (2.7), and constants cq and ¢y, as in Theorem 2.7.
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2.4. Chordal SLEg and CLEg
Let

D, .={(D,a,b): D is a simply connected C° domain, a,b€ dD, a#b}.

The clockwise (resp. counterclockwise) arc on D from a to b is called the left (resp. right)
boundary of (D, a,b). Suppose 7 is a curve on DUJD from a to b for some (D, a,b) €D, ..
For each ¢t >0 with n(¢)e DUJD, let D, be the connected component of D\n([0, ¢]) whose
boundary contains b. Otherwise, let D;=@. For each (D, a,b)€D. ., the (chordal) SLE¢
on (D,a,b) is a probability measure on non-self-crossing curves on DUJD from a to b
modulo increasing reparametrization. SLEg is uniquely characterized by the following
three properties.

o Conformal invariance. Suppose ¢ is a conformal map from D to another simply
connected C° domain D’. Then, n has the law of an SLEg on (D, a,b) if and only if ¢on
(modulo increasing parametrization) has the law of an SLEg on (D', ¢(a), ¢(b)).

e Domain Markov property. Let 1 be an SLEg on (D, a,b), parameterized such that
the parametrization on each initial segment is determined by the same segment modulo
increasing parametrization. For each ¢>0, on the event D;#@, we have that D, is C°
a.s. and the conditional law of 7 after ¢ is that of an SLEg on (D¢, n(t),b).

o Target invariance. Let n (resp. ') be a chordal SLEg on (D, a,b) (resp. (D,a’,b"))
such that b#b". Let 7 (resp. 7') be the first time 7 (resp. n’) hits the arc on D between b
and b’ that does not contain a. Then 7)|(o ;] and 7|( -] are equal in law modulo increasing

reparametrization.

It is proved by Schramm [Schr] that the first two properties define a 1-parameter
family of random curves called (chordal) SLE, with k€(0,00). The target invariance
property singles out SLEg. By [RSc], if 1 is an SLEg curve on (D,a,b), then 7 is
a.s. a non-simple curve which create “bubbles” (bounded simply connected domains) by
hitting its past and the domain boundary. Furthermore, the range of  has zero Lebesgue
measure a.s. When Dy#@, let 1} and n! be the left and right, respectively, boundary of
(D¢, n(t),b). For t>0, the laws of n} and n! away from 0D are variants of SLEg /3 [Du].
We refer to [L] for more background on SLEg.

Given 6>0 and a Jordan domain D, let D? be the §-approximation of D (see §2.1).
Let w® be a Bernoulli—% site percolation on D®, namely, each inner vertex of D? is colored
red or blue independently with probability % Let T be the loop ensembles of w? with
monochromatic blue boundary condition. Let £(D) be the space of loop ensembles on
DUAD endowed with the dY-metric (see §2.2), where d is the Euclidean metric on D.
Note that £(D) is complete and separable; see [CN, §2.2].
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THEOREM 2.9. ([CN]) As §—0, '’ converge in law to a random variable T' in L(D)

in the df-metric.
We take Theorem 2.9 as our definition of CLEg on D.
Definition 2.10. (CLEg) A random variable in £(D) with the law of T is called a

CLEg on D with monochromatic blue boundary condition. A random variable with the
law of the loop ensemble obtained by reversing the orientation of each loop in I is called

a CLEg on D with monochromatic red boundary condition.

For T" in Definition 2.10, with probability 1, for each z€ D, the loop whose range is
the single point z belongs to I'. We call these loops trivial loops in I'. There are countably
many non-trivial loops in I' almost surely, whose djj-closure equals I'. Throughout the
paper when we declare a loop ¢€l'; we always assume that ¢ is a non-trivial loop.

We now explain how to sample a CLEg (with monochromatic boundary condition)
iteratively from chordal SLEg. We start by assigning an orientation to 0D. If we want
the CLEg to have blue (resp. red) boundary condition, we assign clockwise (resp. coun-
terclockwise) orientation to dD. Fix two distinct points a,b€dD. Let ab be the segment
on dD from a to b in the same orientation as dD. We first sample an SLEg 7% on
(D,a,b). A connected component of D\n is called a dichromatic bubble if its boundary
has non-empty intersection with ab. Let B be a dichromatic bubble and let x5 and ip
be the last and first, respectively, point on 9B visited by 7%, and let n® be the segment
of 7% in between. For each dichromatic bubble B, conditioning on 7, let 15 be a chordal
SLE¢ on (B, zp,Z5). Moreover, we assume that these ng’s are conditionally independent,

given 7. Let £5 be the oriented loop obtained by concatenating n® and nz. Let
I'® = {¢5: B is a dichromatic bubble}.

Let B’ be a connected component of D\{Jyeps ¢ The orientation of loops in T and
0D together define an orientation on 0B’, eithaer clockwise or counterclockwise. If the
orientation is clockwise (resp. counterclockwise), we call B’ a monochromatic blue (resp.
red) bubble. Conditioning on I'’, for each monochromatic bubble B’, we independently
iterate the sampling procedure with the domain D replaced by B’ with the already

assigned orientation on 0B'.

LEMMA 2.11. ([CN]) Given n%, T and {T's'} as above, let T be the union of T
and the collection of non-trivial loops in T'g/, where B' ranges over all monochromatic
bubbles. Then, if OD is oriented clockwise (resp. counterclockwise), then T' has the law
of the non-trivial loops of a CLEg on D with monochromatic blue (resp. red) boundary

condition. Moreover, T' determines T and n®® almost surely. We call n®® the interface
of T on (D, a,b).
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Figure 2.1. Left: Illustration of the construction of a CLEg loop. The concatenation of the
black curves and the purple curve is an SLEg n%® from a to b. The domain B (light yellow)
is a dichromatic bubble. The CLEg loop £z is the concatenation of nB (purple) and np
(red). Middle: Tllustration of the region reg(¢) (light yellow) surrounded by the CLEg loop /.
Right: Tllustration of the operation of flipping the color at a pivotal point v. In Case (1) of
Definition 2.12 we go from left to right, and in Case (2) of Definition 2.12 we go from right
to left. The loops on the top (resp. bottom) left are non-nested (resp. nested).

Both I'® and 1% can be defined as explicit functions of I'. Consider all the loops in I’
having non-empty intersection with ab. There is a natural partial order < on these loops
where £< ¢ if and only if £ is in a connected component of D\ ¢’ whose boundary contains
neither a nor b. Then I'® is exactly the set of maximal elements for the partial order <.
Moreover, for each loop £€I'%, it is possible to recover its corresponding dichromatic
bubble B, 73, and 7. By concatenating 1 for all B and taking a closure, we obtain 1.

As a consequence of the iterative construction above and the conformal invariance
of SLEg, the law of CLEg is also conformally invariant. Namely, let T" be a CLEg on a
Jordan domain D. Let D’ be another Jordan domain and let ¢: D— D’ be a deterministic
conformal map. Then, the law of {¢ol}scr is a CLEg on D’ with the same boundary
condition as I'.

We now record some important geometric properties of CLEg. Suppose that we are
in the setting of Definition 2.10. For each €T, let —¢ be the connected component of
C\¢ whose closure contains 0D, where (here and below) we identify ¢ with its range.
Let reg(¢) be the closure of the union of all connected components of C\¢ other than —¢
whose boundary is visited by ¢ in the same orientation as ¢ is visiting 9(—¢). We call
reg(?) the region enclosed by £. Given ¢#{' €T, we say that ¢ and ¢ are nested if and
only if ¢Creg(¢’) or ¢/ Creg(?).

Definition 2.12. (Pivotal point) Suppose that D and I' are as in Theorem 2.9. A
point veD is called a pivotal point of T" if one of the following two occurs:
(1) There exist two loops £, ¢'€I" such that veln?’.

(2) There exists a loop £€T" that visits v and £ visits v at least twice.

The following basic properties of CLEg are extracted from [CN].
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LEMMA 2.13. If D and T are as in Theorem 2.9, then the following hold almost
surely.

e (Local finiteness) For each £>0, there exist finitely many loops in T with diameter
larger than ¢.

e (Finite chaining) Given any (€T and ¢'€eT'U{0D}, there is a finite set of loops
bo=L, 0y, ... 0= in T such that, for all i€{1,....k}, {;_ 1NL;#D.

e (No triple points) T' has no pivotal points on OD. If v is a pivotal point of T,
ezactly one of the following holds: There exist exactly two loops £,0' €T’ that visit v, each
of which visits v exactly once; or there exists a unique loop (€T that visits v, and £ visits
v exactly twice.

o (Parity) Given any pair of loops in £,0' €T with {N'#£2, £ and ¢’ have opposite
orientation if and only if they are nested. If ¢NOD#D, then £ must be an outermost
loop, in the sense that there exists no €' €D’ other than ¢ with £Creg({').

The local finiteness follows from [CN, Lemma 6.6]. The finite chaining and no-
triple-point properties follow from [CN, Theorem 2]. The parity property follows from
the no-triple-point property.

If v is a pivotal point of I, by flipping the color at v, we mean merging ¢ and ¢ into
a single loop in Case (1) of Definition 2.12 and splitting ¢ into two loops in Case (2) of
Definition 2.12. (See Figure 2.4.) If a loop does not visit v, flipping the color at v keeps
the loop unchanged. Let I', denote the set of loops obtained after flipping the color at v.
By the parity property of CLEg, I' induces an orientation on each loop in I',,, making it
an element of £(D) (after including trivial loops). By the no-triple point property, the
symmetric difference £, of I' and I';, always contains exactly three loops. Now we define

the continuum e-pivotal points by mimicking the discrete definition in §1.4.2.

Definition 2.14. (e-pivotal point) Given a Jordan domain D, let I" be a CLEg on D
and let h be a free Liouville field (see Definition 2.3) on D independent of I. Given a
pivotal point v of I' and £>0, we call v an e-pivotal point of (h,T") if pup,(reg(¢))>e¢ for
all feL,.

Remark 2.15. (CLEg on top of \/E—LQG) Suppose we are in the setting of Theo-
rem 2.7. Let I' be a CLEg on D with monochromatic blue boundary condition. Then
(DUID, ¢q dn, Cm Ln, Eh, I') is a random variable in MSHPUL When it is clear from con-
text, we will denote this random variable by (D, h,T). In particular, (D, h,T’;) in The-
orem 1.6 should be understood in this sense. Now, Theorem 1.9 asserts that (M™, T")
defined at the end of §2.2 converge in law to (D, h,T") in the GHPUL topology.
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3. A dynamical percolation on random triangulations

In this section we prove Theorem 1.6. The argument is “soft” as long as the “hard” input
Lemmas 3.2 and 3.3 are supplied. We postpone the proofs of these two lemmas to §6.

For £>0, recall the dynamics (M™, w;");>0 defined in §1.4.2. The following elemen-
tary observation is crucial to us. We leave the proof to the reader.

LEMMA 3.1. Conditioning on M™, the process (7" )i>0 is stationary.

For >0, let T;™:=T'(M",@;™") be the loop ensemble of @;"". Recall M"cMGHPU
in §2.2, which is obtained by rescaling M™ according to (2.3). We view (M™, T7");>0 as
a process taking values in MGHPUL a5 explained at the end of §2.2. In §6, we will prove

the following.

LEMMA 3.2. For any fized £>0, (M™, T5™)ien converge in law as n—oo to a sta-

2

tionary sequence (Y )ien in the GHPUL topology.

K2

We restrict the index set to positive integers in Lemma 3.2 to avoid unnecessary
topological technicalities for continuous time processes.

Recall (D, h,T) in Remark 2.15. By Theorem 1.9, for each :€N, Y in Lemma 3.2 is
equal in law to (D, h,T") as a random variable in MSHPUL - More generally, there exists
a sequence of CLEg’s (I'¢);en coupled with h such that (Y»E)ieNi(D, h,T%);en.

7

LeEMMA 3.3. Let (h,T%);en be defined as above. There exists a sequence of CLEg’s
(T.)ien coupled with h such that, as €0, (h,T%);en converge in law to (h,T;);en in the
H~Y(D)x L(D) topology. Moreover, (T;)ien is stationary and ergodic.

To deduce Theorem 1.6 from the above lemmas, we use the following observation.

LEMMA 3.4. Let X and (Y;)ien be random variables on the same probability space.
Suppose that (X,Y;)i€N is stationary and (Y;)ien is ergodic. Then, X and Y7 are

independent.

Proof. Let f and g be two bounded real-valued measurable functions defined on the

space in which X and Y;, respectively, take values. By stationarity of (X, Y;)i€N,

Cong(X). £(¥1)) =Cov (9(X), - 3= 1) ).

Now, Lemma 3.4 follows from the Birkhoff ergodic theorem. O

Proof of Theorem 1.6. Fix £€(0,1). Consider the process

(Mn7 ‘Df,n)tEO
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in Lemma 6.35. Conditioning on M", let w™ be sampled from Bery~ such that w™ is

conditionally independent of (&o;"")i>0. Let
T"=T(M",w").

By Theorem 1.9, (M™, T5™);en and (M™, T™) are tight in the GHPUL topology. At this
moment, we do not know that they jointly converge in law. Indeed, the joint convergence
of (M™,T7") and (M™,T") is precisely the k=2 case of Theorem 1.6. We now use
the previous lemmas to show that, in any subsequential limit, the joint limiting law of
(M™,YT™) and (M™,T") is as desired.

By the Skorokhod representation theorem, given any subsequence N'CN, we can

choose a further subsequence A/ CN such that there exists a coupling of
{(M™, ™, @™ )ien:n NS,

where both (M™, T5™);en and (M™, T™) have almost sure GHPUL limits as n— oo along
N’. By Lemma 2.7, the GHPU limit of M™ can be written as

(A, ¢ diy o fins En),s

where h is as defined in Definition 2.6. As in Lemma 3.2, we denote the GHPUL limit
of (M™,Y5™)ien by (D,h,T%);en, where (I'S);en is a sequence of CLEg’s on D. By
Theorem 1.9, there exists a CLEg I on D with monochromatic blue boundary condition
such that (D, h,T') is the GHPUL limit of (M™, T™). Moreover, (h, T, I'5);cy is stationary.

By Lemma 3.3, the e-indexed family {(h,I,T%);cn:e>0} is tight. Therefore, we
can choose a sequence &,,)0 such that, as m— o0, (h,T,T5™);en converge in law to a
stationary sequence, which we denote by (il,f, [;)ien. (Similarly as above, due to the
presence of I'; we need to choose a sequence ¢,,]0 to ensure convergence in law instead
of simply taking £/0.) Applying Lemma 3.4 to X:(iL, f) and Y;=I;, we see that (iL7 f)
is independent of I';. Since the law of (M™, Y™, T7") is equal to the law of (M™, T7,T%)
in Theorem 1.6, which does not depend on ¢, the law of (h,I",T'§) does not depend on
€ either. In fact, it must equal the law of (iz,f,f‘l). Therefore, (h,T") is independent
of T'§. In particular, the law of (h,T',T'§) does not depend on the choice of subsequences
N and N’. Therefore, (M",T") and (M",Y7") jointly converge in law to (D, h,T") and
(D, h, T5), respectively. This gives Theorem 1.6, when k=2.

For k>3, we assume by induction that Theorem 1.6 holds for k—1. We now replace
w™ above by k—1 independent percolations sampled from Bery~, and apply the exact
same argument as above. Then, by the induction hypothesis, I' above becomes k—1
independent copies of CLEg which are also independent of h. We again use Lemma 3.4

to conclude the proof. O
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4. Convergence under the Cardy embedding

In this section we will conclude the proof of Theorems 1.3 and 1.4.

Recall ha, da=cqdn,, pa=cmph,, and Ea=Ep, in Theorem 1.3, whose precise
meaning can be found in Definition 2.8. Let I' be a CLEg on A with monochromatic
blue boundary condition independent of ha. Then, we can identify (A, ha,T") with

MGHPUL a5 explained in Remark 2.15, with (D, h) replaced by

a random variable in
(A, hp). We first state a basic variant of Theorem 1.6 for maps with marked points.
Note that elements in MGHPUL with marked points can be naturally endowed a topology

as in §2.2, which includes the convergence of the marked points.

LEMMA 4.1. Let (M™,a™,b",c") and {Y?};en be as in Theorem 1.6. Let ha be as
above and let {T;}ien be independent CLEg’s which are also independent of ha. Let
(07, 0%, 0% ):=(a™,b", c"). Let 21, 22, and Z3 be equal to (1,0,0), (0,1,0), and (0,0,1),
respectively. Conditioning on (M™, Y7, Y5, ...), let 0} (resp. {vl:i€N}) be vertices of
OM™ (resp. M™) which are sampled uniformly and independently at random. Condition-
ing on (ha,T), let 24 (resp. {z;:i€N}) be boundary (resp. interior) points of A which
are sampled independently from the measure En (resp. ua). Then, there exists a coupling
such that for each meN, almost surely the following convergence holds in the GHPUL
topology with m+4 marked points:

lim (M"™, T 07, ..., 08, vT, oy ug)
=(A,ha, T4, 21,0, 24,21, ooy 2m)  for each i €N,

Proof. By Skorokhod embedding theorem, it suffices to show that the convergence
in (4.1) holds in law for a fixed m. The convergence of 97, ..., 0§ follows from the uniform
convergence of the boundary curve, and the convergence of v7, ..., v}, follows from the

convergence of u™. The gives the desired convergence in law. O

Throughout this section, we work under a coupling as described in Lemma 4.1.
We will prove that (d,pk,&R) converge to (da, pia,€a) in probability, which implies
Theorem 1.3.

We first will argue that, for each fixed i€N, as n— o0,

Cdy™(v]') — z; in probability for the Euclidean metric on A. (4.2)
Since the total mass of pi converge to that of pa in probability and Cdy™ (v?*) (resp. z;)
has the law of a vertex (resp. point) sampled according to pA (resp. pa), (4.2) implies
that g converge to pa in probability.
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We fix 1€N while proving (4.2). For jeN, let
B = {w} € Ean (),

namely, EJ" is the event E,n (v!") in Definition 1.1 for wi. The dependence of EJ™ on i

is dropped in the notation, since 7 is fixed. Similarly, let
EJ™ :={w! € By (v!)} and EJ":={w! € Ee(v])}.

Let EJ, B}, and EJ be the continuum analogs of EJ", EJ™, and EJ™, respectively, defined
in terms of z; €A and the CLEg T';. We describe EJ precisely following [BHS, §7.9];
E% and E:],, can be defined similarly by permuting the indices. Let 1 be the interface
of IV on (A, 23, 23) as defined in Lemma 2.11. Then,

E{ is the event that z; is strictly on the same side of ) as 2;. (4.3)

To be precise, the event E{ occurs if and only if there is a path in A connecting z;
and Z; which does not intersect 7. By [GHS1, Proposition 6.7] (which builds on [BHS,
Theorem 8.7]) the following convergence holds in probability

(].E{‘n,]_Eéj,n,]_Eé’,n)*)(1E{,1E§,1E§'), jZl,...,k. (4.4)

Here we use the following basic measure theoretic fact.

LEMMA 4.2. Let (X,,Yn)n>1 be a sequence of random variables taking values in a
complete separable metric space. Suppose that X, —X in probability, (X,,Y,)—(X,Y)
in law, Y, is measurable with respect to X, for n=1, and Y is measurable with respect
to X. Then, Y,—Y in probability.

See [SSh, Lemma 4.5] for Lemma 4.2 with X,,=X, which also works with little
modification if X,,—X a.s. instead. The case where X,, —X in probability follows from
the a.s. case by extracting subsequences.

For (4.4), we let Xp=(M", Y7, 07,...,07,v") and X=(A,ha, Ty, 21,..., 24, 2;). We
let Y,, and Y be the two sides of (4.4). In the continuum, the interfaces and the crossing
events are measurable with respect to (I'j, 21, ..., 24, 2;); see the end of [CN, §5].

It follows from (4.4) that, for any fixed k& by choosing n (depending on k and ()
sufficiently large, we have with probability at least 1—( that

k 1 k
Z E] SNy E] Ty EJ ,n ) — EZ EJ’ E]7 ]). (4.5)

W\H
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By the Azuma—Hoeffding inequality for Bernoulli random variables, the following state-
ment holds uniformly in n. For k sufficiently large depending on (, with probability at
least 1—C(,

k
5 3 g Ly gy~ (Berue (B (074 B B o1+ B (B 01| < (46)
and i
£ (0 Ly 1)~ (PLBYL, PLBLL FLERD) <. (@7
j=1

Since P[E}]+P[E3]+P[E}]=1 by Theorem 1.2, on the event that (4.5)—(4.7) are satisfied,
one has
|Ber|\/|n [Ean( )]+Ber|\/|n [Ebn( )]+Ber|\/|n [Ecn (’U;l)}71| < QC (48)

Combining this with (4.5)—(4.7) and the definition of the Cardy embedding, we get that,
with probability at least 1—3(, for all sufficiently large n (depending only on (),

|Cdy"™ (v]") — 2| < 50C. (4.9)

Since ¢ was arbitrary, we obtain (4.2), which concludes the proof that pX —pa in prob-
ability.

We prove that £ —&a in probability, by a very similar argument. As above, it is
sufficient to show that Cdy" (0] )— 24 in probability for the Euclidean metric, as n— oo.
Again, the result follows by applying [BHS], which give convergence in probability of the
three crossing events E{, EQ, and Ej (now defined with 9} instead of v}"). Note that
the convergence result for E1> E%, and Eé in [BHS, Theorem 8.7] is stated for the case
where the four boundary points have deterministic distances along the boundary from
the root, rather than being sampled uniformly and independently at random, but the
proof in [BHS, Theorem 8.7] is identical for the case of random points.

We now establish a modulus of continuity estimate for the Cardy embedding.

PROPOSITION 4.3. We have

lim sup |Berpn [Egn ()] —Berpa [Eqn (v)]] =0. (4.10)
=0 4 veV(MP):d (u,0)<r

The same holds with E.n replaced by Epn and Eqn.

Before proving Proposition 4.3, we first recall the notion of percolation interface
following [GHS1]. Let M be a triangulation of a polygon and let e and e’ be two distinct

edges on M. Recall that (e,e’) denotes the counterclockwise arc on 9M from e to €.
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The (e, e’)-boundary condition for a site percolation on M is the coloring of M where
vertices on (e, e’) (resp. (¢/,e)) are blue (resp. red). Given a site percolation wys on M,
regardless of its own boundary condition, if we impose the (e, €’)-boundary condition to
it, then there is a unique edge path (recall §2.2) on M from e to €/, such that each edge
on the path has a red vertex on its left side and a blue vertex on its right side. We
call this path the percolation interface of wpr on (M,e,e’). Note that this percolation

interface only depends on the coloring of the inner vertices.

Proof of Proposition 4.3. Given a percolation interface n™ on (M™,c",b") of a site
percolation on M™, we call the segment between the last time 1™ visits the counterclock-
wise arc (¢, a") and the first time " visit the counterclockwise arc (a™,b™) the middle
segment of ™. Here visits means passing through an edge with an endpoint on the arc.
Recall that d™ is the graph distance on M™ rescaled by (%n)_l/ % Given a d"-metric ball
B on M"™, let E™(B) be the event that the middle segment of n" is passing though B.
Let

X"™(r):= mgX{BerMn (E™(B))},

where B ranges over all such balls of radius . We claim that

lim lim sup X" (r) =0. (4.11)

70 nooo

Let us first explain that (4.10) follows from (4.11). Let w™ be sampled from Bery» and
n™ be its percolation interface on (M™,c", b™). It is elementary to check that the discrete
analog of (4.3) can be used to characterize the crossing events in terms of 1"; see e.g.
[BHS, §6.8]. As a consequence, given u,v€V(M™) and r>0 such that d"(u,v)<r, if
Eyn(u) A Eqn(v) occurs then the middle segment of #™ must cross the d™-ball centered
at u of radius . Therefore, (4.11) implies (4.10).

We prove (4.11) by contradiction. Let 7; be the interface of I'; on (A, 23, 23) as
defined in Lemma 2.11. We define the middle segment of 7; to be the segment between
the last time 7; visits the counterclockwise arc (23,21) and the first time #; visit the
counterclockwise arc (%1, 22). Let wl be the site percolation corresponding to Y7 in
Lemma 4.1. If (4.11) does not hold, then there exists (>0 and a sequence r, —0 such
that, for each n, with probability at least {, there exists a d"-ball B of radius r,, such
that E™(B) occurs for the each of w} (1<i<10). As explained below (4.4), the discrete
interfaces converge in probability in the coupling of Lemma 4.1. Since r, —0, sending
n— 00, we see that in this coupling with positive probability the middle segments of »; for
1<i<10 share a common point on A. This is not possible because SLEg has dimension
%. More precisely, by the 1-point estimate by Beffara [Bf2, Proposition 4] the probability

2-7/4

that an SLEg passes through a ball of Euclidean radius s decays like s uniformly

over all balls bounded away from the corners of A, and (272) -10>2. O
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PROPOSITION 4.4. We have that

nIEEO Uer}r}l%\)ﬂ(n) |Bermn [Egn (v)]4+Bermn [Epn (v)]+Berpn [Een (v)] —1| =0

in probability.

Proof. Since pa almost surely assigns positive mass to any open set of A, {z;:9€N}
is dense in A for both Euclidean and the da-metric. (Recall that the da-metric and
the Euclidean metric induce the same topology as they are a.s. bi-Holder with respect
to each other [MS5, Theorem 2].) Since we are under the coupling in Lemma 4.1, where

the convergence is almost sure, we have that

lim sup infd"(v,v})=0

n=0yep(mn) (€N
in probability. Proposition 4.4 now follows from this observation, inequality (4.8), and
Proposition 4.3. O

To conclude the proof of Theorem 1.3, we must show that d{ converge in probability
to da. For Z€A and (>0, let B(Z,¢) denote the Euclidean ball of radius ¢ centered at Z.
As explained in the proof of Proposition 4.4, since pa almost surely has full support on A,
{z;:i€N} is dense in A, for both the Euclidean metric and the da-metric. Combined
with (4.2), we have

lim inf P[for each z € A there exists v € V(M") such that Cdy" (v) € B(z, ()] (4.12)
n—00 .

>1-¢.

Therefore,
sup |Cdy™(v(z))—x| =0 in probability as n— oco. (4.13)
TEA

On the other hand, we have

sup |dA (2, y)—da(z, y)| < sup |d"(0(), v(y)) —da(Cdy" (v(z)), Cdy" (v(y)))|

+ sup_|da(Cdy"(v(z)), Cdy" (v(y))) —da(z, y)|-

w,yEA

(4.14)

Since da induces the Euclidean topology, the second term on the right-hand side of (4.14)
converges to zero by (4.13). Therefore, to get the convergence of d}, it suffices to show
that

lim sup  |d"(v',v")—da(Cdy"(v"), Cdy™ (v""))| =0. (4.15)

n—00 Q)I,UNEV(M”)
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For any (>0, by Propositions 4.3 and 4.4, we can choose p>0 (depending only on ()
sufficiently small, such that, for all sufficiently large n (depending on (), the following
holds with probability at least 1—(:

sup |Cdy"(u)—Cdy"(v)| <. (4.16)

v,u€V(Mn)
dn (u,v)<p

In the coupling in Lemma 4.1,
Jim d" (v, vff) = da(zi, 2)
a.s. for each 7, j€N. As da is continuous relative to the Fuclidean metric, an application

of the triangle inequality and (4.2) give
lim |d"(v;",v}') —da(Cdy"(vj"), Cdy"™(v}))| =0 in probability. (4.17)

n—oo J

Combing (4.16) and (4.17) and using the density of {z;:i€N} in A for da, we get (4.15).

Proof of Theorem 1.4. Recall the proof of the convergence of £X. The argument
there implies that Cdy"(9}) converge to Cdy"(Z4) in probability. Now, conditioning
on the event that o falls on the arc (¢”,a™) and on the event that 2, falls into the
counterclockwise arc on A from (0,0, 1) to (1,0,0), we obtain Theorem 1.4. O

5. The quantum pivotal measure of CLEg

We recall the setting of (1.5). Namely, let h be as in Definition 2.6 so that (D, h, 1)/~
is a unit boundary length \/g—LQG disk (Definition 2.4). Let T' be a CLEg on D with
monochromatic blue boundary condition (Definition 2.10) which is independent of h. Fix
€>0. Let P. be the set of e-pivotal points of (h,T") as in Definition 5.18. The measure
Vi on P- was introduced in [BHS, §7] based on the theory of mating of trees [DMS],
and we will review its definition in §5.2. Let Mj, 1 be the renormalized scaling limit of
eh/V8 2 restricted to the discrete analog of P.. We have described the discrete setting
above (1.5) and will describe Mj, . precisely in Definition 6.24. We now restate (1.5) as

a proposition.

PROPOSITION 5.1. In the setting right above, there exists a deterministic constant
¢>0 such that, for each fized €>0, we have vy, p=¢Mj, 1 a.s.

We will recall the mating-of-trees theory for SLEg on \/g—LQG surfaces in §5.1. In
§5.2, we give a definition of v, » which is a slight reformulation of the one in [BHS]. The
bulk of this section, §5.3, is devoted to the proof of a local version of Proposition 5.1,
namely Proposition 5.44. As we will show in Lemma 6.14, the set P. can be covered by

the points of intersection of the so-called 2-SLEg as defined below.
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Definition 5.2. Let @ be a simply connected domain with simple piecewise smooth
boundary, and a, b, ¢, and d be four distinct boundary points ordered counterclockwise.
Let nggd be a chordal SLEg on (Q,a,d) conditioned on not hitting the counterclockwise
boundary arc 9 .Q from b to c. Conditioned on %%, let Q" be the component of Q\n%d
whose boundary contains 0, (), and let ng’ be a chordal SLEg on (Q’,¢,b). We call
(Uédﬂ?éb) a 2-SLEg on (Q,a,b,c,d).

Proposition 5.44 is the variant of Proposition 5.1, with n&dﬁng’ in place of P..
Combined with the covering lemma (i.e. Lemma 6.14), this will give Proposition 5.1. We
will explain this part in §6.5. The reader may skip §§5.1-5.3 and proceed directly to §6

if he/she is willing to accept Proposition 5.1 without a proof.

5.1. Mating-of-trees theory for SLEg on g-LQG surfaces

The definition of vj, 1 and the proof of Proposition 5.1 both rely on the mating-of-trees
theory for SLEg on \@—LQG surfaces. The general theory is built in the foundational
paper [DMS]. It is further developed in [GM2] and revisited in [BHS, §7]. In this
subsection we review what is needed for Proposition 5.1. See [GHS2] for a thorough

survey.

5.1.1. Quantum wedges and disks

We start by recalling the definition of a family of LQG surfaces which plays a key role
in the mating-of-trees theory, namely the quantum wedges [Sh2], [DMS]. Recall the
notation S=Rx (0, 7) for the horizontal strip.

Definition 5.3. (Quantum wedge) Fix W>§ and a>0 such that

W=1+/3

[DMS, Table 1.1]. Let (X;):cr be such that

. (Xt)@oi(Bgtfat)t)O, where B; is a standard linear Brownian motion starting
at zero,

o (X_;)t>0 has the law of (Ba;+at)i>o conditioned to be positive, and

o (X_4)i>0 and (X¢)>0 are independent.

Let h'(t+si)=X; for each t+si€S. Let h? be the random distribution on S in-
dependent of X whose law is the lateral component of the free-boundary GFF on S.
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Set h=h'+h?. Then, the law of the %—LQG surface (S, h, +00, —00)/~ is called the
W -quantum wedge.(®)

If in the above definition, the law of X is such that (Xt)@og(Bgt)t}O conditioned to
be negative, and (X_¢);>0 has the law of (Ba)i>0, then the law of the \/g—LQG surface
(S, h, 400, —00)/~ is called the %—quantum wedge.

Remark 5.4. By [DMS, Proposition 4.7], quantum wedges have the following sym-
metry. If (D,h%,a,b)/~ is a W-quantum wedge, then

(D, h¥ +c,a,b)/~2(D, 1™, a,b)/~

for each deterministic ceR.

By [Sh2, Proposition 1.7], the 2-quantum wedge has an additional symmetry. If
(D,h%,a,b)/~ is a 2-quantum wedge and s>0, let a;€D be on the left boundary of
(D,a,b) such that the &w-length of the left boundary of (D,a,as) equals s. Then,
(D, k"%, as,b)/~ has the law of a 2-quantum wedge.

The following representative of a quantum wedge (i.e., a representative of the equiva-

lence class defining the wedge) will be technically convenient in several of our arguments.

Definition 5.5. Let W be a W-quantum wedge for W}% and let ¢(z):=e % be a
conformal map from S to H. Suppose that A" is the random distribution on H such that
W=(H, h",0,00)/~ and, moreover, h"Weop+Qlog|¢'| has the law of h in Definition 5.3.
Then, we say that (H, h",0,00) is the circle average embedding of W.

Existence and uniqueness of the circle average embedding is clear from Definition 5.3.

In order to state the mating-of-trees theorem, we need to extend our definition of
the \/§-LQG disk to allow arbitrary boundary length.

Definition 5.6. Recall the notions in §2.3. Suppose that D is a simply connected
C° domain, a is a point on 9D, and h is a free Liouville field on D. Define L:=&,(9D).
Recall from Convention 2.2 that ’yz\/g. If (D,h—2y"tlogL,a)/~ is independent of L

and has the law of a \/g—LQG disk with unit boundary length (see Definition 2.4), then
we say that (D, h,a)/~ is a \/g-LQG disk and call L the boundary length of the disk.

(®) In [DMS] quantum wedges are parameterized in six different ways. See [DMS, Table 1.1] for
their relations. Our choice in Definition 5.3 is called parametrization by weight. The notion of a-quantum
wedge in [DMS] is different from the one in Definition 5.3, since « refers to the log singularity parameter,

while our W refers to the weight. These are related by W:'y(%nyera), where 'y:\/g and Q=5//6.
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5.1.2. Mating-of-trees theory for SLEg on a 2-quantum wedge

Recall notions in §2.4. Given (D, a,b)€D, ., let n be an SLEg on (D, a,b). Let h" be a
random distribution on D such that W:=(D,h%, a,b)/~ is a 2-quantum wedge. A set
BCD is called a bubble of n if it is a connected component of D\ 7. Let

tg=sup{t>0:BC D;}.

We call z5:=n(t) the root of B. By [DMS, Theorem 1.18 and Corollary 1.19], we have
the following parametrization of 7.

PROPOSITION 5.7. Let X be a Lévy processes with Lévy measure
3 _
m|$| 5/Q].I<0 dx
and let
J(X)={t>0:X;—X,- #0}
be the set of times at which X makes a jump. Conditioned on X, for each teJ(X)

sample an independent \/g—LQG disk S; with boundary length equal to the jump size
X;—X;- of X at time t, and set

E={(t,8) teJ(X)}.

In the setting of the previous paragraph, there exists a unique parametrization of n such
that the following holds. Let J“CR. be the set of times t at which a bubble B, is cut off
by n on its left side, let

S} = (B, hls, x5)/~

denote the LQG surface which is cut off at time t, and set
EV={(t,8F):teJ"}.

Define ER in the same way with left replaced by right. Then, EY and EX are independent,
and each of them have the same law as EX. We call this parametrization the quantum

natural parametrization of n under A".(?)

PROPOSITION 5.8. Let (D,hV,a,b,n) be as in Proposition 5.7, with n having the
quantum natural parametrization. For a fived t>0, conditioning on ZV |4, the condi-
tional law of

{(B,h,zp)/~:B is a bubble with tp <t}

(°) In fact, the quantum natural parametrization in [DMS] is defined only up to a multiplicative
constant, which we fix in this paper by specifying the Lévy measure of X.
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1s that of independent \/g—LQG disks with given boundary length, which are also condi-
tionally independent of

(Dt7 han(t)v ba 77)/“

Furthermore, the conditional law of (Dy, h,n(t),b,n)/~ equals the law of (D, h,a,b,n)/~,

where Dy is the connected component of D\n([0,t]) whose boundary contains b.

By the quantum zipper theory of Sheffield [Sh2], given a variant of SLEg/3 coupled
with an independent free Liouville field on the same domain, one can unambiguously

define a notion of quantum length measure on the SLEg,3-type curve, as an extension of

the \/E—LQG boundary measure. For example, in Proposition 5.7, let U be either D,
or a bubble of . Given a segment V of 9U, since h|y is either a quantum wedge or
a \/§—LQG disk, the mass of V' under the \/§—LQG boundary measure of h|y is well
defined, which we call the quantum length of V. (Recall by SLE duality that OU is either
a variant of SLEg/3 or part of dD.) In the rest of §5 there are a few other occasions
where we consider the quantum length along SLEg,3-type curves. At each place, locally
the SLEg/3 curve cuts the domain into two subdomains with the curve lying on their
border. The field restricted to the two subdomains are both free Liouville fields, each of
which induces a notion of quantum length for the curve using the \/g-LQG boundary
measure. The highly non-trivial fact established in [Sh2] is that the two notions agree.
See Proposition 5.23 for such an instance.

The key observable in the mating-of-trees theory is the so-called boundary length
process. The next proposition follows from [DMS, Corollary 1.19]. See Figure 5.1 for an

illustration.

PROPOSITION 5.9. Suppose we are in the setting of Proposition 5.7. Set Ly =R} =0.
For t>0, let ni and nt be the left and right, respectively, boundary of (Dy,n(t),b). Let
z be a point on nyNOD. Let LY be the quantum length of the clockwise arc from n(t)
to z on Dy minus the quantum length of the clockwise arc from zero to z on 0D. (It
is clear that the value of LY does not depend on the choice of z.) Define RY similarly
with z on ntNAD instead and with counterclockwise instead of clockwise. Then LY and
RY are independent and have the same distribution as X in Proposition 5.7. We call
ZV=(L¥,R") the boundary length process of (D,h",a,b,n).

The process LY (resp. RV) has a downward jump at time ¢ if and only if t=tp for
some bubble B to the left (resp. right) of 1. Moreover, the size of the jump equals the
quantum length of 0B. By (2.8), Z% is a.s. determined by the %—LQG surface

(D,h",a,b,n)/~.
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5.1.3. Mating-of-trees theory for SLEg on g-quantum disks

We now introduce the quantum natural parametrization for SLEg on a \/g—LQG disk
following [GM2]. Given constants ¢,7>0, let (D,a,b)€D, . and let h be a random
distribution on D such that (D, h,a)/~ is a \/g—LQG disk with boundary length ¢+
r and the right boundary length of (D,a,b) equals r. Let 1 be a chordal SLEg on
(D, a,b) independent of h. We can define the boundary length process Z9=(L%, RY) of
(D, h,a,b,n) in the same way as Z%=(L", R") in Proposition 5.9. It is easy to see that
L;+¢ and R;+r measure the quantum length of the left and right, respectively, boundary
(Dy,n(t),b).

PROPOSITION 5.10. ([GM2]) In the setting above, there exists a unique parametriza-
tion of n, defined on some random interval [0, 0], such that the law of Z4=(L%, RY) can

be characterized as follows. Let ZV=(LY,RY) be as in Proposition 5.9 and let
oV =inf{t>0: LV (t) < —¢ or RV (t) < —r}.

Then, for each fized t>0, the law of Zd|[0’t]~1t<g is absolutely continuous with respect

to Z%|(0,4-1t<ow with Radon—Nikodym derivative proportional to
(LY () +R™ (1) +0+1) P Lpcgn.

Moreover,

lim Z4(t) = (—¢, —r)

t—o

almost surely.

We call this parametrization the quantum natural parametrization of n under h.

Intuitively, the law of Z4 is the conditional law of Z% until exiting (—¢, 00) x (—r, o),
conditioning on exiting at (—¢, —r).

The following proposition is the disk variant of Proposition 5.8.

PROPOSITION 5.11. ([GM2]) Let (D, h,a,b,n) be as in Proposition 5.10, with n hav-
ing the quantum natural parametrization. For a fized >0, conditioning on Zd|[0’t] and
the event Dy#£D, the conditional law of {(B,h,xp)/~: B is a bubble with tg<t} is that
of independent \/g—LQG disks with given boundary length, which are also conditionally
independent of (Ds, h,n(t),b,n)/~. Moreover, the conditional law of (Dy, h,n(t),b,n)/~
equals the law of (D, h,a,b,n)/~, with (£,r) replaced by (Li+¢, Ri+7).
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Figure 5.1. Left: Illustration of the boundary length process ZV as defined in Proposition 5.9.
We have that Z}" is equal to the quantum length of the blue curve minus the quantum length
of the green curve. Right: The boundary touching measure of n at time ¢ (Definition 5.15) is
supported on the purple points.

5.2. g-LQG pivotal measure as a local time

In this section we provide a construction of the e-pivotal measure using the mating-of-
trees theory we reviewed in §5.1. Our construction differs from the one in [BHS, §7],
since we rely heavily on the iterative construction of CLEg (Lemma 2.11). However, as
explained in Remark 5.19, the two constructions produce the same pivotal measure up
to a multiplicative constant.

We will rely on a natural way of constructing measures supported on fractals.

Definition 5.12. (Occupation measure) Fix a positive integer n and a compact set
ACR™. For r>0, let

A, ={z€C:|z—x| <r for some x € A}.

For de(0,n], let m’y ; be the measure given by r4=" times Lebesgue measure restricted
to A,. If the limit
= 1' r
ma 7‘1~I>I(1) mA’d
exists for the weak topology on the set of Borel measures and has finite and positive total

mass, we call my the d-occupation measure of A.

It is clear that there is at most one d such that the d-occupation measure of A exists.
If my exists, then m4(R"™) is the so-called d-dimensional Minkowski content of A.

We now recall some standard facts from fluctuation theory for Lévy processes and
stable subordinators which can be found in [Ky], [Brt]. For each 8€(0,1), a Lévy process
(1¢)t>0 is called a fB-stable subordinator if 7 is a.s. increasing and 7, gal/ Br, for each
a>0. The closure R, of {7;:t>0} is called the range of 7. Let m, be the pushforward of

Lebesgue measure on [0, 00) by 7, so that m., is a measure supported on R,. We call m,
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the local time on R... We will rely crucially on the occupation measure interpretation of

local time.

LEMMA 5.13. For a j-stable subordinator (7)¢>0, there exists a deterministic con-

stant cg>0 such that almost surely the B-occupation measure mg_ of R, is well defined,

and
m,([0,t]) =cgmg, ([0,t]) for allt>0. (5.1)
Proof. This follows by combining e.g. [PY, Proposition 10] and [LP, Theorem 2.2],
as explained in [LvF, §13.4.2]. O

LEMMA 5.14. Let X be as in Proposition 5.7. Then, there exists a %—subordmator
T such that
R,={t=>0:X(t)= inf X(s)}.
s€[0,t]
Moreover, let Hi=—X(75) for s>0. Then, H is a %—stable subordinator and almost

surely my equals the pushforward of m, under —X.

Proof. The existence of 7 and the law of H can be found in [Ky, §6], where (X, H)
is called the ladder process. The fact that mpy=(—X).m, a.s. follows by definition. [

The following definition is the starting point of the construction of vy, 1.

Definition 5.15. Let (D,a,b,h%,n) and Z¥=(LY,R") be as in Propositions 5.7
and 5.9, where n has the quantum natural parametrization and Z% is the boundary
length process. Let my and m; be defined as m, in Lemma 5.14 with LY and R¥,
respectively, in place of X, so that my (resp. m,) is a measure supported on the set of
times at which LY (resp. R") reach a running infimum. Let 1/2 =n,mg~+n,m;, which by

the definition of ZV is a measure supported on nNdD. For each t>0, let l/f7 be defined

as 1/2 with D, h"Y, a, and 7 replaced by D¢, h"|p,, n(t), and 0|}, respectively. We call

I/f] the boundary touching measure of n at time t.

t
n

l/fl is determined by the set n[t, c0)NOD; and the quantum length measure on dD;.

For each t>0, the measure v} is supported on 7([t,00))NOD;. We now show that

LEMMA 5.16. Let (D,h",a,b,n) be as in Proposition 5.7. Let ci/5 be as in (5.1)
with B:%. For a fized t>0, let n} and nt be the left and right, respectively, boundary
of (D¢,n(t),b), parameterized by quantum length starting from n(0)=nt(0)=n(t). Then,
the %-occupation measure of {s=0:n}(s)€n([t,00))NOD;} on [0,00) a.s. exists, which we

denote by m}. We can define m! in the same way with 0} replaced by nt. Then,

vy = crya(mg)smy+cryo (i) smy  a.s. (5.2)
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Proof. We only prove the case when t=0, since the general case follows from the
stationarity in Proposition 5.8. Since 77? is parameterized by its quantum length, we have
n(uw)=n9(—L"(u)) for each

ue{t=0:LV(t)= inf L%(s)}.
s€[0,t]
By Lemmas 5.13 and 5.14, the measures m) and m? are well defined. By (5.1) and
Lemma 5.14, we have (—LY),mg=c1/om] a.s., and hence (17).(—L%)sme=c1/2(n?).my.
Also, restricted to the support of my, we have n=nJ(—L"), and hence n*mg:cl/z(n?)*mg
a.s. Similarly, we have n.m,=cy/5(n?).m? a.s. Therefore, v=cy (17 )m)+c1/2(n0)«my

a.s. This proves Lemma 5.16 for t=0. O

By the relationship between Z9 and Z%, we can define the boundary touching mea-
sure for an SLEg-decorated \/g—LQG disk in the exact same way as in Lemma 5.16
via (5.2).

Definition 5.17. Let (D, h,a,b,n), o, and Z9=(L%, RY) be as in Proposition 5.10,
so that 7 has the quantum natural parametrization. For each ¢>0, on the event {o>t},
let dbl, ¢ :=n([t,0])NOD;. Let Vﬁ be the measure supported on dbl,, ; defined in the same
way as in Lemma 5.16 in terms of g, 7, and 7 via (5.2). We call v}, the boundary touching
measure of n at time ¢. The countable collection of measures {Vf,}te[o’[,)m@ extends to a

measure v, on the union of their supports, which we call the extended boundary touching
(EBT) measure of n for (D, h).

Given (D, a,b) €D, 4, let n be an SLEg on (D, a,b) and define
dbly, :={pe D:n(s)=n(t)=p for some s#t} and dbl, p:=dbl,U(nNoD). (5.3)

Then, v, is supported on dbl, p by definition. We remark (although this fact will not
be used) that the measure v, is a.s. not locally finite and a.s. assigns infinite measure to
any open ball intersecting n. However, v, is a.s. o-finite and is a.s. finite when restricted
to the set P, of e-pivotals (see Definition 5.18 below).

Now we are ready to define the measure v 1. for (D, h,a), where 14,  in Proposi-

tion 5.1 is the special case when (D, h,a)=(D,h,1). See Figure 5.2 for an illustration.

Definition 5.18. Let D be a Jordan domain and let (D,h,a) be a \/g—LQG disk
with boundary length L. Let I' be a CLEg on D independent of h with monochromatic
blue boundary condition. Let P be the set of e-pivotal points of (h,I"). The \/§ -LQG
pivotal measure vy, 1 on P is the measure supported on P. which can be constructed as

follows.
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dbl,yur

Figure 5.2. Illustration of the construction of the pivotal measure I/}EL’F given in Definition 5.18.
The left figure illustrates the construction for a monochromatic domain D (Step 1), while the
right figure considers the case of a dichromatic bubble B (Step 2). The e-pivotal points which
are captured in each step are shown in red. Note that points of intersection between an SLEg
and D are not e-pivotal points, while in later iterations points of intersection between an
SLEg interface and the boundary of some monochromatic bubble B’ could be e-pivotal points.

Step 1. Let b€dD be such that the left boundary of (D, a,b) has quantum length
%L. Let T and 7° be determined by T as in Lemma 2.11. Set Vp, p=Vpar o0 P.Ndblyas p,
where 1,0 is the EBT measure (see Definition 5.17) of n°® for (D, h).

Step 2. Recalling the notation in the paragraph above Lemma 2.11, for each dichro-
matic bubble B set vj n=vy, on P.Ndbl,, g, where v, is the EBT measure of ng for
(B, h|g). Here, although the domain B itself is random, Definition 5.17 trivially extends
to (B, hls,ms).

Given a connected component B’ of D\I'?

o, which is a monochromatic bubble, let

a’ be the last point on B’ visited by n? or one of the nz’s with B being a dichromatic
bubble. Namely, if 9B’ does not intersect any of the np’s, then o’ is the last point on 5’
visited by 7. If OB’ intersects an 73, then a’ is the last point visited by this nz. We
define the measure v}, . on B'UOB’ by repeating Steps 1 and 2 on (B, h|g/,a’,T'|p’) and
then iterate.(1?)

The fact that v}, 1 in Definition 5.18 is well defined requires some justification. Let
dbl; be the support of uf]ab. As explained in [BHS, Lemma 7.9], there exists a finite set
T such that

P-Ndblw p C | dbl.
teT

Therefore, vy 1o restricted to P-Ndbl, s p is a finite Borel measure. In Step 2, there
are finitely many dichromatic bubbles with P.Ndbl,, s#@. On each such bubble, the

same consideration shows that Vi restricted to P.Ndbl,; 5 is a finite Borel measure.

(1%) Note that P.ND=@, but with positive probability P.NIB’'#@, in which case vi, p(0B') is
non-trivial.
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Note that a component U of D\I'§ with pj,-mass smaller than ¢ has no intersection with
P., since it would be either a point of intersection between two loops contained in U
or a double point of a loop contained in U. Using this and the local finiteness of I in
Lemma 2.13, we get that the iteration a.s. exhausts P. in finitely many steps. By the
no-triple-points property of I' in Lemma 2.13, the subsets of P. on which we define v .
in different iterative steps are all disjoint. In particular, our definition of Vi, has no
inconsistency in different steps. Moreover, Vi, r is almost surely a finite Borel measure
on D.

Remark 5.19. (Equivalent definitions of quantum pivotal measure) We now explain
the equivalence between v 1. in Definition 5.18 and the e-LQG pivotal measure defined
in [BHS, §7]. The latter measure is denoted by v. in [BHS], and we adopt the same
notation here. We do not provide the detailed construction in [BHS], but only point
out how one can check the equivalence. If we do not employ Lemma 5.16 but only use
the notation in Lemma 5.15 to describe Definitions 5.17 and 5.18, then restricted to
P-Ndbl,ev p as in Step 1 in Definition 5.18, our description of v} 1. is identical to that
of ¢;'v. in [BHS, §7], with ¢, in (1.3). This multiplicative constant is needed because

the normalization of local time in [BHS] is chosen such that v . —v.. Recall 1z, n5,

and ¢p as defined in the paragraph above Lemma 2.11. In the ﬁotation of [BHS, §7.5],
ns and 7B are the so-called past and future, respectively, segments of the loop ¢5. This
observation together with a further bookkeeping inspection of [BHS, §7.7] implies that
VEZCpI/}iF on P.Ndbl,, 5 as in Step 2 in Definition 5.18. By iteration, one can check

— 1>
that ve=cpvj 1.

5.3. %-LQG pivotal measure as a quantum occupation measure

The main result of this section is Proposition 5.44, which is a preliminary version of
Proposition 5.1. In §5.3.1 and §5.3.2 we provide the necessary background and basic
results on quantum zippers and GMC over occupations measures, respectively. This
allows us to prove a first variant of Proposition 5.1 in §5.3.3, where the e-pivotal points are
replaced by the points of intersection between two SLEg,3-like curves (see Lemma 5.39).

In §5.3.4 we prove Proposition 5.44 by linking to the setting of §5.3.3.

5.3.1. SLE with force points, %-quantum wedges, and quantum zippers

We start by recalling a generalization of SLE, called SLE(p¢; pr), where SLE, is the
special case SLE,(0;0). Consider tuples of the form (D, a,b;vs,v,), where (D,a,b)€
D, ., and vy (resp. v;) is a point on the left (resp. right) boundary of (D,a,b). The
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points vy and v, are allowed to be equal to a, in which case we will denote them by a~
and a*. Given k>0, py>—2, and p, >—2, the (chordal) SLE,(p¢; pe) on (D, a, b; ve, vy) is
a probability measure on non-self-crossing curves on DUJD from a to b modulo increasing
reparametrization. Away from 0D, an SLE,(pg; pr) curve looks locally like SLE,; in the
sense that it has the same a.s. properties. The points v, and v, are called the force points.
The parameter py (resp. p;) is called the weight of v, (resp. v;), and governs the behavior
of the curve when it approaches the left (resp. right) boundary. An SLE,(pg; pr) curve
a.s. does not touch the left (resp. right) boundary of (D, a, b) except for the ending points
if and only if

pe (resp. p;) is at least 1k—2. (5.4)

The SLE,(pe; pr) has conformal invariance and domain Markov properties similar to
those in §2.4, with the two additional marked points taken into account when applying
conformal maps. See [MS1], [MS2], [DMS], [LSW], [Du], [Z] for more background on
SLE, (p¢; pr)- In the rest of the paper the force points are always assumed to be located
at ¢~ and a® when we refer to SLE(p¢; pr) on (D, a,b).

Let  be an SLE(p¢; pr) on (D, a,b) for k>4. The left (resp. right) boundary of 7
is the curve starting at a and ending at b which consists of the points on 7 which are
either on the left (resp. right) boundary of (D, a,b) or can be connected to the left (resp.
right) boundary of (D, a,b) by a curve which does not intersect 9D or 7, except possibly
at the end-points. Here is a precise variant of the aforementioned SLE duality, see e.g.
[Du], [Z], [MS1].

PROPOSITION 5.20. For pg, pr>—1, let 1 be an SLEg(pg; pr) on (D, a,b). Let ny and
e be its left and right boundary, respectively. Then, ng is an SLEg/g(%p[—%; %pr—g) on
(D,a,b). If p,=0 so that ng does not touch the right boundary of (D,a,b) by (5.4),
conditioning on 1y, the curve n. is an SLE8/3(—%; %pr—%) from a to b on the domain
bounded between 1, and the right boundary of (D,a,b), and n itself is an SLEg(—1; p;)

on the same domain.
A crucial fact in the quantum zipper theory is the conformal removability of
SLEs/3(pe; pr)
(see e.g. [DMS, Proposition 3.16] and [Sh2, Theorem 1.4], which build on [JS], [RSc]).

LEMMA 5.21. Let ) be an SLEg;3(pe; pr) on (D, a,b) €D, . with pg, pr>—2. Suppose
that UCD is open and that ¢:U—C is continuous on U and conformal on U\n. Then,
¢ s a.s. conformal on U.

We will use an important variant of the quantum wedge called the %—quantum wedge,

which is an ordered collection of %-LQG surfaces with two marked boundary points.
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Definition 5.22. (3-quantum wedge) Let £={(¢,¢)} be a Poisson point process on
(0, 00)? with intensity measure £~%/2 d¢@dt. Conditioning on &, for each (¢,t) €&, sample
an independent \/g—LQG disk of length £, which we denote by (D, h, at)/~. Moreover,
for each (Dy, ht,a:), sample a point by on dD; according to the quantum boundary
measure &p,,. Then, {(Dy, hy, a;,b;)/~} in the increasing order of ¢ is called a -quantum

wedge.

In [DMS, §4.4], the W-quantum wedge with W€ (0, 3) is constructed in the spirit
of Definition 5.3. Wedges with W€ (0, 3) are called thin wedges. Just as the 2-wedge,
they may be described as an ordered chain of finite-volume LQG surfaces. We do not
need the W#% case in this paper, and therefore omit the construction.

Let (D,a,b)€D, . and let 1, and 7, be two simple curves on DUID from a to b
which do not cross each other, such that 7, is between 1. and the left boundary of
(D, a,b). Let D'CDUJD be the open set with boundary n;Un... We call D’ the region
bounded by n, and 7,.. For each bounded connected component B of D', let ap, bgedB
be the two points on the intersection of the left and right boundary of (D,a’,b’) such
that ap is visited before bg by 7, and n,.. Let {B} be the collection of such components
ordered such that {ag} is in order of visit by n} and n,.. Given a distribution h on D,
we let (D', h,a,b)/~:={(B,h,ap,bg)/~} be the ordered collection of \/g—LQG surfaces
with two marked boundary points.

The main fact about the %—quantum wedge which we will use is the following propo-

sition from quantum zipper theory (see [Sh2] and [DMS, Theorem 1.2]).

PROPOSITION 5.23. Let Wé,Wre{%}U[%,oo) and let (H,hY,0,00) be the circle
average embedding of a (W*+W?)-quantum wedge. (Recall Definitions 5.3 and 5.5). Let
n' be an SLES/S(WE—Z;Wr—Q) on (H,0,00). Let D* (resp. D*) be the region bounded
by ' and the left (resp. right) boundary of (D,a,b).(**) Then the surfaces

(D*,h%,0,00)/~ and (D",h",0,00)/~

are independent and have the law of quantum wedges with weight W*¢ and W™, respec-
tively. Also, (D% h¥,0,00)/~ and (D*,h",0,00)/~ almost surely determine h™ (and
therefore also the surface (H,h%,0,00)/~). Finally, the \/g—LQG boundary measure on
n' obtained by viewing n' as a boundary arc of (D*,h™)/~ or (D",h%)/~ agree.

In Proposition 5.23, we say that the surface (H, h, 0, 00)/~ is the conformal welding
of the surfaces (D, h,0,00)/~ and (D*, h,0,00)/~. Let V be a segment of . We call

(*1) In the remainder of this section we will typically use a prime (') when we refer to SLEg 3-type
curves while we use no prime when we refer to SLEg-type curves.
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the mass of V' under the \/g—LQG boundary measure the quantum length of V. By the
last assertion of Proposition 5.23, this is unambiguously defined.

By Propositions 5.20 and 5.23, we have the following.

PROPOSITION 5.24. Let Wé,WrE{%}U[%,OO) and let (H,h%,0,00) be the circle
average embedding of a (Wf—i—Wr—i—%)—quantum wedge. Let n be an

SLEs (3W'—1; 3w —1)

on (H,0,00) which is independent of h. Let DY, DY, and D™ be the regions in D
bounded by the left boundary of (D, a,b) and the left boundary of n, the right boundary of
(D, a,b) and the right boundary of n, and the left and right boundaries of n, respectively.
Then, (D*,h¥,0,00)/~, (D™, h%,0,00)/~, and (D, h%,0,00)/~ are independent \/g—
LQG surfaces and they have the law of wedges of weights W, %, and W*, respectively.
Furthermore, (D*,h%,0,00)/~, (D™, h%,0,00)/~, and (D*,h",0,00)/~ almost surely
determine h% (and therefore also the surface (H,h",0,00)/~).

Proof. By Proposition 5.20 the left boundary of n has the law of an
SLEg/s(W*=2;W*—3).

An application of Proposition 5.23 implies that (D, A", 0, 00)/~ is a W¥-quantum wedge
and is independent of (D™, h%, 0,00)/~, where D™ is the interior of the closure of
D™UD". We conclude the proof by a second application of Propositions 5.20 and 5.23,

this time using that conditioning on D™, the curve 7 is an
SLEg(—1; 3W"—1)
on (D™ 0,00). O

5.3.2. Coordinate change for GMC over occupation measures

A key fact we will use in the proof of (1.5) is that the two considered measures transform
in the same way under conformal coordinate changes. In this section, we collect some

basic facts on conformal coordinate changes of a general class of random measures.

Definition 5.25. Let h be a free Liouville field (Definition 2.3) on a domain D and
let 4 be a random finite Borel measure on D. For each r>0 and z€C, let h,.(2) be the

average of h over the circle {weC:|w—z|=r}, if this circle is contained in D.(!?) Let

(12) The process (z,r)~ h,(2) is well defined as a continuous process on
{(z,7) € Dx :|z—w|>r for all we C\D}

(see e.g. [DS]) and is known as the circle average process.
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h.(z)=0 otherwise. For a>0, we define the measure eo‘hu by lim,_,q ro‘z/Qeah"'u if the

limit exists almost surely in the weak topology. (Recall the convention fu in §2.1).

In Definition 5.25, when h is a Gaussian field, the measure e*” 1 is called the Gaussian
multiplicative chaos (GMC) over p in the literature, except that the normalization o’ is
sometimes replaced by E[eo‘h'”(')]_l. We require lim,_,q o’ /2gachs 1 to exist almost surely
as r—0, rather than considering a limit in probability (or almost surely along dyadic
numbers) as in most other literature on GMC. This will be used in Lemma 5.32.

We are interested in the coordinate change for GMC over occupation measures (see
Definition 5.12) of certain SLE related fractals. We first record a preliminary determin-

istic fact, whose proof is left to the reader.

LEMMA 5.26. Let d€(0,2) and let A be a compact set on C whose d-occupation
measure my exists. Let ¢ be a conformal map on a domain containing A. Then, the

d-occupation measure my( 4y of ¢(A) exists and equals |(¢~1)' |74 (¢oma). If furthermore

// dma (e d?A(y) <oo for all bounded sets U and € € (0,d), (5.5)
uxu  lz—yliTE

then (5.5) still holds with ma replaced by my(a).

We also record a 1-dimensional variant of Lemma 5.26, which will be used in the

proof of Proposition 5.44. We again leave the elementary proof to the reader.

LEMMA 5.27. Let de(0,1) and let A be a compact set on R whose d-occupation
measure my exists. Let ¢ be a C' map on an interval containing A such that ¢ >0.

Then, the d-occupation measure my(ay of ¢(A) exists and equals |(¢~)'[7¢(¢oma).

The following lemma guarantees the existence of GMC over an occupation measure.
The lemma would have followed from e.g. [Brs] if we had considered convergence in
probability instead of a.s. convergence in Definition 5.25. We include its proof in the
appendix.

LEMMA 5.28. Fiz de(0,2), a€(0,vd), and a Jordan domain D. Let A be a com-
pact set on D whose d-occupation measure my exists and satisfies (5.5). Let h be a
free Liouville field on D. Then, v=e*"my exists in the sense of Definition 5.25 and is

non-atomic.

We expect that Lemma 5.28 remains true for a€[v/d, v/2d ), but the a€(0,v/d) case
is more straightforward to verify by the L? argument and is sufficient for our purpose.
We now formulate a coordinate change formula that is convenient for our applica-

tions.
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Definition 5.29. (Coordinate change) Fix d€(0,2) and a Jordan domain D. Define
o d
d):=—+—
Qo d)i= 3+ 5

and let a€(0,v/d) be such that Q(«a,d)=5/v6. Consider a triple (A, ¢,h) of random
variables with the following properties: A is a compact subset of D whose d-occupation
measure m 4 exists and satisfies (5.5), h is a free Liouville field on D such that v=e*"m4

exists in the sense of Definition 5.25, and ¢ is a conformal map on D. Let

5
hg=ho¢p ' +—=log|(¢~")|. 5.6
¢ ¢ 75 o8 (o) (5.6)
We say that coordinate change holds for (A, ¢,h) if eo‘mmd)(A) exists in the sense of
Definition 5.25 and eah¢m¢(A):¢*y a.s. Here ¢, means the pushforward of v under ¢.

PROPOSITION 5.30. Let (A, ¢,h) be as in Definition 5.29. If (¢, A) is independent
of h, then coordinate change holds for (A, o, h).

Proof. The proposition follows from [GHPR, Proposition 2.2] for the case where
h is a GFF. (Here we use the assumption that (¢, A) is independent of h.) Adding a
continuous function does not change the result, since the continuous function can be
locally approximated by a constant. Finally, since coordinate change is an a.s. property,
reweighting the probability measure does not change the result. O

Remark 5.31. (KPZ) With Q as in Definition 5.29, the equation Q(«,d)=Q(~,2)
is a version of the KPZ formula for fractals with Euclidean dimension d on a v-LQG
surface. Heuristically, a describes the magnitude of the logarithmic singularity of the
field at a point z sampled according to the 7v-LQG area measure “conditioned on z being
on the fractal”. We require Q(«,d)=>5/+/6 in Definition 5.29 due to Convention 2.2. For
the pivotal points the relevant dimension is d=2, which gives a=1/v/6. This explains

why we consider GMC with a=1/+/6 in §5.3.3 and §5.3.4.

We will apply coordinate change to various settings where the independence in
Proposition 5.30 does not hold. Lemmas 5.32 and 5.33 below are what we use in those

cases.

LEMMA 5.32. In the setting of Definition 5.29, suppose coordinate change holds for
(A, ¢,h). Let CER and >0 be two random numbers coupled with (A, $,h). (Here C
and s are not necessarily independent of (A,d,h).) Then, coordinate change holds for
(A, 50, h+C).
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Proof. Almost surely, for any C €R replacing h by h+C changes both the measures
e®Mm, and eah¢m¢(A) by a factor of e*®. Therefore coordinate change will hold for
(A4, ¢, h+C) if it holds for (A, ¢, h). It remains to show that coordinate change holds for
maps of the form

ZH—>5Z.

This property holds since we required the limit in Definition 5.25 to be almost sure
(rather than e.g. a limit in probability or a limit along powers of 2). O

LEMMA 5.33. Fiz W>%. Let hY be the random distribution on H such that
(H7 hw7 07 ij)

is the circle average embedding of a W -quantum wedge (recall Definition 5.5). Let D
be a Jordan domain such that DUODCH. Let A be a random compact on D whose
d-occupation measure my4 exists and satisfies (5.5). Let ¢ be a random conformal map
on D. If (A,¢) is conditionally independent of h¥|p given h¥|pe, then coordinate
change holds for (A, o, h"Y).

Lemma 5.33 is an immediate consequence of Proposition 5.30 and the following

lemma.

LEMMA 5.34. In the setting of Lemma 5.33, by enlarging the probability space, h™|p
can be written as hp+g, where hp is a zero-boundary GFF on D independent of hY|pe

and g is an almost surely continuous function on D.

Proof. We can write h™ =h’+h¢ uniquely such that h’ has average zero along all
circles centered at the origin and h¢ is radially symmetric. Let k¢ be independent of A%
and have the law of the radially symmetric component of a free-boundary GFF on H.
Here we fix the additive constant for h® by letting its value on JDNH be equal to zero.
Then, h:=h*+h° is a free-boundary GFF independent of h¢. In particular, h|p can be
written as a zero-boundary GFF hp plus the harmonic extension of B\ pe. Now hp is
independent of h¥|pe because hp is independent of (h, h¢)|pe. Moreover, g:=h"|p—hp

is a.s. continuous on D. O

5.3.3. Measure equivalence I: Brownian cut points

In this section we prove a first version of Proposition 5.1 (see Lemma 5.39), which is based
on a variant of planar Brownian motion called the Brownian excursion in the upper half-
plane. Tt is defined as the planar Brownian motion starting from zero conditioned to stay

inside H forever. See e.g. [L, §5.3] for how to make this conditioning precise.
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The following proposition extracted from [LSW] is an example of the deep relation

between planar Brownian motion and SLEg.

PROPOSITION 5.35. Let (Bs)s>0 be a Brownian excursion in the upper half-plane.
Let n be an SLEg(2;2) on (H,0,00). Let the hull of B (resp. 1) be the closure of the
set of points z€H for which we can find a t>0 such that z is disconnected by B([0,1])
(resp. n([0,¢])) from infinity. Then, the hulls of B and n have the same law.

Let n; and 7, denote the left and right, respectively, boundary of the SLEg(2;2)
curve 7. Then, the interior of the hull of 1 is bounded by 7, and 7. The rest of this
section is devoted to the study of the set C’:=n;N7,.

A point p on the trace of B is called a cut point if removing p disconnects the
trace. By Proposition 5.35, C’ has the same law as the set of cut points of (Bs)s>0-
The occupation measure of Brownian cut points is thoroughly studied in [HLLS]. In

particular, we have the following.

PROPOSITION 5.36. Let U be a bounded domain with piecewise smooth boundary
satisfying UEH (namely, UUQU CH). Set A=C'NU. Then, the %—occupation measure
(see Definition 5.12) ma of A exists and, for each € (0, %),

d
// mA dmA( )<oo a.s.
uxu |lr—yl3/4E

Proof. Since C’ has the same law as the cut points of (Bs)s>0, Proposition 5.36
follows from [HLLS, Theorem 4.12]. O

The following fact allows us to ignore the domain boundary when considering C’.
For technical convenience we focus on a particular class of domains. A Jordan domain

D with piecewise smooth boundary is called a dyadic polygon if 9D is contained in

U {(z,y) eR*: 2%z € Z or 2"y € Z}.
keN

LEMMA 5.37. For each fixed dyadic polygon U€H, we have C'NOU=g a.s.
Proof. We first prove that
P[C'N{z:Imz=y}#@]=0 for each y >0.

By scaling invariance of C’, P[C'N{z:Im z=y}# @] does not depend on y. By way of
contradiction, assume that the probability is positive. Let Z be the Lebesgue measure
of the set {y€(0,1):C'N{z:Im z=y}#@}. Then E[Z]>0, hence P[Z>0]>0. Let

A=C'Nn{z:Imz€(0,1)}.
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Using the notation in Lemma 5.12, we have m’, ;(A)>Z for each r>0. This contradicts
the fact that

71"12(1) my 1(A)=0 as.

by Proposition 5.36. By the same argument we have
P[C'N{z:Rez=x2}#2]=0 for each z€R.

This concludes the proof. O

In our proof of Proposition 5.1 in §6.5, P. will be covered by a finite union of
pieces that look like C'NU. By Proposition 5.36 and Lemma 5.37, there exists a non-
atomic measure m’ supported on C’ such that for each fixed dyadic polygon U &H, the
%—occupation measure of C'NU a.s. equals m’|yy. For more general domains, we only need

the following.
LEMMA 5.38. For each bounded set V CH we have E[m’(V)]<oo.

Proof. This is an immediate consequence of the estimate for G§** in [HLLS, Theo-
rem 4.12]. O

Let A’ be a random distribution on (H,0,c0) independent of 77, and n, such that
(H, h',0,00)/~ is a 1—?jl—quauntum wedge. Given a dyadic polygon U €H, by Lemma 5.28
and Proposition 5.36, €"'/Vo(m’|;) exists in the sense of Definition 5.25 and is non-
atomic. We abuse notation and let e”'/V6m’ denote the random measure supported on
C’ such that, for each U, (e"'/Vom')|y=e"/Vo(w'|;;) as.

Now we are ready to state the preliminary version of Proposition 5.1 for C’.

LEMMA 5.39. With the notation introduced above, suppose n, is parameterized by
quantum length. Then (n,)~*(C") has the law of the range of a %—stable subordinator.
Let V' be the pushforward under 1, of the %—occupation measure of (n,)~(C'). Then,

’ . . .
V' =ceh'/Vom! a.s. for some deterministic constant ¢>0.

Proof. Using results in [DMS], there are several ways to see that (1;)~!(C’) can be
realized as the range of a %—stable subordinator, which by Lemma 5.13 has %—occupation
measure. For example, we can apply Proposition 5.24 to the setting of Propositions 5.7
to 5.9, which means W£:Wr:% in Proposition 5.24. Since 17, is parameterized by the

quantum length, we see that (n,)~1(C’) has the same law as
{s>0:17(s) €n([0,00))NID}

in Lemma 5.16.
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Figure 5.3. Illustration of the proof of Lemma 5.39. The green region is 5{“ and the purple
region in the right figure is DI®. The blue point z; on the left figure is such that the h’-
quantum boundary length of [z¢, 0] equals 1+¢'.

It remains to prove that v/ =ce"'/Vom/ a.s. for some deterministic constant ¢>0. The
idea of our proof is to use the ergodic theorem and scaling properties to argue that that
the ratio of the measures 1/ and e"’/Vm’ is constant a.s. We advise the reader to look
at Figure 5.3 while reading the rest of the proof.

Without loss of generality,+ we assume that (H, h’,0,00) is the circle average em-
bedding of (H, h',0,00)/~. Let D™ be the region bounded by 7, and 7. Let D’ and D~
be the interior of the left and right, respectively, connected components of H\ D™. Let
WE=(D*, 1/, 0,00,)/~, Wi=(D* h,0,00)/~, and W5 =(D™ k' 0,00)/~. By Proposi-
tion 5.24, (h/,n),n.) is determined by (WE, W, WE).

For each fixed ¢>0, let ¢'=inf{s>0:m’([0,s])=t}, where m' is the i-occupation
measure of (1,)~1(C’). Let D™ be the closure of D™, let D™ be the interior of the
unbounded component of D™\ {n,(#')}, and D™ be the closure of the bounded com-
ponent of D™\ {n,(t)}. Let W{=(D k', n)(t'),00)/~, Wi=(D*,h',n)(t'),00)/~, and
WpR=(D W, n,(t'),00)/~. By Proposition 5.24, Wi is a weight-2 wedge.

We claim that Wt‘“in‘, i.e., W also has the law of a weight-2 wedge. Recall the
notation of Definition 5.22, in particular the p.p.p. £ with intensity measure £=3/2 d¢®dt.
Let & denote the collection of pairs (¢, s) such that ¢ is the left boundary length of the
LQG disk associated with (¢,s)€&. Since the two marked points of the LQG disks
constituting W{" have the law of uniform and independent points sampled from the
boundary measure ([DMS, Proposition A.8]), we get that £ has the law of a p.p.p. with
intensity measure %K_?’/ 2dl@dt. Tt follows that the process defined by

Ty i = E v
(e ,s)e&’
s<u
1

is a %—stable subordinator. Recall that Lemma 5.13 relates the time set and the 5-



UNIFORM TRIANGULATIONS UNDER THE CARDY EMBEDDING 153

occupation measure of the range of a stable subordinator. Since m’ is defined to be the
%—occupation measure on the range of 7, the lemma implies that, for some deterministic
constant ¢ /,>0, we have m/([0,7,])=cy/ou for all u>0 a.s. By definition, Wi* con-
tains precisely the surfaces for which the point (¢/,s)€&’ satisfies m’([0,7s])>¢. Using
m/ ([0, 7,])=c1/2u, we get that W™ contains precisely the surfaces for which the point

(¢,s)€& satisfies s>cq/ot. By the definition of a Poisson point process
{(f, S—Cl/gt) c€:5> cl/2t} ig’

which implies that W;* (consisting of the disks corresponding to (¢, s) with s>c;ot) is

equal in law to Wi (consisting of the disks corresponding to (¢, s) with s>0), i.e.,
wr Ly,

Since W§ and W} are 2-quantum wedges independent of Wi and #' is determined
by Wi, we see that ¢’ is independent of Wg and W;. Therefore, by Remark 5.4,

(WL WL (W5, W),

so, by Proposition 5.24, (H\ D, h,nj(t'), 00)/~ is a 4_quantum wedge. Let W\ W
be the collection of LQG surfaces in W§" but not in W;*, ordered in the same way as
in Wi, Then, W\ W™ and (W, W, WE) are independent.

Let ¢;: H—H\ D™ be the conformal map such that

h':=h'o¢+Qlog |y
has the same law as h’. Namely, (H, h?,0, c0) is the circle average embedding of
(H\f)inv h, T]Z(t/), OO)/N

Then, the set ¢; (C’), the field ht, and Wi\ W™ are independent.

For a dyadic polygon U€H, set A=¢; *(C')NU. We claim that ¢; can be written
as s¢, where s is a random positive scaling constant and ¢ is determined by ht|ye and
WE\W;?. We postpone the proof of this claim and proceed to conclude the proof of
Lemma 5.39. By Lemma 5.33 and this claim, the coordinate change in Definition 5.29
holds for (4, ¢, ht). By Lemma 5.32, the same coordinate change holds for (A, ¢, ht). Let
X, be the e"’/Vom/-mass of l~),§n, which is almost surely finite by Lemma 5.38. For a fixed
5>0, let D}y be the closure of E{Z’FS\ZN),{“, so that X;,,— X, equals the e/'/Vom’-mass
of D}";. Varying U, we see that X;s—X; equals the eht/‘/gm;—mass of qﬁt_l(D,{f‘S) a.s.,
where m} and e"'/Vom/ are defined in the same way as m’ and e"’/Vom/, with ¢; }(D™)
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and h' in place of D™ and I/, respectively. Thus, the process (X¢s)s>o is determined by
(WE, W™ WE) in the same way as (X)s>0 is determined by (WE, W, W3), and hence
(Xs)s>0 has stationary increments.

By adding constants to h’ and using Remark 5.4 and (2.7), we see that the law of
X/t does not depend on t. For M €(0,0), let Y, =(X;—X,;_1)AM for i€N. Then, by
the ergodic theorem,

J 7ty VY

exists almost surely. We realize D™ as the hull of a Brownian excursion B independent of
h'. Then, the limit belongs to the o-algebra of A’ and B’ restricted to H\ (RD). Taking
R— o0, the tail triviality of (h/, B) yields that

lim n~ 'Y VM =EYM =E[X;AM] as.

n—oo
i=1
On the other hand, since
n
n—l Z }/i]\/[ < n—an
=1

and n_anin, we have
P[X; 2E[X;AM]]=1.

Letting M — 00, we get X1 =E[X;]<oco a.s. Therefore X;=E[X;]¢t a.s. for all t>0. This
proves Lemma 5.39 with c=E[X;]71€(0, ).

It remains to prove the above mentioned claim that ¢;=s¢. We can let s be such
that the quantum length of [—1, 0] with respect to the field hs(-):=h'(s-)+Qlogs equals
1. Let ¢=5"1¢;, so that

h'=hse¢+Qlog|¢/|.
Let zy=¢"1(—1). Then, the quantum length of [z¢,0] with respect to h' equals ' +1,
which means that z; is determined by hf|ye and W \W;". Conditioning on h'|ye and
WEAWR, let (Z) be a conditionally independent sample of ¢. It suffices to show that qS:ngS
a.s. Note that the surface (H, h’,0,00)/~ can be obtained by identifying boundary arcs
of the surfaces (H, ht,0,00)/~ and W \W;™ according to the quantum length. This
defines a bijective map : H—H such that q§=¢0¢) (in particular, ¥ is conformal on the
image of ¢, which equals H\ (s~ (D™UAD™))), ¢ is conformal inside s~ 'D™, and 1) is
continuous everywhere. By the conformal removability of s~1(n,Un.) (Lemma 5.21), ¢
is conformal on the entire H.('3) Since 1(co)=00, ¥(0)=0, and ¢(z;)=d(z,)=—1, we
have that v is the identity, and hence ng:g% a.s. O

(*3) The way we apply conformal removability first appeared in the proof of [Sh2, Theorems 1.3
and 1.4]. See also [DMS, Theorem 1.4].
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5.3.4. Measure equivalence II: intersections of bi-chordal SLEg

Recall the setting of Definition 5.2. In this section we formulate and prove a variant of
Proposition 5.1 with nggdﬂngzb in place of P, namely, Proposition 5.44 below. We will use
Lemma 5.39 and that the two measures considered in that lemma transform in the same
manner when we add a continuous function to the field. We first introduce a degenerate

version of 2-SLEg with an extra scaling invariance.

Definition 5.40. Let 1, be an SLEg(0;2) on (H, 0, 00). Let H' denote the component
of H\7n; whose boundary contains (0,00). Conditioned on 7y, let 7 be an SLEg on
(H', 0, 00).

Remark 5.41. To see why Definition 5.40 gives a degenerate notion of 2-SLEg, let
T:=inf{t >0:Imn(t) =1}.

Let 7; be the reversal of n; for i=1,2. Let 7 be the first time such that the un-
bounded component @ of H\ (1 ([0, 7])U7;([0,7])) can be conformally mapped to Q
with (91(7),0,00,71(7)) mapped to (a,b,¢,d). It is argued in [HLS, Lemma 4.4] that
P[7<o00]>0 and moreover, on the event E={7<oo}, the remainder of 7; has the law of
an SLEg conditioned not to hit the real line. Denote the conformal map from @ to Q
by . (See Figure 5.4.) By the choice of 7 and 7, the image of the remainder of n; under
¢ has the law of a chordal SLEg on (Q, a, d) conditioning on avoiding 0 Q. Therefore,

the image of the remainder of 77 and 72 under 1, as a pair of curves, have the law of
(&' ng).
We first prove the variant of Proposition 5.44 in the degenerate case.

LEMMA 5.42. Let (n1,7m2) be as in Definition 5.40. Let hY be a field independent of
(n1,m2) such that (H,hY,0,00) is the circle-average embedding of a g—o—quantum wedge.
Let P:=n1Nng. Then, Proposition 5.36 and Lemma 5.37 hold with P in place of C’,
so that we can define the measures mp and ehw/‘/gmp in the same way as m' and
" /IVow! | respectively, in Lemma 5.39. Let nt: [0,00) =THUOH be the right boundary
of m (recall Proposition 5.20) parameterized by quantum length, starting from nt(0)=0.
Then, (1})~1(P) has the law of the range of a 3-stable subordinator. Moreover, we have
v=ce"" /Vomp, where v is the pushforward of the 3-occupation measure of (n})~*(P)

and ¢ is as in Lemma 5.39.

Proof. Consider two %—quantum wedges W; and W, which are independent of each
other and of A¥. Recall Lemma 5.23. Let W’ be the 13—4—quantum wedge obtained by
conformally welding Wy, W:=(H, h",0,00)/~, and W, such that W; (resp. W) is to
the left (resp. right) of W. Let (H, h’,0,00) be the circle average embedding of W’. Let
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2

Figure 5.4. Illustration of the statement and proof of Lemma 5.42.

d‘ C
7]?2“
(0
—
Q
a‘ b

Figure 5.5. Illustration of Definition 5.40 and the proof of Proposition 5.44. The domain Q’
(not indicated in the figure) is the subset of @ to the right of n’.

H'CH be such that W=(H', #'|w, 0, 00)/~, and let ¢: H—H' be the conformal map such
that h¥=h'c¢p+Qlog|¢’| on H. See Figure 5.4 for an illustration.

Let 15 be the left boundary of 7,. Applying Proposition 5.24 twice, we see that 7}
4 2
373
Let ny=¢oni and n.=¢ons5. Then, n. and 7, cut W' into three independents quantum
wedges of weights 2, %, and 2, respectively. Namely, Lemma 5.39 applies to (h',n;, 7))
defined here. Let C'=¢(P)=n,Nn,. Then (1)1 (P)=(n;)~*(C’) has the law of the range

of a %—stable subordinator. By Lemma 5.26, Proposition 5.36 holds with P in place of C'.

and 75 cut W into three independents quantum wedges of weight and %, respectively.

Moreover, note that the argument for Lemma 5.37 still applies if C’ is replaced by P,
since it is scaling invariant.

Define v/, w’, and e"/V6m’ as in Lemma 5.39. Then, v=¢,1/. To conclude our
proof, we must show that e/ ‘/gmp:q&* (eh// Vo ). It is sufficient to show that the
coordinate change in Definition 5.29 applies to (PNU, ¢, ") for each dyadic polygon
UEH. Recall that in Lemma 5.39 the same is proved for (A, ¢¢, h*) based on the theory
of quantum zippers in §5.3.1, as well as Lemmas 5.32 and 5.33. A similar argument
applies to (PNU, ¢, h"), where we need the conformal removability of OH'. We leave the
details to the reader. O
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In the rest of this section, let 11, 12, 72, @, ¥, E, and (Q,a,b,c,d) be as in Defini-
tion 5.40 and Remark 5.41. Also, we condition on the positive probability event . We
identify the image under ¢ of the part of (11, 7s2) inside @ as (nf‘gd, ng’) in Definition 5.2.
Let h" and P be as in Lemma 5.42. Let h be the field on @ such that

(Q7 il) ~ip (@7 hw|@)

Also, recall Q' from Definition 5.2. Proposition 5.44 follows from Lemma 5.42 and the

observation below.

LEMMA 5.43. Let h be a free Liouville field (Definition 2.3) which is independent of
(nggd, 778’). Then, we can enlarge the probability space generated by (h, ng?d, 778’) to a bigger
probability space (Q,F,P) satisfying the following properties. There exists a random
continuous function g measurable with respect to (2, F) and a probability measure P such
that the P-law of h—g is that of h defined right above and P is absolutely continuous
with respect to P.

We abuse notation and set h:=h—g. Let n’:zaQ’ﬁngjj, and let &, and §é be the

quantum length measure on n' induced by h and h, respectively. Then, P-almost surely

& =V

Proof. To prove the first assertion, we first assume that h is a zero-boundary Gauss-
ian free field (GFF) on Q. By Definition 5.3, b can be written as the sum of a free-
boundary GFF and a continuous function. Note that A" is independent of @ By the
conformal invariance and domain Markov property of GFF, there exists a coupling of
a random continuous function g with h such that ﬁih—g. Setting P=P gives the first
assertion in this case. The general case follows from the definition of a free Liouville field
and the fact that a free-boundary GFF can be decomposed as a zero-boundary GFF plus
a harmonic function.

To prove the second assertion, let ¢ : H—@Q' be a conformal map. Let hy and ho

be two random distributions on H such that

(Q/a B|Q’) Y (H, h1) and (le h‘Q') g (H, h2).

Let f=hi—ho. Then, f is continuous on (bé,l (n'). Tt is clear that h; is a free Liouville
field, and hence so is hy. Restricted to (bé,l ('), we have

e2h/V6 g — 2F/VB2h2/VE gy g g

This concludes the proof. O
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PROPOSITION 5.44. Let ’PQ:nédﬁng’, Let h be a free Liouville field (Definition 2.3)
which is independent of (n%d,ng’), Let T=(n")"*(P?), where

77/ — 8Q/ﬁ7729d

as in Lemma 5.43, parameterized by the quantum length induced by h. Then, almost
surely the following hold.

4) The mea-

1) The 3-occupation measure of PC exists, which we denote by mg.
4 Q
sure eh/\/émQ exists as in Definition 5.25. The %—occupation measure of T exists. Let
vz denote the pushforward of this measure by n'.
(2) We have
h/V6

vz =ce mg,

with ¢ as in Lemma 5.39.

Proof. Note that there almost surely exists a dyadic polygon U €H such that
PO CU

Since PNOU =@ a.s. in Lemma 5.42, the existence of mp in Lemma 5.42 combined with

Lemma 5.26 implies that mg exists, and

dmg(z) dm,
// oz 3/4@6( )<OO
QxQ |z —y|

a.s. for e€ (0, %) Therefore, eh/*/émQ exists.

Let 77/ be i’ reparameterized by the quantum length induced by h from Lemma 5.43.
Then, Lemma 5.42 implies that the 1-occupation measure msz of Z:=(7) "1 (P?) exists.
Let vz:=(7'),mz denote the pushforward of mz by 7'. Then, Lemmas 5.33 and 5.42
further imply that yi:ceﬁ/ ‘/émQ, with ¢ as in Lemma 5.39. When we apply Lemma 5.33
here, we use in particular that ¢ and P are independent of A™.

By Lemma 5.43, it suffices to prove Proposition 5.44 in the case when h has the form
iL—i—g, where g: Q—R is a random continuous function coupled with h in an arbitrary
manner. Note that P C#/(I) for some closed interval I. Without loss of generality,
we assume that 1=[0, A] for some A>0. Recall that n’ is parameterized according to
the quantum length measure induced by h+g. By Lemma 5.43, i/ (s(t))=7'(t) for each
te[0, A], where

t
t):/ V2I396 W) gy for € [0, A]. (5.7)
0

(14) The existence of m( is also proved in [HLS, Proposition 1.8]. We include the proof here for
completeness.
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Set B:=s(A). Since s: [0, A]—[0, B] is a C! function with s'>0, and s(Z)=Z, we have

that, by Lemma 5.27, the 1-occupation measure mz of Z exists and equals |(s~1)’|7/2.
(s«mz). By (5.7), for each z€n'([0, B]), we have that
(7Y () @) 72 = (e VAR TR = 0V,
Therefore,
(1w = /O (1) (5.m7)) = /O (i )amz)
= eg/‘/éuf = ceg/‘/ée;”/\/émQ = ceh/‘/émQ.
Now,
vr=(n")smz= ceh/‘/amQ
as desired. ]

6. Liouville dynamical percolation

In this section we prove Lemmas 3.2 and 3.3. This concludes the proof of Theorem 1.6.
Lemma 3.2 is a relatively easy consequence of (1.5) and an ingredient (Proposition 6.34)
from [GHSI1] and [BHS]. For Lemma 3.3, neither the convergence nor the ergodicity
seems easy to access from random planar maps and mating-of-trees perspective. To
prove this lemma, we use the Liouville dynamical percolation introduced in [GHSS]. We
review this object in §6.1 and §6.2, and prove Lemma 3.3 in §6.3, with certain ingredients
supplied in later subsections.

We will use the following notions and conventions. CLEg in this section will be
assumed to have monochromatic blue boundary condition; see Definition 2.10. Given a
finite measure p, if z is sampled from p normalized to be a probability measure, we will
simply say that z is sampled from u. For a metric space (X,d), recall that a process
taking values in X is called cadlag if it is right-continuous and has left limits everywhere.
In this section we will often consider convergence of cadlag processes in the Skorokhod
topology. For functions f;:I;—+X defined on bounded intervals I; CR for j=1,2, this
topology is generated by the metric

dsk(f1, f2) ::igffgg(d(fl(mf2(¢(t)))+|t—¢(t)|)7
where the infimum is taken over all increasing bijections ¢: 1 —1I5. If f; and fy are

defined on [0, c0), then we define dgy similarly; more precisely,

o

ds(f1, fo):=) if  sup  27FA(A(fi(t), fa(d(1))+|t—o(t)]),

1 @ tve(t)elo,2k]

where the infimum is taken over all increasing bijections ¢: [0, 00)— [0, 00).
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6.1. Quad-crossing space

We start by recalling a metric space due to Schramm and Smirnov [SSm] as a method
of describing the scaling limit of planar percolation other than loop ensembles. We will
omit the detailed construction of the metric and only review materials necessary for this
paper.

A quad is a homeomorphism @ from [0, 1]? into C, where two homeomorphisms @
and Qs are identified as the same quad if Q1([0,1]?)=Q2([0,1]?), and Q1(2)=Q2(z) for
2€{(0,0),(0,1),(1,0),(1,1)}. Let

81Q:Q({O}X[Ov 1})7 aQQ: Q([Oa 1])({0}),
03Q:=Q({1}x[0,1]),  8:,Q:=Q([0,1]x{1}).

A crossing of a quad @ is a closed set in C containing a connected closed subset of
Q([0,1]?) that intersects both 8;Q and 93Q. A natural partial order < can be defined
on Qp by saying that Q1 <Q- if and only if every crossing of )7 is also a crossing of Qs.

Let D be a bounded domain. Let Qp denote the space of all quads satisfying
Q([0,1]2)C D. We say that a subset SC Qp is hereditary if, whenever Q€S and Q'€ Qp
satisfy Q'<Q, we have Q'€S. We call a closed hereditary subset of Qp a quad-crossing
configuration on D, and denote the space of quad-crossing configurations by H (D). For
weH(D) we may identify it with a function w: Qp—{0, 1} such that w=(1) is closed in
Qp and such that, for any Q1, Q2 with Q1 <Q2 and w(Q1)=1, we have w(Q2)=1. (Here,
we abuse notation and let w denote both the element of H (D) and the function from Qp
to {0,1}.) By [SSm], H(D) can be endowed with a metric dy such that (H(D),dy) is a
compact separable metric space. For each Q€ Qp, the function w—w(Q) is measurable
with respect to the Borel o-algebra of (H(D),ds). Moreover, there exists a countable
set {Qn}nenCQp such that @, ([0,1]?) has piecewise smooth boundary and

{w(Qn) }nen generates the Borel o-algebra of (H,dy). (6.1)

We now focus on the setting relevant to the remainder of the paper. For §>0, let
w% be a site percolation on D? (see the paragraph above Theorem 2.9 for the definition).
For each Q€ Qp, let w?(Q)=1 if and only if the union of all red hexagons on the dual
lattice of D? gives a crossing of . This identifies w® with an element in H(D). If w® is
sampled from Bernoulli—% site percolation, then w’ converges in law to a random variable
w in H(D) for the dg;-metric [CN], [GPS2]. Let Qp be the collection of quads such that
Q([0,1]?)cDUID. For each Q€ Qp we can still define w’(Q) as before. In this section,

we use the following lemma to extend w from Qp to Op.
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LEMMA 6.1. Almost surely w admits an extension to Qp such that, for each fized
Q€ Qp, lim, .o w(Q,)=w(Q) in probability, where Q, is obtained by restricting Q to
[n=, 1—n"12. Suppose that we are in a coupling such that lims o w®=w almost surely
as elements in H(D). Then, lims_,ow®(Q)=w(Q) in probability for each fired Q€ Op.

Proof. Suppose @ is defined as w® with 2D in place of D. We further require that

©° converge almost surely as elements in #(2D) and that w® is obtained by restricting

@° to D. Let @=lims ,0@° in the dy-metric. By [SSm, Lemma A.1],

lis sup P3°(Q) # 5% (Qu)] = on(1).
6—0
By [SSm, Corollary 5.2], lims_,o w®(Q)=w(Q) in probability for each fixed Q€ Qp. There-

fore, W restricted to Op is the desired extension of w as described in Lemma 6.1. O

6.2. Liouville dynamical percolation

We first specify the setting under which we will prove Lemmas 3.2 and 3.3 in §6.3. Let
= %, Q=5/6, and a=Q—~y=1/v6. We consider a probability space (2, F,P) with
random variables X;, h', h2, and h°® whose laws are as described in Definition 2.4. Namely,
(X1)1>0 has the law of Bg,—at, where B, is a standard Brownian motion, (X_;);>0
is independent of (Xi)¢>0, and (X_¢)¢>0 has the law of By —at conditioned on being
negative. Moreover, h*=h'+h?, where h!(z)=X; for each 2€S and teR with Re z=t.
Finally, h? is independent of X, with the law of the lateral component of the free-
boundary GFF on S. Let P4 be the probability measure obtained from normalizing
e YM/48,,.(08)Y/2 dP, where M=sup,cp X;. (Recall from (2.9) that (Q—v)M=21yM
and 4/72—1=1.) Let
hd:=h5—2y"tlog &+ (0S),

so that under the P4-measure h? is the field of a unit boundary length \/g—LQG disk by
definition. Now let ¢:D—S be the conformal map in Definition 2.6. Let h be the field

as in Definition 2.6, i.e.,
h=hog+Qlog|d/|.
Let h=h%-¢+Qlog|¢’|. Then, the fields h and h are related by a shift:

h=hH-2y""log&, (OD). (6.2)

We are mainly interested in h because, under the P4-measure, it is the field considered
in Lemmas 3.2 and 3.3. However, most technical work in this section will be done for b

instead because of the following lemma.
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LEMMA 6.2. In the setting above, b can be written as ®+g, where the P-law of ® is

a free boundary GFF as in Theorem 6.4 and g is a random continuous function on D.
Moreover,

9(2) < Qlog|¢'(2)| —a| Re ¢(2)| for all z€D. (6.3)

Proof. Let hf be the free boundary GFF on S with average zero along i[0, 7]. In the
definition of A® in Definition 2.4, if the law of X; were set to be the 2-sided Brownian
motion (Ba;)ier without drift or conditioning, then the law of h* would be given by hf.
Since there exists a coupling of (Ba¢)>0 and (Xy)i>0 such that X;=Bg; —at for t>0 and
X, <B_o;+at for all <0, we can couple hf and h® on the same probability space such
that the following conditions hold:

(1) the lateral component of hf (see the paragraph above Definition 2.4) equals h?;

(2) h=hf—aRez on SN{z:Re 2>0};

(3) h<hf+aRez on SN{z:Re 2<0}.

Since h=h%-¢+Qlog|¢’|, taking ®=hfc¢ and g=h—®, and using that ¢ maps
i[—1,1] to [0, 4w, we obtain (6.3). O

The following immediate corollary of Lemma 6.2 will be useful in §6.4 and §6.8.

COROLLARY 6.3. For b and ® in Lemma 6.2, given any r€(0,1), there exists a

deterministic constant ¢, such that H<P+c, on rD:={z:|z|<r}.

We now review Liouville dynamical percolation in the setting specified above. Let

1= eh/VE g2

1l 1/12,0/V6 g2,

z= g% €
be as defined in Definition 5.25 with azl/\/é. Fix >0 and consider the lattice D°. For
each vertex v on D°, let ,u% (v) be the ufj—mass of the hexagon on the dual lattice of D°
corresponding to v. Let aj(d,7) be the probability of that Bernoulli—% site percolation
on 0T possesses four disjoint monochromatic paths of alternating color from the origin
to the boundary of the box [—7,7]2.

We now enlarge the probability space (2, F,P) to contain random variables de-
fined as follows. For §>0, let wg be an instance of Bernoulli—% site percolation on D?
with monochromatic blue boundary condition. We assume that the loop ensembles cor-
responding to wg converge P-almost surely (see Theorem 2.9). We further require b
and {wd}s=0 to be independent under P. Consider a clock for each inner vertex of D?
such that conditioning on (h,wg), these are independent exponential clocks with rate
I (v)a4(8,1)~ . Namely, the set of times when the clock at v rings is a Poisson process
on (0,00) of intensity fuy (v)aj(6,1)~. Now, we define a dynamic on the space of site

percolation configurations on D° as follows. Letting the initial coloring be wg, when the
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clock rings at an inner vertex v, we flip the color at v. This defines a stationary process
(w?)¢=0, which by §6.1 can be viewed as taking values in H(D). We call (w{);>0 the
discrete Liouville dynamical percolation (LDP) on D° driven by eh/V6. We will use the
following key input from [GHSS].

THEOREM 6.4. There exists a probability space (0, F,P) with random wvariables b,
{(W)i=0:0€(0,1)}, and (wi)e=o satisfying the following.
e The joint law of § and {(w))i>0:0€(0,1)} is as described right above.
o (wi)i>0 s a stationary process taking values on H(D) with following mizing prop-
erty. For any two events A and B in the Borel o-algebra of (H(D),dy),
lim P[1y,ealeen | b]=P[A]P[B]

t—o0

almost surely.

e For each r€(0,1) and t=0, let w|.p (resp. wi|.p) be w) (resp. wy) restricted to
Q,p, where rD:={z€C:|z|<r}. Then, for each r€(0,1), (wilrp)t=0 @5 a cadlig process
and

Lim (w7010 = (Welrp)0
6—0
in probability in the Skorokhod topology.

Proof. Note that ® in Lemma 6.2 under the probability measure P is a Gaussian
field on rD with kernel of the form

—log |z —y|+C(x,y),

where C(-, ) is continuous up to the boundary of rD). Therefore, if g were equal to zero
in Lemma 6.2 so that h=®, Theorem 6.4 would fall into the framework of [GHSS]. The
third assertion of Theorem 6.4 would follow from [GHSS, Theorem 1.3]. For the second
assertion, if A and B are in the Borel o-algebra of (H(rD), d3;), then the second assertion
would follow from [GHSS, Theorem 1.4]. Since the Borel o-algebra of (H(D), dy) is the
minimal o-algebra containing the Borel o-algebra of (H(rD),dy) for all r€(0,1), we
would have the second assertion of Theorem 6.4 without the constraint to rD.

Now, although g#0, since g is uniformly bounded from above and below on rD, as
explained in [GHSS, Remark 1.6], the non-quantitative results of [GHSS, Theorems 1.3
and 1.4] still hold and give Theorem 6.4. O

We call (w)¢>0 the continuous Liowville dynamical percolation driven by eh/V6, The
boundary condition of (w?)¢> is irrelevant for Theorem 6.4. We impose the monochro-
matic boundary condition and restrict the update of colors only to inner vertices in order

to mimic the dynamic (M™, w}*)¢>o in §1.4.2.
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6.3. Proof of Lemmas 3.2 and 3.3

In this section we prove Lemmas 3.2 and 3.3 with a few ingredients whose proofs are
postponed to later subsections. The idea of the proof of Lemma 3.2 is to mimic the
definition of (M™, T5");cn in Lemma 3.2 using a cut-off version of the discrete LDP and
show that their transition kernels as Markov processes are identical in the continuum.
Once Lemma 3.2 is proved this way, the desired ergodicity in Lemma 3.3 follows from
the corresponding ergodicity of the continunum LDP from Theorem 6.4. We will consider
a probability space (02, F,P) satisfying the properties described in Theorem 6.4. Let
h be defined as in (6.2) and let P4 be as above (6.2), so that the Pd-law of h is as in
Lemmas 3.2 and 3.3.

Fix a site percolation configuration w on D with monochromatic blue boundary
condition. Let I'(w) be the loop ensemble of w. Given €T’ (w), by our convention in §2.2,
¢ is viewed as an edge path on the triangulation D°. Given each edge e in ¢, let e* be
its dual edge obtained by rotating e around its midpoint by 90 degrees. The collection
of such dual edges forms an oriented simple loop, where the orientation is such that the
red vertex of each edge e is on the left side. We call the domain bounded by this simple
loop the region enclosed by ¢. Given £€T'(w), similarly as in Definition 2.14, we call the
pn-mass of the region enclosed by £ the up-area of £. Given an inner vertex v of D%, let
w, be the coloring of V(ID?) such that, for each v’ €V(D?), w,(v')=w(v’) if and only if
v'#v. Let £, be the symmetric difference between I'(w) and I'(w,). For e>0, we call v
an e-pivotal point of (h,w) if there are at least three loops in £, with up-area at least €.

For €>0, let (wf’é)t>0 be the following modification of the discrete LDP (w?);>0
on D? driven by €9/ V6. when the clock at an inner vertex v rings at time ¢, the color
of v is flipped if and only if v is an e-pivotal point of (h, wta’fs). Note that (wf’é)@o is
defined similarly as (w;");>0 in Lemmas 3.1, i.e., by rejecting updates of vertices which
are not e-pivotal. Let [T =T'(wS?) for each t>0. Then, (I'?);50 is the lattice analog
of (M™, Y;™)¢>0. Our next lemma shows that (Fi"s)@o converges in law for each fixed
e>0.

LEMMA 6.5. In the setting of Theorem 6.4, for each £>0 let (wi*)i>0 and (I5);>0
be defined as above. Then, there exists a process (I'f)i>o coupled with b such that
(b,l"f’é)@o converge in law to (h,5)i>0 as 0—0 in the Skorokhod topology as cadldag
processes taking values in H~1(D)x L(D). Conditioned on b, (I'¢);>o is a stationary
Markov process, where the conditional law of TG is that of a CLEg on D. Moreover,
almost surely (I'S)i>0 either stays constant or has infinitely many jumps. In the latter

case, it has finitely many jumps in any finite interval.
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We will prove Lemma 6.5 in §6.7. The proof will also provide a recipe for sam-
pling (h,T%):>0 without referring to the lattice approximation. Before describing it in
Lemma 6.7, we give a purely continuum description of the limiting pivotal measures in-
volved. Given a subset S of dD° and a measure p on C, by p restricted to S, we mean
w restricted to the union of hexagons in the dual lattice whose vertex is in S. We also
recall the definition of e-pivotal points (Definition 2.14) for a CLEg coupled with an
independent Liouville field.

LEMMA 6.6. There exists a constant ¢’ >0 such that the following holds. In the
setting of Theorem 6.4, for each >0, a5(5,1)™1 times Lebesgue measure restricted to the
set of e-pivotal points of (h,w]) converge to a measure m. in probability. Moreover, there
exists a random set ACD measurable with respect to (h,T'o) such that me=(c'm4)|p,,

where m 4 is the %-occupation measure of A and Pe is the e-pivotal points of (h,Ty).

We will prove Lemma 6.6 in §6.4.6, where we will see that the set A can be chosen
to be the so-called p-important points (Definition 6.15) of 'y for small enough p. In fact,
m, is ¢’ times the %—occupation measure of P., but we omit the proof of this fact since
we do not need it.

Given Lemma 6.6, let M, :=(/e®/VOm 4)|p.. Since A is measurable with respect
to (h,T'g), so is the measure Mj, 1, . Recall the measure Mj, . from Proposition 5.1,
where the law of (h,T') is the same as that of (h,Tg) considered here, and the precise
definition of Mj, - was postponed to this section. In fact, we will simply define Mj, 1 by
applying the measurable function on H~1(D)x £(D) defining (h,Ty) to (h,T) instead.
This will be made precise as Definition 6.24 in §6.5 after the set A is described more
concretely. Given this definition, the content of Proposition 5.1 is that v p=cMj, - a.s.,
where Mi,r is the quantum natural measure on the e-pivotal points of (h,T") constructed
from the mating-of-trees theory. We will conclude the proof of Proposition 5.1 in §6.5.

We now use Mj, , to describe the Markov process (I'f):>o-

LEMMA 6.7. The law of (§,1%)i>0 in Lemma 6.5 can be described as follows. Con-
ditioning on (D, h,T5), an exponential clock rings with rate (& (8]1)))1/2./\/1;’110 (D). Here,
we make the convention that an exponential clock with rate zero mever rings. Once the
clock rings, sample an e-pivotal point z from Mg . The process jumps to the loop
ensemble obtained from T'§ (i.e. T'g) by flipping the color at z. (Recall the notion of
color flipping for CLEg above Definition 2.14.) The remaining jumps in the process, are

sampled iteratively.

Since (T'§)¢>0 is stationary and has finitely many jumps in any finite interval by
Lemma 6.5, modulo a probability-zero event, M . is well defined simultaneously for

all (h,I'%). Therefore, the iterative sampling in Lemma 6.7 makes sense.



166 N. HOLDEN AND X. SUN

Recall the constants ¢, in (1.3) (see also Proposition 6.34 below), where ¢, Mf, 1
describes the scaling limit of the discrete pivotal measure on random planar maps. Recall

¢ in Proposition 5.1 such that vy, p=¢Mf, 1 a.s. In the setting of Lemmas 6.5 and 6.7, let
rs :chptgh(aD)—lﬂ for each t > 0. (6.4)

Since VﬁypsziF, by Lemma 6.7, conditioning on (h,T), the first time at which the
process (I'f);>0 jumps has the law of an exponential random variable with rate c,, VhTo (D),
where v, - is as v, ¢ in Proposition 5.1 with I'g in place of T'.

Recall that P4 is the probability measure obtained from a reweighing of the probabil-
ity measure IP in Theorem 6.4 as above (6.2), so that the P4-law of h is as in Lemmas 3.2
and 3.3.  Let (Yy);>0 be a sample of (D, h,I$);>¢ according to its Pd-law, where
(D, h, %) is viewed as a random variable in MEHPUL a5 in Remark 2.15. We will prove
Lemma 3.2 by showing that (Y,?); is the scaling limit of (M", T;");>0. The following

lemma is the only input from random planar maps that we need for this proof.

LEMMA 6.8. Fiz £>0. Let S"=(S/");>0 be the Markov process (M™, T7™)i>o in
Lemma 3.2 and let (Y)i>0 be as above. For i€N, let 7 and T; be the i-th time that S}
and Y,¢, respectively, jump. If no jump occurs we set all the jumping times to be co. Then,
(STn, Sty 71, 73) and the event {7{'<oo} jointly converge in law to (Y7, Y7

T 7277-1»7—2) and
{T1<OO}.

We postpone the proof of Lemma 6.8 to §6.7 and proceed to the proof of Lemma 3.2.

Proof of Lemma 3.2. Suppose that we are in the setting of Lemma 6.8. By that
lemma, S™|(o,-p) converges to Y¢|g -,y in the Skorokhod topology. Given s>0, let "
be defined in the same way as 7;*, with (S7")¢>0 replaced by (S7")¢=0:=(S7¢)i>0- Let
Q. be the set of positive rationals. Then, at least along a subsequence of N, there is
a coupling of (S™)nen and a family of processes {(Y;"*)i>0:5€Q, } such that, for each
s€Qy, it holds that Ss*”|[0ﬁ;n) converges to Y©°

where each (Y;7%);>¢ has the same law as (Y;7);>0 above. Given a rational s€(r, ),

[0,75) &.s. in the Skorokhod topology,

for n large enough 7" +s=77" | for all ieN. In particular, S™ 5,72y =8""10,75my- This
implies that in our coupling along the chosen subsequence S”|[0,T§m) converges almost
surely in the Skorokhod topology and the law of the limiting object is given by Y*[( r,).
Therefore, S™|o,-p) converges in law to Y| -,) in the Skorokhod topology, without
passing to a subsequence. By induction, the same convergence holds with 73’ and 73
replaced by 77" and 7;, respectively, for any i€{4,5,... }. By Lemma 6.5, lim;_,o, 7;=00
a.s. Therefore (S}")¢>0 converges to (YF);>o0 in the Skorokhod topology.

Since every cadlag function has countably many discontinuous points and (Y;%)¢>0
is stationary, for all fixed ¢>0, we have that Y is almost surely continuous at ¢. This

gives Lemma 3.2. O
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Although the convergence in Lemma 6.5 is only in law, the following proposition,
which we will prove in §6.8, upgrades it to convergence in probability. This will be

important to the proof of Lemma 3.3.

PROPOSITION 6.9. There exists a probability space (0, F,P) satisfying Theorem 6.4
and Lemma 6.5 such that, for each >0, (F?‘S)t}o converge in probability as §—0.

For 6>0, let w’ be the Bernoulli—% site percolation on D with monochromatic blue
boundary condition. Let I':=T'(w?). As explained in [GPS2], w’ and I'? jointly converge
in law. Suppose that (w,I') is a sample from the limiting joint law. Then, the quad
crossing configuration w is a.s. determined by I' [CN], [GPS2]. In §6.6 we prove the

inverse measurability statement conjectured in [SSm].
THEOREM 6.10. T is almost surely determined by w.

From now on, we work on the probability space (2, F,P) in Proposition 6.9 and let
(T'$)¢>0 be the in-probability limit of (I‘i’é)t>o as d—0. This way, (I'{)¢>0 for different
€’s in Lemma 6.5 are coupled together. To prove Lemma 3.3, we would like to take
the e—0 limit of (I'¢);>0. However, this convergence is hard to establish directly in
L(D). Theorem 6.10 allows us to reduce Lemma 3.3 to the following proposition on

quad-crossing elements.

PROPOSITION 6.11. For each €>0 and t>0, let wi:=w(I') be the element of H(D)
corresponding to I';. Recall (wi)i>o in Theorem 6.4. Then, for each re(0,1),

lim(wi |rp)ez0 = (welrp)izo

in probability in the Skorokhod topology as cadlag processes in H(rD), where wé|,p is wi

restricted to Q,p.
The proof of Proposition 6.11 will be given in §6.8.

Proof of Lemma 3.3. Recall (I'§);>0 in (6.4) defined in terms of (I'{);>o. Since the
Pd-law of (D, h,T%);en equals the law of (Y7);>0 in Lemma 3.3, it suffices to show that

under P4, as ¢—0, (I');en converge to an ergodic sequence.

154
ceptéy (OD

Let @i :=wc se, (9m)-1/2- Restricted to rD, both (@f)¢>0 and (wt)¢>0 are stationary cadlag

For each t>0, let wf:=w )-1/2 be the element in H (D) corresponding to T5.

processes. As in the last paragraph in the proof Lemma 3.2, for each fixed ¢>0, Propo-
sition 6.11 implies that

lim o | — i

lim &7 |;p = @70
in probability. Varying r, we see that

e—0
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in probability.

In light of Theorem 6.10, for each fixed t>0, @, a.s. determines an instance of CLEg
on D, which we denote by I';. Since

ll_}n%(fi, wy) = (fa w)

in law, Theorem 6.10 implies that lim. ,o [§=T} in probability under P. Here, we use
again the measure theoretic fact Lemma 4.2 which upgrades joint converge in law to
convergence in probability given measurability.

By absolutely continuity, lim. o [§ =T in probability under P4. By (6.1), the mixing
property for (w;);>0 in Theorem 6.4 also holds for ¢, under both P and P4. In particular,
(@;)ien is ergodic under P4, By Theorem 6.10, (T';);en is ergodic under P4 as well. [

In the rest of §6, we first prove Proposition 5.1, Lemma 6.6, and Theorem 6.10,
and provide tools on percolation without dynamics in §§6.4-6.6. Then, in §6.7 and
§6.8, we study the various dynamics considered in §6.3 and prove Lemmas 6.5-6.8 and

Propositions 6.9 and 6.11.

6.4. Lattice approximation of the pivotal measure

In this section we introduce a cutoff on the set of pivotal points. The cutoff is different
from the one we use when defining e-pivotal points, and we call the set of macroscopic
pivotal points for the new cutoff p-important points. The concept of p-important points
has also been used in [GPS3], [GHSS| (see the beginning of §6.8 for further discus-
sion). Although lacking a natural connection to random planar maps, this cutoff is more
amenable for technical analysis.

Recall that D? is a subset of the rescaled triangular lattice 6T approximating ID.
Throughout this subsection, w® denotes a sample of Bernoulli—% site percolation on D? for
§>0. Moreover, {w’}s~o are coupled such that the loop-ensembles I'’:=I"(w®) converge
to a CLEg I' in £(D) almost surely (see Theorem 2.9). We parameterize loops in I' and
I'% such that, when listed in decreasing order according to the (Euclidean) area of the
enclosed region, the kth loop converges a.s. in the uniform topology for each keN. We
enlarge our coupling to include a sample of b, and hence h, as in Lemma 6.2, which
is independent of {w’}s~0. Let v5 be the renormalized weighted counting measure on
D?, where each vertex x is assigned mass JzA (z)ag(6,1)~!, where we recall from above
Theorem 6.4 that py () is the mass assigned by e/ V822 to the hexagon associated with
x on the dual lattice of D°. Note that the law of {w]}s~o and b in Theorem 6.4 satisfies

the description of the law of {w’}s~o and b in this section.
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This subsection is organized as follows. In §6.4.1, we recall some results from [HLS]
concerning 2-SLEg. Then, we introduce p-important points and prove its basic properties
in §§6.4.2—6.4.4, and establish its relation with e-pivotal points in §6.4.5. Finally, we prove
Lemma 6.6 in §6.4.6. We encourage the reader to skip the technical proofs in the first

reading, but keep in mind the definitions and results for later applications.

6.4.1. Percolation interfaces and the discrete analog of 2-SLEg

In this subsection we recall that, for a quad (Q,a,b,c,d), a certain pair of interfaces
connecting a, b, ¢, adn d pairwise in @ is given by a 2-SLEg (Lemma 6.12) and that the
points of intersection between these interfaces have a well-defined %—occupation measure
which describes the scaling limit of the corresponding discrete measure for percolation
on the triangular lattice (Proposition 6.13).

Let UcCD be a Jordan domain. For 2€0U, let 2° be the edge on OU?® closest to
x (if there is a tie, choose one arbitrarily). We always assume that ¢ is small enough
such that a®#b°. Let 77?}{’5 be the percolation interface of w? (see the definition below
Proposition 4.3) on (U?,a?,b?). Since the triangular lattice is canonically embedded in
C, we identify each edge with its dual edge on the hexagonal lattice so that 77[‘}1?5 and
loops in I'® are simple curves.

As proved in [CN, §5], in our coupling, for a fixed (U, a, b), 77%{,)5 converges in probabil-
ity to a chordal SLEg on (U, a, b) which we denote by n,‘}b. Moreover, nf}b is a.s. determined
by I' in an explicit way. We call n‘f]b the interface of T" on (U, a,b). In particular, when
U=D, then ngb is the interface of I" on (D, a,b) as defined in Lemma 2.11.

Given a quad Q, we call Q((0,1)?) the domain of Q. Abusing notation, we denote
the domain of @ by @ for simplicity. Let a, b, ¢, and d be Q(0,0), Q(1,0), Q(1,1), and
Q(0,1), respectively.

Recall the notions in Lemma 6.1. Suppose that Q C Qp and 9Q is piecewise smooth.
Recall the notation 0, 3D in §2.1. Let E be the event that ng hits Op,q@ at a point on
Oc,a®. As explained in [HLS, §1.2], we have the following. See the left part of Figure 6.1
for an illustration of the event E, and see the right part of Figure 5.5 for an illustration
of the 2-SLEg (nggd, 7]8’).

LEMMA 6.12. The event E equals {w(Q)=0} a.s., where w is viewed as an ele-
ment in Hp. Moreover, the conditional joint law of (n‘éd,ng’) given E is a 2-SLEg (see
Definition 5.2).

Let PQ:nggdﬁn?Qb on E and PQ:nébﬂn‘de on —F (i.e. the complement of E). Let
ngféﬂng’) s be the set of vertices such that angf(; 07722177 s if both ngffé and 778’7 s traverse
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an edge with v as an endpoint. Let Fjs:={w’(Q)=0} and 73? be defined in a similar
way as PY. As explained in [HLS, §1.2], ’P(? is the set of pivotal points for the crossing
event Es. The following result is extracted from [HLS, Theorem 1.7, Proposition 1.8,
Theorem 1.9].

PROPOSITION 6.13. ([HLS]) The 3-occupation measure mg of PC exists a.s. More-
over, a3(8,1)™" times Lebesque measure restricted to ’ng (recall this notion from above
Lemma 6.6) converge to d'mg in probability, where ¢’ >0 is a deterministic constant not

depending on Q.

6.4.2. A-important points and p-important points

In this subsection we introduce two sets of pivotal points: A-important points and p-
important points. Furthermore, we argue in Lemma 6.14 that the A-important points
can be written as the disjoint union of sets P2NB for finitely many quads @Q and a fixed
square B.

Let B be a square of side length p for some p>0, and let B be the square of side
length 3p centered around B. Let A=Ag:=B\(BUAB). For BND#2, let

I :={leT:(NB+2 and (N(C\B) £ }.

By local finiteness of CLEg (see §2.4), T contains finitely many loops a.s. Given ¢, ¢'€T'4,
if 040, let PA(L,0"):=N¢'NB, and if £={', let

PAL, ) :={z€B:£\{z} has two connected components, each of which intersects C\B}.

Let
Pr=|J PALL).
(¢,)erAxTA

A point z is called A-important for " if and only if zeP4. A vertex v on BND? is called
A-important for w® if and only if there are four arms from v to OB with alternating
colors. Here an arm refers to a connected monochromatic path. Let ’P(g“ be the set of
A-important points for w?®.

The following lemma says that A-important points for I' and w® are covered by

finitely many sets of the form P? and P(? from §6.4.1, respectively.

LEMMA 6.14. Let B be a square of side length p for some p>0 such that BND#o
and let A=Agp. Let C be a countable dense subset of oB. Then, almost surely there exist
00>0 and quads Q, ..., Qn, with domain equal to BND and marked points contained in
C, such that P4 is the disjoint union of {PiNBli<i<n, and P is the disjoint union
of {’P?iﬁB}lgign for 6€(0,60).
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Proof. For /€T, let V(£) be the set of vertices which are endpoints of edges traversed
by ¢. Let
%A ={¢el:V({)NB#2 and V()N (C\B) # o}

Then, PéqCUeeF&A V(¢). We write I'4 and I'>4 as {¢},..., 5} and {3, ...,6?5}, respec-
tively, where loops are listed by decreasing enclosed Euclidean area. By the definition of

Fé,A

our coupling and the way I'* and are parameterized, almost surely

lim Ks=K and lim /(5 — ¢
6—0 6—0

in the uniform topology, for all 1<i< Kjs. For each 1<i< K, let (s, 1), ... (si’mi,ti’mi)

be the list of intervals of the form
{(s,1): £(5), £(t) € 0B, £'((s, 1)) C B, €' ([s, ) NOB # 2}

ordered by increasing left end-point. Since % is a continuous closed curve, we have m’ < oo
a.s. Let (sf;’l,tfgl), s (sfs’mg,t?mg) be defined similarly for T°. Define Eg’j::€g|[sg,g‘7t§,j]
and ("7 :=0"|;i; 457. Then, almost surely, mj—m' and {57 —¢"7 for all 1<i<K and
1<j<m'. This convergence follows from the fact that SLEg a.s. crosses a (fixed) smooth
curve upon hitting it. (See e.g. [HLS, Lemma 2.2]).

For 1<i, 7 <K, 1<j<m’, and 1<’ <m? such that (i, j)#(i’, ), let

PG, g3 4y = 009 ([ e (7 £7)).

Let V(£i([s5?,57])) be the vertex set defined as V(£) above with ¢ replaced by £&([s5?, t57],
and let
P (i, 330 5") = V(L ([s5”  t5? )NV (G (57,857 1)

By the no-triple-point property of CLEg (see §2.4), the sets P4(i, j;i’,j') are disjoint.
Therefore P4 is the disjoint union of PA(i, j;4', 7 )NB for all (i,5)#(i',5"). A similar
statement holds for 7734 for small enough 4.

If (i,5)#(i',5") are such that PA(i,j;4’, j')#@, by the parity property of CLEg
(Lemma 2.13), we may assume that ¢7(st3), ¢03(¢3), 03" (573") and 073" (t71") are
in cyclic order on Bg, either counterclockwise or clockwise. We focus on the former
case, since the latter case can be treated similarly. Let @ be a quad with domain BND
and marked points a, b, ¢, and d in C that are to be determined. Choose a,b,c,deC

counterclockwise aligned such that

Dy (s1:9),003 (119)Q C Oap@Q a0 Dy 1 (gi1.51) it 5 (17.5) @ C Oe,a Q-
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dK—QC B Q =B Q:B
42,1 )2
PA(L,11,2) t

El’l I~ \
Q él Cﬁg 23 1 k3
/ PA(2,1;3,1)

(1,2

.O————O)

Figure 6.1. Left: Illustration of the event E. We have that ng is the concatenation of the

orange curve and the gray curve, while n2¢ is the concatenation of the orange curve and the
purple curve. Middle: Illustration of objects defined in the proof of Lemma 6.14. In the case
shown, we have BCD so that Q:E. The annulus A=Apg is shown in blue. The disk D is not
drawn. Right: The points a, b, c, deCCOB are chosen such that PAG, 5, 7)=P9.

For a, b, ¢, and d sufficiently close to €59 (sh3), (b (¢03), 3" (si3"), and 73" (¢'3"),

respectively, we have P4 (4, 5;4', j')=P%. For small enough &, we also have
P, i, ') = P5.

This concludes the proof. O

We say that B is a square on pZ? if it is a square of side length p such that all four

vertices lie on pZ2.

Definition 6.15. For each p>0, let

Pp::UPg‘B for each >0 and Pp::UPAB,
B B

where the union is over all squares B on pZ? with BND#@. Points in Py and P? are

called p-important points of w® and T, respectively.

6.4.3. Scaling limit of discrete pivotal measures

We now gather some facts concerning the scaling limit of measures on 7334 and P§. We
will see in Proposition 6.16 and Lemma 6.17 that various measures (both Euclidean and
quantum) defined on these points converge to their continuum counterparts defined in
terms of the %—oceupation measure. Recall that v5 is the measure on D? where each
vertex x is assigned mass puy (x)ag(6,1)7", where fy () is the mass assigned by eh/VB g2,

to the hexagon associated with z on the dual lattice of D°.
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PROPOSITION 6.16. In the setting of Lemma 6.14, the %—occupation measure of P4
exists a.s., which we denote by mA. Let m§ be aj(a, 1)1 times Lebesgue measure re-

stricted to 7934, Let 1/34 be the measure vg restricted to ’Pg‘. Then, lims . m?:c’mA

and limg_,q Vf:c’e"/‘/gmA in probability in the weak topology, where ¢’ is as in Propo-
sition 6.13. If A€D (i.e. AUOACD), then

lim m§! (D) =cm?A(D) and limyg(D)=¢ / eh/V6 A
6—0 6—0 D

in L2
Proof. We obtain the existence of m# and the convergence of mZ" in probability from
Proposition 6.13 and Lemma 6.14. If A€D, the L? convergence of mZ (D) follows from
the moment bounds of m4' (D) given in [GPS2, Lemma 4.5].
Recall h=®+g¢ as in Lemma 6.2. If g were equal to zero, then, by [GHSS, Proposi-
tions A.1 and A.2],
lim vl ="/ VomA
in probability, and if AED then
lim Vf(ID)) =c / D/ V6 A
6—0 D

in L2. Although g#0, Corollary 6.3 yields the same conclusion. O

Let v§ be the restriction of v5 to P§. The next lemma concerns the scaling limit
of v§. Both in the proof of the lemma and later in this section, we will use the quasi-
multiplicativity of aj (see e.g. [SWe]), namely the fact that, for some constant ¢>0 and

0<r1 <ra<rs,
b P P b P
cay(ry, ro)ay(re, rs) <ay(ry, rs) <ay(ri, re)ay(re,rs). (6.5)

LEMMA 6.17. Fix p>0. The %—occupation measure of PP exists a.s. We denote
this measure by m?. Then, limg_. Vé’:c’eh/\/gmp in probability, where ¢’ is the constant

in Proposition 6.13. Moreover,

lim (D) :c’/ M Vomr in LY
6—0 D

Proof. Since the sets ’Pfs C B are disjoint for distinct squares 3 on pZ?, the existence
of m” and the convergence in probability in Lemma 6.17 follows from Proposition 6.16.
It remains to prove the L' convergence of v§(D). For keN, set r:=1— %e*k. By Propo-

sition 6.16, for each k€N and p>0,

lim v§ (rD) =¢ / "/ Vomp
60 rD
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in L2.
It suffices to prove that

lim limsup E[v§(D\rD)]=0. (6.6)

k—=oo 550

For each z€D?, let E, be event that z is p-important. Recall that
_ s -1
V5(:L‘)—Mh(.%')a4((5,1) ’

where ,u’h (z) is the u%-mass of the hexagon corresponding to x in the dual lattice. There-
fore,
Elvs(2)1p,] = P[E,]aq (6, 1) Eluy ().

For ro>r1>0, let &i(rl, r9) be the probability that Bernoulli—% site percolation on

H° has four alternating arms in the semi-annulus (roDNH)\r;D. We claim that
P[E,] < Cad(6,1-|a])aq (1 -z, p),

where C' is a constant not depending on 9§, 7, and p. It is sufficient to consider the case
|z|>0.9 and pe(10(1—|z|),0.1), as this implies the general case. Let E. denote the event
that = has four arms to distance 0.5(1—|x|), and let E? denote the event that there are
four alternating arms in the annulus of radii 3(1—|z|) and 0.7p centered at x/|x|. Then,
E,CE.NE! PE.<C'a5(5,1—|z|), and P[E?]<C" &5 (1~ ||, p) for constants C’, C">0.

The claim follows from this and independence of E! and EZ:
P[E,] < PIE;] PIE;] < Caj(d, 1 |z])ag(1—|a, p)-

From here on, we use C, to denote a constant only depending on p that can vary

from place to place. By [SWe], the half-plane four-arm exponent is 13—0, while the plane

alternating four-arm exponent is % By this and quasi-multiplicativity (6.5), we have the

following, for some C'>0:
ai(57 1- |x|)ai(5, 1)_1 < Caﬁi(l— ‘£E|, 1)_1 = (1—|5L‘D_5/4+0(1),
and moreover a4(1—|z|, p)=(1—]|z[)1%/3+°() Therefore,

Elvs(2)1p,] < Caj(d, 1—|z)a5(1—|z], p)ag (8, 1)~ Eluy ()]
<Cp(1=[2])*Efpy ()]

Here we have (1—|x])? because 2< 3 —2.
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Let ¢:D—S be as in Lemma 6.2, i.e., it is the conformal map from D to S satisfying
¢(0)=1mi and ¢(1)=+o00. Let B,=¢"1([n,n+1]x(0,7)), where ¢ is as in Lemma 6.2.
For n>k, define

Al :={z€D:Rez>0, 1—|z|€ (3¢ ', 2e7"), ¢(2) €0, k] x (0,m)}.

Recall that a=Q—~y=1//6 in Lemma 6.2. Since e(Bar—at)/V/6 (with B as in Defini-

tion 2.4) is a martingale, the value of E[uj (B,,)] does not depend on n€N. By (6.7), for

n>k we have
E[v5 (A})] < Cpe™ "B 1y (A;)) < Cpe >"E[ gy (¢~ ([0, K]))] < Cpke 2"

By the definition of ¢, we have e?(*) =i(1+2)/(1—2z) for each z€D. Thus, 1—|z|<2e™"
for all neN and z€B,,. Now, by (6.7), E[Vg(gn)]nge*Q” for all n>k. Since

(D\rD)N{z:Rez >0} C | J (A5UB,),

n>k

we have that (6.6) holds with (D\rD)N{z:Re z>0} in place of D\rD.

For the remaining part of D\rD, we recall from Definition 2.4 that (X_¢);>0 has
the law of Bo;—at conditioned to stay negative, which is stochastically dominated by the
unconditional law of Bg,—at. Therefore, (6.6) holds with (D\rD)N{z:Re 2<0} in place
of D\rD. O

6.4.4. Convergence of loop ensemble after flipping a p-important point

The main result of this subsection is the following lemma, which gives convergence of
the loop ensemble after flipping a p-important point. See Figure 6.2 for an illustration

of the proof idea.

LEMMA 6.18. Let p>0. Suppose z° and z are random points such that ,2‘5677(’;7
2€PP, and lims_o 2°=2 in probability. Let 9 and T be the loop ensembles obtained
after flipping the color of 2° and z for T° and T, respectively. Then, lims_,o =T in
probability in L(D).

Proof. Let B be the box on pZ?ND such that z€B, let A:=Apg, and fix a small 7 >0.
We retain the notation in the proof of Lemma 6.14, including the parametrizations of
loops in I'? and I". Then, z must belong to some P4 (i, j;4’,5'). Since lims o 2°=2 a.s., we
have 2° € P (i, 7;i', j') with probability 1—o0s(1). Here and below, the implicit constant

in 05(1) may depend on p and rg, but is independent of all other parameters. From now
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Figure 6.2. Illustration of the proof of Lemma 6.18. The left (resp. right) figure shows two of
the percolation interfaces before (resp. after) the color of the p-important point 28 (marked in
orange) has been flipped from blue to red. We show that the percolation interfaces after the
flip converge by using that the orange paths £§ and Zg have diameter o5(1) with probability
1—o05(1).

on, whenever we declare an event Es to have probability 1—o05(1), we will work on Ej
thereafter without explicitly mentioning it. Without loss of generality, we assume that
w’(2%) is blue. Let B(z°,70) be the Euclidean ball of radius ro centered at 2°. Let s
be the segment of Eg’j from sf;’j until the first edge that has z° as an endpoint, excluding
this edge. Let /5 be the segment of the time reversal of Eg’j from tfs’j to the first edge that

5

has z° as an endpoint, excluding this edge. Define (¢, %) in the same way as ({5, £s)

with Zf;/’j " in place of Eg’j . Since the alternating five-arm exponent for Bernoulli-% site
percolation on T is strictly smaller than the four-arm exponent [SWe|, with probability
1—o05(1), after the color of 2° is flipped to red, we have that /5, an edge path 5 contained
in B(z°,1g), and Zf; form a segment of a loop in [%. The same statement holds for ls,
an edge path ¢§, and ¢5. The two segments ¢§ and ¢4 trace small red clusters of w° in
B(2%,79) which have a vertex adjacent to z° but have no vertex in V(Zg’j)UV(ﬁg’j/). See
Figure 6.2 for an illustration.

Let
(o) = {7° €T%:7° ¢ B(2%,10), €57 ¢ 4%, 657 ¢ 4%},

By the no-triple-point property (see §2.4) of CLEg, with probability 1—o5(1), 22 ¢V (y%)
for any loop 7° €T (7). Thus, T'%(rg) cT?. On the other hand, with probability 1 —os(1),
057 (1557, 157])\ (45 Uls) and Z?’j/([sg’j/,tg’j/])\(ﬁgufg) are contained in B(z% 7g); this
follows by symmetry in red and blue, and the exact same argument as we used above
to argue that ¢4,y CB(z°,ro) with probability 1—o05(1). By the convergence I’ —T'

s., the segments (5, {5, 5, and Zf; converge a.s., and we denote the limits by ¢, £,
¢, and ¢, respectively. In the continuum, the loop ensemble T is obtained from T by
concatenating ¢ with ¢, and ¢ with ¢/, while keeping other loops unchanged. Therefore,
there is vanishing function oy, (1) such that for any fixed ro>0, with probability 1—o5(1),
df (T, %) <oy, (1). This concludes the proof. O
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Remark 6.19. Lemma 6.18 remains true if the assumption that '’ —T almost surely

is weakened to convergence in probability. This observation will be used in §6.8.

6.4.5. Mutual inclusion of e-pivotal points and p-important points

Recall h from (6.2) and the notion of e-pivotal point for (h,I") and (h,w’) in §6.3.
The next three lemmas give certain mutual inclusion relations of e-pivotal points and

p-important points, allowing us to study the former through the latter.

LEMMA 6.20. Fiz €>0. There almost surely exists b>0 such that pn(B)<e for all
squares with side length less than b. Let b° be the supremum of all such b’s and set
p°=0.016°. Then, each e-pivotal point of (h,T) (resp. (h,w®)) is p-important for T
(resp. T9) for pe(0,p%) and 5€(0,p).

Proof. Since uy is a.s. non-atomic, we obtain the existence of b with the desired
property. Given p€ (0, p°) and an e-pivotal point z for (h,T), let B be a box of pZ?
such that z€B. Set A:=Ag. Recall I'4 in the proof of Lemma 6.14. If z€/N¢’ for some
distinct loops £, ¢/ €T, then we must have ¢,¢'€I'4. Similarly, if z is a double point on
some £€T, then the two new loops ¢ and ¢ which we get after flipping the color of z
must intersect both boundaries of A. Therefore, z is p-important for I'. The statement

for w® follows from the same argument. O
LEMMA 6.21. Fiz p>0. There almost surely exists ¢’ >0 such that PP CP,:.

Proof. Recall the setting of Lemma 6.14 and its proof. It suffices to prove that,
for sufficiently small ', PA(i,5;i,5')C P for all 4,7,4', 5. Suppose i,3j,i,j" are such
that P4(i, j; 4, j')#9. Consider the segment of ¢*J starting from ¢*7(s%/) until the first
time when it hits ¢/J". Then, the complement of this segment in D contains a countable
collection of components with clockwise boundary orientation. Let £1(¢,j;4'j’) be the
largest pup-area of components in this collection. Let e2(i,5;4'j') be similarly defined
with counterclockwise in place of clockwise. We define e3(4, j;4’'5") and e4(4, j;4'5") in the
same way as ¢1(4,7;4'j') and e3(i, j;i'5"), respectively, where we trace %7 in the reverse
direction until it hits #+". Define &}, (i,7;4'5"), with k=5,6,7,8, in the same way where

the roles of ¢ and ¢7" are swapped. Let
E.={ex(i,j;i'j") > for k=1,...,8, if PA(i,5;i'5") # @}.

On the event E., if v is an A-important point for T, there exists a P4 (i, j;i’5') contain-
ing v. For each loop £€ L,,, one of the eight types of bubbles in the definition of ek (4, j;i'5")

must be contained in the region enclosed by ¢. Therefore veP,. Since ek (i, j;j'5')>0 a.s.
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for all k, i, §, 4, and j’ such that P4(4,5;4', j')#@, and since PA(i,;i,7 ) =2 except

for finitely many 7, j, 7', and j’, this concludes the proof. O

The next lemma says that, for a vertex v away from the boundary and for s suf-
ficiently small, conditioning on v being s-important, it is e-pivotal with probability
1—o0:(1).

LEMMA 6.22. Let r€(0,1). For each s€(0,0.1(1—r)) and '€(0,1), there exists
£>0 and 5o>0 only depending on s, (', v such that, for all §€(0,8y) and veD’NrD,

Plv is not e-pivotal for (h,w®)|v is s-important for w®] <.

Proof. For zerD, let B, be the square of side length s centered at z and set the
annulus A=Ag_ . Consider the set of pairs (w,v), where w is a site percolation config-
uration on D° with monochromatic boundary condition and v is an A-important point.
Suppose (w®, v®) is uniformly chosen from this set. Here we use the same symbol w?® as in
Lemma 6.22, although the law of w? here is not uniform. One way to sample (w?,v?) is
the following. First sample a Bernoulli—% site percolation w? on D® with monochromatic
boundary condition. Then reweight the law of w® by the number of A-important points.

% sample the point v® according to the uniform measure on

Finally, conditioning on w
A-important points of w°.

Let I =I"(w%) be the associated loop ensemble. By Proposition 6.16, (I'°, v®) jointly
converge to a pair (I, v) that can be sampled as follows. First sample a CLEg I in D.
Define P# as in Lemma 6.14. Then reweight the law of I' by m* (D), where m* is the 3-
occupation measure of P4, Note that this is well defined, since the measure we reweight
by has finite expectation by Proposition 6.16. Finally, conditioning on I', sample the point
v according to m*?. By the Skorokhod representation theorem, we may assume that the
convergence above holds almost surely. We enlarge the sample space by considering an
independent sample of the field h from (6.2). Denote this probability measure by P.

Recall E. in the proof of Lemma 6.21. From that proof, we see that on the event
E., each A-important point is e-pivotal for (h,I"). Moreover,

lgr(l) P[E.]=1.
Let E? be the exact analog of E. defined for w’. By the scaling limit result, for each
(>0, there exist >0 and dy>0 small enough only depending on s and ¢ such that, for
each §€(0,dp), on the event E° every A-important point for w’ is e-pivotal for (h,w?)
and, moreover,
P[E’)>1—¢ for all § € (0, 8). (6.8)
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Now, let us sample (w®,v®) in another way. We first sample v° according to its
marginal law. Then, we sample the Bernoulli—% site percolation w® on D° conditioned on
the event 2 that v0 is A-important. Let =E? be the complement of E°. For the choice
of ¢ and ¢ in (6.8),

P[-ES | F2)=P[-E] < (¢ for all 5 € (0,4). (6.9)
For each veD®NB,,
a5(8,10s) < P[v is s-important for w®] < aj(d,s).

By the quasi-multiplicativity of a3(-, -) (6.5), there is a constant C'>0 not depending on
z and s such that, for all €(0,0.1) and v€D’NB,,

P[F?] < CP[v is s-important for w’]. (6.10)

If veD?NB, is s-important for w?, then v must be A-important for w’. On the event
E?, we further have that v is e-pivotal for (h,w?). Therefore, for all §€ (0, dp),

P[v is not e-pivotal for w® while v is s-important for w® ] <P[-E?, F?).

By (6.9) and (6.10), for small enough ¢ the upper bound in Lemma 6.22 holds for ve
D°NB,. We can choose finitely many z;’s such that B, cover rD. This concludes the
proof of Lemma 6.22. O

6.4.6. Measures on e-pivotal points and the proof of Lemma 6.6

In §6.4.3 we proved that the natural Euclidean and quantum measure defined on the
p-important points converge in the scaling limit to their continuum counterparts. In this
subsection we prove a similar result for the e-pivotals, and we prove that the measures
on the e-pivotals can be obtained via a restriction of the measures on the p-important

points. This allows us to conclude the proof of Lemma 6.6.

PROPOSITION 6.23. Fiz £>0. As §—0, a3(6,1)™" times the Lebesgue measure re-
stricted to PO converge to a measure m. in probability. The restriction of vs to P?
converge to a measure M(h,T') in probability. Recall the constant ¢’ >0 in Proposi-

tion 6.13 and p® in Lemma 6.20. For each fized u€(0,1), almost surely

m.=cm’|p. and Ms(h,F):(c'eh/ﬁmpﬂpE, with p=wup°. (6.11)
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Proof. Conditioning on h and w?, let 2° be sampled uniformly from Pf. By Propo-
sition 6.16, we may assume that z° converge almost surely to a random point z€7P”.
Moreover, conditioning on (h,T'), the conditional law of 2 is (m?(D))~'m”. Let A(z°,¢)
(resp. A(z,¢)) be the event that z° (resp. z) is e-pivotal for (h,w?®) (resp. (h,T')). We
claim that, if A(z,€) occurs, then almost surely there exists ¢’ >¢ such that A(z,¢’) occurs.
In fact, if /€T is chosen in a manner independent of h, then it is clear from the definition
of GMC that pn(reg(f)) is a non-atomic random variable. Thus, e¢{un(reg(¢)):¢€l'}
a.s., which proves the claim.

If A(z,e) occurs, due to the existence of &' > above, Lemma 6.18 implies that
A(2%,¢) occurs for sufficiently small §. If A(z,¢) does not occur, again by Lemma 6.18,
A(2°,¢) does not occur for sufficiently small §. Therefore,

Im 1 ags ) =1acze)-

Hence, for any bounded continuous function f:C—R, we have
lim E[f(z°) 1.0y | (o, T)] =E[f(2)1a(s,e) | (h,w’,T)] aus. (6.12)

Since lims_,o m§ (D)=m” (D), we have that aj(,1)~! times Lebesgue measure restricted
to P2 converge to some limiting measure m. in probability, and we have m.=c'm?|p_ a.s.
Therefore, m.=c'm”|p_ a.s.

The results concerning v°, M#(h,T'), and e/ Vome follow from the exact same argu-
ment, where we assume that 2° is sampled according to Vé"pg and invoke Lemma 6.17

instead Proposition 6.16. O

Proof of Lemma 6.6. The coupling of (w’, h,T'y) in Lemma 6.6 is exactly as (w®, h,T")
in Proposition 6.23. Now, Lemma 6.6 follows from Proposition 6.23. Moreover, the set
A in Lemma 6.6 can be taken to be P? for small enough p. O

6.5. Proof of Proposition 5.1

We now conclude the proof of Proposition 5.1 using results of the previous subsection.

We first provide a precise definition of the measure Mj . in Proposition 5.1.

Definition 6.24. Fix e>0. Recall h, I" in Proposition 5.1 and ¢’ in Proposition 6.13.
Let p° be defined as in Lemma 6.20 in terms of h. We set MfLF::(C'eh/\/gmpﬂpE, where
p=0.5p°.

Recall from §1.4.3 that m is the renormalized scaling limit of Lebesgue measure

restricted to macroscopic pivotal points. To be more precise, we define the measure m to
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be the unique measure such that m|p, =c’'m”? for each p>0. Similarly, we define eh/Vom
to be the unique measure such that (e?/Vom)|p, =e?/Vom? for each p>0. (Note that m
itself is not locally finite as a Borel measure on R?, so we cannot directly define a GMC
on it.) In this sense, we may write Mfl’rz(eh/\/gmﬂpg as we did above (1.5).

Recall the definition of vs and P? from §6.4. By Proposition 6.23 and (6.2), the
measure Mj, 1 can be obtained as the renormalized scaling limit of e/ V632 restricted
to P2 (viewed as a collection of hexagons). Moreover, M?(h,T') from (6.11) equals
&5 (OD)Y/2 M5, - almost surely.

Proof of Proposition 5.1. Given p in Definition 6.24, by Lemma 6.14, we can find
quads @1, ..., @, such that ’P”:U;L:l PQi and the sets P9 are disjoint. By Lemma 6.21,
we can find ¢ €(0, e) small enough such that P? CP./. In Proposition 5.44, let h=h and
Q=Q; for some 1<i<n. By Definition 5.18, vz from Proposition 5.44 then agrees with
Vﬁ:r |pe. Therefore, €h/\/6mQ ZCVﬁ/’F [Py, with ¢ as in Proposition 5.44 (and Lemma 5.39).
Thus, eh/\/ém”:cz/flir\pp. By Definition 5.18, Vﬁ7F:V}iF|pE. Hence, (¢/)~'M§, p=cvj 1,

so Mg, p=cyj, o for e=cc’. O

6.6. The quad-crossing configuration determines the CLEg

By the iterative construction of CLEg in Lemma 2.11, Theorem 6.10 can be deduced

from the following single interface variant.

PROPOSITION 6.25. In the setting of Theorem 6.10, let i be the interface of T' on
(D, —i,%). Then, n is a.s. determined by w.

Proof of Theorem 6.10 given Proposition 6.25. Let a=—i and b=i. By Proposi-
tion 6.25, 7 is a.s. determined by w. Let B be a dichromatic bubble of 7. Recall
zp, T and np as defined above Lemma 2.11. Let ¢:B—D be a conformal map with
d(rg)=—i and ¢(2p)=i. Let ¢p.weH(D) be defined by ¢.w(Q)=w(¢p~1-Q) for each
Q€ Qp. Then, (d.w, gbong)i(w,n“b), where ¢ong and 7% are viewed as curves modulo
increasing reparametrization. Thus, ¢ong is a.s. determined by ¢.w, and hence 73 is a.s.
determined by w. Therefore, w a.s. determine I'. In light of Lemma 2.11, Theorem 6.10

follows by iterating this argument. O

It remains to prove Proposition 6.25. In the following proof, given a quad @, we
write Q= (U, a, b, c,d) if Q((0,1)?)=U and the four marked points are a, b, ¢, and d in

counterclockwise order from @(0,0)=a.

Proof of Proposition 6.25. We first argue that the range of n is determined by w.
Let p:[0,1]—=DUOD be a simple smooth curve such that p(0) and p(1) are on the left
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.

Figure 6.3. Illustration of the proof of Lemma 6.25. Left: The quad-crossing configuration
w determines whether the quad (U, a, p(1), p(s), p(0)) (in light yellow, with marked points in
red) is crossed, and therefore whether n’ hits p([0, s]) or p([s,1]) first. Right: Illustration of
the event E(B, pg, pr). By varying py and py, we can determine whether n'NB=g.

and right boundary of (D, —i, ) (not including endpoints), respectively, and p((0,1))CD.
Let

T=1inf{t:n(t) € p}.

Let U be the connected component of D\ p whose boundary contains —i. Then, for each
fixed s€(0,1), we claim that it is a.s. the case that

n(r) €p([0,s]) if and only if w(Q)=1, with Q= (U, —i,p(1), p(s), p(0)).

Given this claim, since Q€ Qp, by Lemma 6.1, n(7) is a.s. determined by w.

To prove the claim above, we write a=—i, b=4, and ¢=p(s). Recall the discussion
about percolation interfaces and crossing events above Lemma 6.12. For §>0, let w’
be the Bernoulli—% site percolation on I° with monochromatic blue boundary condition.
Let ngb be the percolation interface of w? on (D%, a’,b?). Let nrs be the percolation
interface of w? on (U?,a%,¢®). Then, ng’, Nitss w%, and T'(w?) jointly converge. Denoting
the joint limit by (7%, 7%, w,T"), the joint law of (w,n?) is the same as that of (w,n) in
Proposition 6.25. Moreover, before hitting p([0, 1]), the curves n?° and n¢ a.s. coincide.
Thus, it is a.s. the case that n(7)€p([0, s]) if and only if ¢ hits p([0, 1]) at a point on
p([0, s]). The latter event equals {w(Q)=1} a.s. by Lemma 6.12. This proves the claim
above.

Let B be a ball contained in D. For ee{f,r}, let p.:[0,1]>DUID be a simple
smooth curve such that p.(0)€dB, p.(t)eD\OB, and p.(1) is on the left (resp. right)
boundary of (D, —i,i), when « equals ¢ (resp. r). Furthermore, we require p;Np,=9.
By the previous paragraph the location where n hits BUp,Up; is a.s. determined by w.
In particular, the event E(B, ps, p;) that n hits B before pyUp; is a.s. determined by w.
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Note that nNB#2 if and only if there exists py and p, such that E(B, pg, pr) occurs.
Furthermore, if E(B, ps, p;) occurs for some py and p,, then it holds a.s. that E(B, py, pr)
occurs for py and p, chosen from some countable set. This implies that the event nNB# o
is a.s. determined by w. Therefore, the range of 1 is determined by w.

Now recall p, U, and 7 as defined above. Since ([0, 7]) is the intersection of the
range of the percolation interfaces of I' on (U, —4, p(0)) and (U, —i, p(1)), by the previous
paragraph 7([0, 7]) is a.s. determined by w. We assume that ¢(n) is parameterized by its
half-plane capacity, where

z+1
¥(z)= 1+iz
maps (D, —i,4) to (H,0,00). Then, for a fixed ¢t>0, the event {n([0,t])CU}={r>t} is
a.s. determined by w. Using the inclusion-exclusion principle and varying U, we see that

n([0,¢]) is a.s. determined by w, and hence 7 is a.s. determined by w. O

Remark 6.26. Based on [GPS2, §2.4], it was essentially known to Garban, Pete, and
Schramm that the quad crossing configuration determines the range of SLEg. However,
since the range of SLEg does not determine its order [MSW], those authors considered
Proposition 6.25 as an open question; see Question 2.14 there. The novel step in our
proof as compared to [GPS2, §2.4] is the observation that, due to the target invariance
property of SLEg, we can determine the range in every domain, which allows us to recover
the ordering.

6.7. Proof of Lemmas 6.5, 6.7, and 6.8

In this section, we first prove in §6.7.1 the existence of a probability space (€2, F,P) where
Theorem 6.4 holds and, moreover, the Poisson point process corresponding to the updates
in the discrete LDP converge in a strong sense. In §6.7.2, we put h and (wf";)tw into the
framework of continuous-time finite-state Markov chains. Then, in §6.7.3, we show that
(Q, F,P) from §6.7.1 satisfies Lemma 6.5, which asserts that (Ff"s)@o converge in law to
a process (I'f)¢>0. Moreover, we prove Lemma 6.7 which describes the law of (h,T'f)¢>0.
Finally, in §6.7.4, we prove Lemma 6.8 which gives convergence of the e-dynamics on the

planar map until the second jump.

6.7.1. Assumptions on (2, F,P)

Let (2, F,P) be a probability space satisfying Theorem 6.4. Recall that lims_,o FS"S:FE
a.s. Let (w5,F5,F)::(w3,F8’6,FS), so that (w?,T?,T,h) satisfies the conditions in §6.4.
Recall v5 at the beginning of §6.4. Let v and m” be as in Lemma 6.17. Conditioning
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on b, the ringing locations and times for the clocks in the discrete LDP (wf)t>o is a
Poisson point process (p.p.p.) with intensity vs®dt, which we denote by PPP;s. If we
only look at updates in P§, namely, p-important points of w?, then we get a p.p.p. with
intensity v§ ®dt, which we denote by PPP4. For t>0 and z€D°, we write (z,t) EPPP;
if the clock at x rings at time ¢. The same convention applies to other p.p.p.’s. In the
rest of this section, we further require that the probability space (2, F,P) satisfies the

property in the following lemma.

LEMMA 6.27. There exists (0, F,P) satisfying both Theorem 6.4 and the following
condition. For each fized p>0, PPP{ converge almost surely to a p.p.p. PPP? with
intensity eV Vomp@dt in the following sense. For each T>0, as §—0, we have that
{(z,t)ePPPL:t€[0,T]} converge to {(x,t)ePPP”:t€[0,T]} almost surely.

Proof. Let (Q,F,P) be a probability space satisfying Theorem 6.4. In particular,
(w®,T9,T, b) satisfies the conditions in §6.4. Fix k€N and set s=10*. By Lemma 6.17,
lims_,0 ugzc’eh/\/éms in probability. By [GPS3, Lemma 7.5 and Corollary 7.6], we
can find a coupling of (w’ T° h) and PPPs such that PPP§ converge almost surely
to a p.p.p. PPP® with intensity c’eh/\/gmsébdt, in the sense specified in Lemma 6.27.
By Definition 6.15 and elementary geometric considerations, for each p>10s, we have
PPCP®, and P§CP; for small enough 6. Fix T>0. By Lemma 6.14, there almost
surely exists p’€(s, p) and p” >p sufficiently close to p, such that, for each (z,t)ePPP?
with t€[0,T], if z€PP, then zeP?” | otherwise a:¢77”/. By the convergence of loops, we
have that {(z,t)ePPP%:t€[0,T]} converge to {(x,t)ePPP”:t€[0,T]} almost surely. In
particular, the convergence holds for p=10"F+1,

By the Skorokhod embedding theorem, we can further require (2, F,P) to be such
that PPPj converge to PPP® a.s. for s€ {107%:k€N}. In such a coupling, for a fixed
p>0, by considering s=10"% with p>10s and repeating the argument in the previous
paragraph, we see that PPP{ converge to PPP” a.s. This concludes the proof. O

6.7.2. A continuous time Markov chain

To prove Lemmas 6.5 and 6.7, we put b and (wj ’5)t>0 into the framework of continuous
time finite-state Markov chains. Let S° be the space of site percolation configurations
of D’ with monochromatic blue boundary condition. Then, conditioning on b, (wy ’6)t>0
is a continuous-time Markov chain on the state space S? whose initial distribution is the
uniform measure. Let Qp:=(qi;); jess be the transition rate matrix of (wf"s)t>0. For any
two distinct states 7 and j in S°, if

(1) the colorings of i and j only differ at one vertex v€D’, and

(2) v is an e-pivotal point for 4, or, equivalently, for j,
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then
e — ) 6 5.1 —1
dij = qji uh(v)a4( )7

Otherwise, ¢;;=0. Since @y is symmetric, the uniform measure on S? is a stationary
distribution. Namely, (w{*);¢ is stationary conditioning on .

For each state i€S°, let NE(i):=> A (v)a(6,1)~1, where the summation ranges
over e-pivotal points of (h,i). Let 8%:={ieS%:Ng(i)>0}. If wi®¢S?, then wi’=wg?®
for all £>0. On the event wg"se&‘i, the process (wf’é)t>() evolves as a stationary Markov
chain on S%. Let (J,i"s)keN be the discrete skeleton of (wtg"s)@o. Namely, on the event
wg";eSf, (J,i’é)keN is the discrete-time Markov chain on S° keeping track of the jumps
of ()0 If w§®¢S?, then JE*=wi? for each keN.

Conditioning on b, we can sample (w; ’6)t>0 in a 2-step procedure:

(1) run (JZ’é)keN with its P-law (conditioning on b);

(2) conditioning on h and (J,j’é)keN, the time spent in each state J;"s is an inde-
pendent exponential random variable with rate IV, §(J,§’6).

Let Py be the transition matrix of (Jg’é)keN conditioning on h. It is elementary to
see that the uniform measure on S° reweighted by N 5 is a stationary measure for Py. In
other words, define N :=N§ (wg’é). Then, (J;"s)keN is stationary under the probability

measure obtained by normalizing Ng dP.

6.7.3. Proof of Lemmas 6.5 and 6.7

We now prove Lemma 6.5 and 6.7. Given the Markov chain description of (wj ’6)@07
hence (T5);50, in §6.7.2, the convergence in law for (I'"),s¢ asserted in Lemma 6.5
to the desired limit desired described in Lemma 6.7 is quite straightforward. We just
need to show that the exponential clocks and the skeleton of (Ff’é)t%) converges to the
desired distribution. For the skeleton convergence, we will use the fact that under the
reweighted measure NEdP at the end of §6.7.2, the skeleton (JZ’(S)keN is stationary. If N§
converge in L', then given all the work done in §6.4, this convergence would be trivial.
The main difficulty that we face in this final step is that N§ may not converge in L', at
least this is not clear to us. Most of the technical work in this subsection is devoted to

circumventing this issue. We start by some basic limiting properties of Ng.
LEMMA 6.28. Recall M*®(h,T') in Proposition 6.23. Fiz an €>0. Let N¢ be the
ME(5,T)-mass of e-pivotal points of (h,T"). Then,

ImNF=N® and lim 1pe—g=1pre—
55079 §—0 N§=0 Ne=0

in probability.
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Proof. Note that N is the total vs-mass of the e-pivotal points of (h,w®). Setting
f=1in (6.12), we get lims_o N§=AN¢. For the second assertion, recall PPP{ and PPP”
in Lemma 6.27. For each fixed T" and p>0, we query whether points in

{z:(z,t) e PPPE,t€(0,T]}

are e-pivotal for (h,w?). By Lemma 6.18, the answer converges to its counterpart for

PPP?. Sending T— o0 and p—0, we conclude. O

Recall p* from Lemma 6.20. Namely, p°>0 is a random number such that each
e-pivotal point of (h,T) (resp. (h,w?®)) is p-important for T' (resp. I'®) for pe(0, p°) and

d€(0,p). The following variant of Lemma 6.18 is immediate from Lemma 6.20.

LEMMA 6.29. Let
O i=inf{t>0:wi’ £wl}

be the first time (wi*)i>o jumps. Let

5 .
56 ey, if 79 < 00,
T 1'\&5 . o

o, if T°=o00.

Then, the limit T=lims_0 IV exists in probability for the L(D)-metric.

Proof. The case N€#0 is immediate, so we focus on the event that N¢#0. By
Lemma 6.28, on this event for small enough ¢ we have N§ >0, and hence 7% <00. Define
@5::wi’5§, so that T9=T'(@%). Let z°€D® be such that &°(z°)#w’(2?). Then, z° must be
e-pivotal for (h,w?®). Therefore, (z°, 79)€PPP% for pe (0, p°) and §€(0, p). By the almost
sure convergence of PPPY for arbitrary p from Lemma 6.27, we see that z’ converge
almost surely to a random point z€D. Now, the convergence f:lim(;ﬁo [ follows from
Lemma 6.28. O

For a fixed p>0, let PP=P[p<p®]~'1,.,:P, with p° as in Lemma 6.20. We intro-
duce P? because under P? every e-pivotal point of also p-important, and we do have

convergence of Nf in L',
LEMMA 6.30. N§ converge to N¢ in L' under P*.

Proof. Since N§1,<p- <v§(D), by Lemma 6.17, {N§}s50 is uniformly integrable
under P?. As N§ converge to ¢ in PP-probability by Lemma 6.28, we are done. O

Let ﬁ’g be the probability measure obtained by normalizing N5P?, and let P? be
the probability measure obtained by normalizing NP?. We first prove the variant of
Lemmas 6.5 and 6.7 (i.e., Lemma 6.31) under these truncated and reweighted measures.

Then, we use Lemma 6.30 to remove the truncation and reweighting.
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LEMMA 6.31. Fiz £>0 and p>0. We can enlarge the sample space (Q, F, IT‘”’) to
admit a process (I'f)i>0 such that the I?”g—law of (b,Ff’é)@O weakly converge to the PP-
law of (§,T%)i>0 as 6—0. Moreover, the law of (§,1%)¢>0 can be described as follows.
Conditioned on b, (I'{)i>0 is a stationary Markov process, where I'§ is a CLEg on D.
Moreover, almost surely (I'f)¢>0 has infinitely many jumps, but only has finitely many
in any finite interval. Conditioning on (D,4,T§), an exponential clock rings with rate
(fh(aD))l/szl)Fg (D). Once the clock rings, sample an e-pivotal point z from Mirs-
The process (I') jumps to the loop ensemble obtained from I'§ by flipping the color at z.

The remaining jumps in the process are sampled iteratively.

Proof. Recall that (JZ’J);@O is the discrete skeleton of (wi*);>0. In this proof we
abuse notation and identify JZ’(S with its loop ensemble F(JZ"S). As ﬁ’g N5 >0]=1, due to
the reweighting of NVf in I?P"g, the skeleton chain is stationary and a.s. non-trivial (i.e., it is
not constant in time). We will carry out the proof of Lemma 6.31 in three steps. In Step 1,
we show that in any coupling where (b, Jg ’5) converge in probability, we can enlarge the
coupling such that J} 0 converge in probability as well. In Step 2, we use the stationarity
of (J,i"s);@o to inductively show that there exists a coupling where (b, Jg"s, ey JE0) con-
verge in probability for all n>0. In Step 3, we deal with the convergence of the waiting
time between jumps and their local finiteness in the continuum. Putting these three
steps together, we get the desired description of the limiting process (I'f );>o.

Step 1. From J5° to JP°. Let J=To. As (b, J5°) converge almost surely to
(h, J§) under P, the same convergence holds under P,. By the L' convergence of the
Radon-Nykodim derivative in Lemma 6.30, the ﬁg—law of (b, J; ’6) converge to the Pr-
law of (B, J5). Recall the measure vs from §6.4 where each vertex z is assigned mass
A (z)ad(8,1)"1. Let 15° be vs restricted to the set of e-pivotal points for (b, J5?).

Then, by Proposition 6.23, Z/S’5 converge in probability to the measure
ME(0,J5) = ME(1,T).
Again by Lemma 6.30, the ﬁg—law of (b, Jg’é, 1/8’5) converge to the PP-law of
(b, Jg, M*(h,T)).

Let h%=h for each §>0. Suppose that we are under an arbitrary coupling of the
I?P/’g—law of (§%,J5°) and the PP-law of (B, J¢) such that (h%, JE*°) converge to (b, J§) in
probability. We claim that the sample space of this coupling can be enlarged to become
a coupling of the H?’g—law of (b°, Jg’a, Jf’é), where Jf’5 converge in probability as well.

Note that M#(h,T') can be viewed as a measurable function from H~1(D)x £(D) to

the space of Borel measures on D, which is well defined modulo a P-probability zero event.
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Therefore, by Lemma 4.2, under the coupling in the previous paragraph, v 0 converge to
ME (b, J§) in probability, so we can enlarge the sample space for this coupling to contain
random points zj and z, sampled according to z/g’(S and M= (b, J§5), respectively, such
that zgﬁzo in probability. By the definition of ]’Ivbg and P? , almost surely each e-pivotal
point is p-important. Therefore, z{ (resp. z) is p-important for J§’5 (resp. J§). Let Jf"s
be the loop ensemble obtained from J; 0 by flipping the color at z{. By Lemma 6.18 and
Remark 6.19, J; 0 converge in probability to the loop ensemble Ji obtained by flipping
the color of J§ at zg. Although Lemma 6.18 is proved under P, given the L!-convergence
from Lemma 6.30, the proof of Lemma 6.18 works in this setting. This gives a coupling

of the H?’g—law of (B°, Jg’é, Jf’é) that converge in probability.

Step 2. Convergence of the full skeleton. We perform the following induction. Sup-
pose that, for some n>0, there exists a coupling of the I@g—law of (h°, Jg’é, e Jf;‘s) such
that the convergence holds in probability. We write (§°, J§, ..., J5) as the in-probability
limit. By the 2-step sampling procedure for {JZ’é}keN at the end of §6.7.2, we see that
the ﬁg—conditional law of (Jz’é)k20 given h? is a stationary Markov chain. In particular,
under this coupling, the law of (h?,J5%) equals the @g’—law of (h°, Jg’é) and the law of
(hY, JE) equals the PP-law of (b, J§). Then, we can enlarge the sample space of this cou-
pling to admit zfl and z,,, such that ZfL—>Zn in probability, and zfl and z,, are sampled in
the same way as z)) and zg in Step 1 with JS% and J in place of J§’6 and J§, respectively.
Define Ji’_fl and J;.,, in the same way as JIE’6 and J{ by flipping colors. Then, by the
same argument as in Step 1, Jf;fl converge to J;,; in probability. We also note that,
conditioning on (§°, J§, ..., JS), the point z, is sampled according to M*(h°, JZ), and
Je

.1 is obtained from J;; by flipping color at z,.

By the above induction, we see that, for each n>0, the I@g-law of (h°, Jg"s, ey JE9)
weakly converge. Since the law of the field equals the Pr-law of h, we can enlarge the
sample space of (Q, F,P?) to admit random variables (Jg, ..., J¢) such that the weak limit
is the PP-law of (b, J§, ..., JS). Also, from the above induction, we see that conditioning
on b, the conditional law of (Jf)ken is a Markov chain whose transition kernel is as

described in Lemma 6.31, i.e., first sample an e-pivotal point and then flip the color.

Step 3. Convergence of jumping times and their local finiteness. Recall the enlarged
sample space (2, F, PP ) at the end of Step 2. We further enlarge it as follows. Let My, be
the total mass of M*(l, J7) for £>0. Conditioned on (h, J;)r>0, sample an independent
sequence (6;);>1 such that 75, has the law of the ringing time of an exponential clock with
rate M;_; for each i>1. Let N,f"; be defined as Ng, with (b, JZ"S) in place of (b,Fg’é).
Then, N, ;’6 convergence in law to (My)r>0. Moreover, the convergence holds jointly
with (b, J£)k>o0. For k=1, let 70 be the kth jumping time of (Fi"s)@o and Tk:Zle 0;.
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Then, by the 2-step sampling procedure at the end of §6.7.2 and the conclusion of Step 2,
the ]f”g—law of b, (JZ"S);@O, and (T,f)k>1 converge to the PP-law of B, (J§)k>0, and (Tk)r>1-
Since (b, J§)k>o0 is stationary, so is (Mg)r>0. On the other hand,

PP[My, € (0,00)] =1,

due to the A¢-reweighting in Pr. Now, the ergodic theorem yields that

> M;t=00, Pras. (6.13)

i=1
Therefore, > .=, 6;=00 almost surely under P?. We now define Ts=J¢ if te[rg, Thr1)-
Then, (I'});>0 makes finitely many jumps in any bounded interval Pr-a.s. Moreover, the
Pr-law of (6,T%)>0 is the weak limit of the Iﬁ’g-law of (b, Ff’é)@o. Recall from §6.5 that
ME(h,I)=¢y ((“)]D))lmMiJm Therefore, the rate of (0)r>1 given h and (J)r>o is exactly
as described in Lemma 6.31. Combined with the description of the law of (b, J§, ..., JZ)
from Step 2, we see that the PP-law of (6,T%)>0 is as described in Lemma 6.31. O

Proof of Lemmas 6.5 and 6.7. It suffices to show that, in the setting of Lemma 6.31,
for a fixed p>0, as d—0, the PP-law of (f),l“i’é) weakly converge to the PP-law of
(5,T%)t>0. Once this is done, Lemma 6.31 shows that the P?-law of (§,T%);>0 is as
described in Lemma 6.7 with the further condition {p°>p}. So, sending p—0, we will
conclude the proof of Lemmas 6.5 and 6.7.

For neN, define

gn(z)=n’2l, 1+ 1,0, 1 for z€[0,00).

Let f be a bounded continuous function on the space of H (D) x £(ID)-valued processes
on [0,00) under Skorokhod topology. Let EF " be the expectation with respect to P?.
Define EF” and EF similarly. For a fixed n, we see that g, is a bounded continuous

function on [0, 00). Therefore,
tim EPS[£((5, 1) 20090 (NG =E7 [£((8, T )i0)9n (V)] for each n e N.
Since
NEPP =EP [NEIPS,  NCPP =B [N°]P?, and (%LI%EP”Wg]:]EH””[ ‘],
for each neN we have
m B [£((5, 15 *)20)90 (NG NG] = lim E¥ N E [£((5 15 ) 20)90 (A5)]
=" IVFIEP [£((6,T5)20)9.(N°)] (6.14)
=" [£((0.T9)iz0)gn (NN,
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Since 0< gy (z)x<1 for all x>0, we have

B [£((h,T5°)e20) 9 (NENE]—EX [£((5,T5)ez0) 1z >0l

(6.15)
<[P0 <NE <n7Y)

Moreover, (6.15) remains true if I$"° and NE are replaced by I'; and N¢, respectively.
Therefore,

lim E™ [£((5,T5)120) 0 (NN =B [£((5,T5)1z0) Ln=>0l-

n—oo

This, combined with (6.14) and (6.15), gives that

tim B[ (5,75 )ez0) Lz >0 = B [F((9, T z0)Lave ] (6.16)
On the event that NE=0, we have I'?°=I5° for t>0. Combined with Lemma 6.28
and (6.16), the P-law of (h,I'5"°) weakly converge as 6—0 to the PP-law of (b, I'$)i>o as
desired. O

The content of Lemmas 6.5 and 6.7 is the existence and a description of the weak
limit of the ﬁ’g—law of (b, Fi’é)go. The enlargement of the sample space in the statement
of Lemma 6.5 is not essential. Since the marginal law of the field stays the same, for
convenience we just use the field h to generate a sample of the limiting dynamic. On
the other hand, in the proof of Proposition 6.9 we will show that in a sample space
satisfying Lemma 6.27, the convergence already holds in probability. Proving this requires

additional input from LDP which we will provide in §6.8.

6.7.4. Convergence after the first flip: planar map case
We now turn our attention to Lemma 6.8. Suppose we are in the setting of Lemma 6.29
and the proofs of Lemmas 6.5 and 6.7 in §6.7.3. Let PV, (resp. ﬁfg) be the set of e-
~ —~ ¢
pivotal points of (h,T) (resp. (h,T)). Let PV? and PV_ be their counterpart for (h,w?)
and (h,@?), respectively. The following lemma is extracted from [BHS, §8.3].(*°)
LEMMA 6.32. For €>0, there exists a measure 1/15; 7 supported on ﬁ/'g such that for

each fized €' >0, Vflfzyﬁ:F on PV.NPV, a.s.

Since

JPV.=JPV.

e>0 e>0

(13) With ¢p as in Proposition 6.34, CPV}E, 7 is the measure op . in [BHS, §8.3].
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almost surely, Lemma 6.32 characterizes 74, - modulo a probability-zero event. Recall
that in §6.7.3 we view M®(h,T") as a measurable function from H~1(D)x L(D) to the
spaces of Borel measures on D. In particular, the measure M= (b, f) is well defined and

supported on ﬁ/'g. In light of Definition 6.24 and the discussion below it, we set
MG 5 1= (D)2 M= (5, ).

LEMMA 6.33. V}if:cMEhf a.s., with the constant ¢ as in Proposition 5.1.

Proof. By a reweighting consideration as in the proof of Lemmas 6.5 and 6.7, the
—~ 0 ~
vs-measure restricted to PV, converge in probability to M®(h,I'). For e,&’ >0, the vs-

Ny}
measure restricted to PV‘ES, NPV, converge in probability to both

M* (hvr)h)vamﬁfg and ME(bI”PVE/nﬁ\\/E'

The first convergence can be shown by the same argument as in Proposition 6.23. The
second convergence follows from the first one and the stationarity of {.J ;’6}keN under the
measure @g’ for arbitrarily small p>0. Therefore, .ME/(h,F):ME(h,f) on PV, NPV..
Lemma 6.33 now follows from (6.2), Definition 6.24, and Proposition 5.1. O

Now, let us consider (h,F,f) on the probability space (Q2, F,P4), where (D, h, 1) is
a @—LQG disk. For neN;, let (M™,T™) be as in Theorem 1.9. Let z"™ be a uniformly

sampled e-pivotal point of T", and let Y™ be the loop ensemble obtained by flipping

the color of z". Let v and 75 be n~1/4

times the counting measure of e-pivotal points
of Y™ and '/f”, respectively. We view (M" T 'Y'", Ve, ¢) as a metric space decorated
with one boundary curve, two loop ensembles, and three measures. In the continuum,
similarly as (D, h,T") in Remark 2.15, we view (]D),h,I‘,f, Vlgnl“’l/}if) as a metric space
with the same kind of decorations. We straightforwardly extend the GHPUL distance
in §2.2 to this setting. With these notation, the following proposition is a restatement

of [GHS1, Proposition 6.4].

PROPOSITION 6.34. In the setting right above, there exists a constant c,>0 sat-
isfying the following. For each >0, there exists a coupling of (M”,T”,'/f")neN and
(h,I‘,f) such that almost surely (M”,T",Y‘” Ve, DE) converge to

r¥nr n

n e e
(D, h, T, T, cpvp s CPVh,f)

in the GHPUL topology.
In the original statement of [GHS1, Proposition 6.4], the limiting measures CpVh T

and ¢,y - are as defined using the terminology of [BHS]; see [BHS, Proposition 8.12].
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As explained in Remark 5.19 and Lemmas 6.32 and 6.33, these measures agree with
the ones considered in our paper. Therefore, Proposition 6.34 is equivalent to [GHSI,

Proposition 6.4].

Proof of Lemma 6.8. By Proposition 6.34, we have

lim v}, (M") = cpi, (D) = ccp Mj, (D)

n—oo

and
lim 2y, (M") = cprp 7(D) =ccp M| 7(D),

n—oo
by Proposition 5.1 and Lemma 6.33. The 2-step sampling procedure in §6.7.2 applies to
(M™, Y57 )i=0. Recall the definition of (Y,f);>0. Lemma 6.8 follows from the sampling
recipe for (Y;?);>0 prescribed by Lemma 6.7. O

6.8. Stability of the cutoff and proof of Propositions 6.9 and 6.11

In this section, we identify a site percolation configuration on D? with an element in (D)
(see §6.2) as needed. We will first show that (2, F,PP) in §6.7.1 satisfies Proposition 6.9,
and then prove Propositions 6.11.

Our proofs rely on some stability results established in [GPS3], [GHSS], asserting
that the importance of a vertex is rather stable in time. Before stating them formally,
we point out that our definition of p-important pivotal points is slightly different from
the definition in [GPS3], [GHSS]. In [GPS3] p-important pivotal points are defined in
terms of how far the alternating four arms starting at the pivotal point can reach. For
a square B, recall the annulus A=Apg in §6.4.2. Our notion of A-important point agrees
with the one in [GPS3], [GHSS], as long as ACD. There is a small deviation in definition
when ANOD#@, but this is irrelevant as the results we will use from [GPS3], [GHSS] are
about p-important points in D with r€(0,1). In this case, as explained in [GPS2, §4.7],
these two notions of p-importance are effectively equivalent. In particular, the results we
will be relying on hold for both notions.

Having the clarification above, the following stability result is an immediate conse-
quence of [GHSS, Lemma 3.7] and [GPS3, Proposition 3.9]. Intuitively, it says that, with
probability 1—o0,(1) uniform in ¢, the influence to the quad-crossing configuration of the

updates in the dynamics (w? )¢>0 is captured by the updates on the p-important points.

LEMMA 6.35. Fiz T>0 and r€(0,1). Let Xs be the set of vertices on D which are
updated for the dynamics (wf)tE[O,T]. Let Qg be the set of percolation configurations w'
on D° such that w'(v)=wd(v) for all v¢ Xs. Let PY be the set of p-important points
for Wi, Given w',W"€H(D), let d.(w',w") be the dy-distance of the restriction of w'
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and w" to Qp. For all (€(0,1), there exist constants p1>0 and §o>0 depending only
on r, T, and ¢ such that, for all p€(0, p1) and §€(0,00), one has

P[max{d,(w',w"):w'(v) =w"(v) for vePf andP ', w" €Qs} > (] <.

We also need the following variant of stability which is also essentially from [GHSS].
In terms of notation in Lemma 6.35, it says that, for each p>0, with probability 1—
05(1) uniform in §, each p-important point in P that is updated during [0, 7] remains

s-important with respect to all configurations in 5.
LEMMA 6.36. In the setting of Lemma 6.35, with r€(0,1) and p, T>0 fized, let
Zs(v):=inf{p’ >0: there exists w' € Qs such that v is p'-important for W'}

for verD, and
Ns(p,s) =#{veP{nXsNrD: Zs(v) < s}

for s>0, where # means the cardinality. Then, for all (€(0,1), there exist constants
s>0 and 09>0 depending only on p, r, T, and (, such that

P[Ns(p,s)=0]>1—=C for all 6 €(0,d).

Proof. By [GHSS, Lemma 3.5], there exists an almost surely finite random number

C(h,T) such that, for every §, s, and p satisfying
2W<s<2ts<p<1
and every vertex ve€D?N7D, one has
Plv e Py, Zs(v) <s|h] <C(h, T)s"a} (8, p),
where >0 is a constant and a§(6, -) is defined as above Theorem 6.4. Therefore,

E[Ns(p,s)|b]= D PlePiNXs, Zs(v) <s|b]

veDSNrD

<C(h,T)s%a4(0, p)E[#(XsNrD) | b

< Y CM.1)sPad(6, p)- Ty (v)ad(s,1)~".

veDsNrh
Here, we recall that y (v) is the pj-mass of the hexagon corresponding to v in the dual

lattice of D°. By the quasi-multiplicativity of aj(-, -) (see e.g. [SWe]),
aj(6,1) "1l (5, p) <cp™*,
so a$(8,1)"aj(6, p) is upper bounded by a constant ¢ only depending on p. Therefore,
E[N;(p, s) | b] < ey (D)C(h, T)s”.

Now, Lemma 6.36 follows from Markov’s inequality. O
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We are now ready to prove Proposition 6.9, which upgrades the convergence in law
of (Ff"s)t>o from Lemma 6.5 to convergence in probability simultaneously for all é>0. In
the proof, we will retain the setting from §6.7.3, where we proved Lemmas 6.5 and 6.7.
The key idea to use the stability results above to prove that, with probability 1—o04(1),
if a jump of (wf’é)go occurs at location 2 and time ¢, where  is e-pivotal for (h,w°),

then x must be s-important for wg"s; see (6.17) below.

Proof of Proposition 6.9. We claim that, for (2, F,P) as in Lemma 6.27, (I‘i"s)go
converge in probability rather than just in law. Fix pg>0. Let Pro, @go, and Pro be
defined as P?, ]IN”(’;, and P in §6.7.3 with p=po. We denote a jump of (Fi"s)fgo by (z,t),
where ¢ is the jumping time and z is the pivotal point being flipped at ¢. For each s>0
and T>0, let E3(T) be the event that for each jump (x,t) of (Fi"s)go with t<T, if ©
is e-pivotal for (h, wf"s) then z is s-important for wg’é. We claim that, for all (€(0,1),
there exist dp>0 and s>0 only depending on ¢ and T such that

PPo[ES(T)] >1—¢ for all § € (0, dp). (6.17)

We first explain why (6.17) is sufficient to conclude the proof. Let 7{ denote the time
of the kth jump of (I'$")ys0. By Lemma 6.29, (F?é)te[o;g) converge in PPo-probability.
Let us write leimgﬁo I as in Lemma 6.29. Let z° be such that (29,79) is the second

1

jump of (Fi’é)@o. By (6.17) and the convergence of PPP3 for each s (see Lemma 6.27),
2% converge in I?P;P“—probability to a point z. On the other hand, the Pro-laws of I' and T
are the same. Observe that Lemma 6.18 applies to (Fi’;, 2%) under ]I~Dp°, by absolute con-
tinuity. Therefore, (Fi’é)te[nsﬁg) converge in PPo-probability. (Since ['=limg_,q I‘i’;, we
in fact need ~Remark 6.19 here.) We can repeat the same argument to get (Nrf’[s)te[r,ﬁ,r,fﬁ)
converge in PPo-probability for each £>1. This gives the convergence in P-probability
of (Fi’ﬁ)@o. Therefore, the same convergence holds under P?0 | if we further condition on
{Ne=£0}. On the event N*=0, the dynamic is trivial. We conclude that (Ff"s)t>o con-
verge in PPo-probability. Sending po—0 gives the desired convergence in Proposition 6.9.

It remains to prove (6.17). We first argue that Pro and f"go are close in total varia-

tional distance, when ¢ is small. For any event F€F, we have that
[E7° N5 1p] = E7 IN*1g]| SEP[ING —N°],

where [Ef° is the expectation corresponding to PP°. By Lemma 6.30, there exists a
function ¢*°(9) not depending on E such that limgs_,o ¢ (§)=0 and

[P5[B] P [E]|<¢(8) for all B€F. (6.18)
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We now fix K €N large enough and Jy>0 small enough such that
P2 o >T]>1-0.1¢

for §€(0,680). Let GL(r) be the event that, if (z,7}) is a jump of (Fi"s)go for 1<k<K,
then zerD. By possibly shrinking §p, we can find 7€(0, 1) such that

PG (r)] > 1-0.1¢

for §€(0,8p). For 1<k<K and p>0, let GZ(k; p) be the event that every e-pivotal point
of (h,Fi’;g) is p-important for Fi’f. Set
k k

K
Recall Lemma 6.20. By choosing p small enough and possibly shrinking dy, we can have

pO 2 21_ .1 —1
 in, R[G5 (ks p)] 21-0.1K 77,

and hence
P{[G3(p)] > 1-0.1¢

for §€(0, dp).
For ¢,5€{0,1,... K} let G5(1,7; p, s) be the event that every p-important point for
w 55 is s-important for w® 5 , where we set 79 =0. By Lemma 6.36 and (6.18), after possibly

5hr1nk1ng do, we can find s small enough such that

P [G5(0, ks p, 5)] > 1—K~10.01¢
for each 1<k< K. Since {wigs} is reversible under IAEB”O, we have

P2 [Gs(k, 0; p, s)] = 1—K~10.01¢
as well. On the event

{7k 41 > TYNG5(r)NGE(p)\ E3(T),
there exists 1<k<K such that G5(k,0; p, s) does not occur. Therefore,
PY[B3(T)] > 1-0.5¢.

By possibly shrinking dg such that () <0.5¢, we get (6.17) from (6.18). O
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The following lemma is the key to the proof of Proposition 6.11. It says that, for
a fixed p>0, with probability 1—o.(1) uniform in 6, each point in P§ that is updated
during [0, 7] must also be updated for the e-cutoff dynamic (wf’é)@o. The main idea is
to use Lemma 6.22 to show that, for a fixed s>0, with probability 1—o.(1) uniform in J,
if a vertex is s-important for (wf";)@o at the time it rings, it must be e-pivotal at the
same time; see (6.19). Once this is done, together with Lemma 6.36 we will conclude the

proof.

LEMMA 6.37. In the setting of Lemma 6.35, for each €>0, let X5 be set of vertices
on D° where update occurs for the dynamic (wf’é)te[oﬂ. Then, for all ¢,p€(0,1), there
exist e>0 and dp>0, depending only on p, v, T, and (, such that

P[P’ NXsC X5]>1—¢

for §€(0,60).

Proof. Suppose we are in the setting of Lemma 6.35, with r€(0,1) and T'>0 fixed.
For each v€D?, let 7, be the time when the clock of v rings for the first time so that
Xs={veD’:7,<T}. For s>0 and £>0, let

Nj(s,e):=#{ve XsnrD:v is s-important for ws:® but not e-pivotal for (h,ws?)}.

We claim that, for all (€(0,1), there exist £>0 and §p>0 depending only on s, r, T,
and (, such that
P[Nj(s,e)=0]>1—3¢ for §€(0,4). (6.19)

Given (6.19), we first choose s such that P[Ns(p,s)=0]>1—1(, with Ns(p,s) as
defined in Lemma 6.36. Then, we choose ¢ such that P[Nj(s,)=0]>1—1(. Let Ej be
the event that the clock at each p-important vertex in rID rings at most once. By a first

moment calculation and possibly shrinking dy depending on (, we can have
P[Es) > 1—%( for § € (0, do). (6.20)

More precisely, given each v€D’NrD, the probability that v is a p-important and the
clock at v rings at least twice during [0, T is of order o(6%). Thus, the expected number

of such vertices is of order o5(1). Hence, by Markov’s inequality, (6.20) holds. On
Esn{Ns(p,s)=0,Nj(s, ) =0},

each v in P{NXs must be s-important for wi;}‘s, hence be e-pivotal for (h, wif). Therefore

v€ X5, which concludes the proof of Lemma 6.37.
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It remains to prove (6.19). Fix veD’NrD. Given a percolation configuration w
on D? whether v is e-pivotal for (h,w) only depends on Wlps\ vy and h. The same
statement holds for s-importance without involving h. For £>0, let S¥ (u)=w" (u) for ue
D2\ {v} and S} (v)=wy °(v). In other words, (S?)t>0 is the same dynamics as (wf"s)@(),
except that the color of v never changes. Then, 7, is independent of (S} )¢>0. Note
that (S7):>0 is still stationary. Thus, S¥ has the same law as w). Fix ('€(0,1) to be
determined later, and choose ¢ and dp€(0,0.1) such that Lemma 6.22 holds with s and ¢’

here. Since S¥ and we°® agree on D\ {v}, for §€(0, ), we have

Plve XsNrD, v is s-important for wi"s but not e-pivotal for (h,wi"s)]

=P[r, <T,v is s-important for SY but not e-pivotal for (h,S? )]

[

=P[r, <T]P[v is s-important for SY but not e-pivotal for (h, S} )]

=P[r, <T|P[v is s-important for w) but not e-pivotal for (h,wy)]
< P[r, < T]P[v is s-important for w]]¢’

=('P[r, <T, v is s-important for wg).

The purpose of introducing S} can be seen in the third step of this equality, where we

use the independence of two events. By the definition of Nj(s,¢), we have

E[N5(s,¢)]
Z Plv € X;NrD, v is s-important for ws? but not e-pivotal for (h,ws?)]
veDSNrD

</ Z P[r, <T,v is s-important for wo]
veDSNrD

=('E[#(P;NXsNrD)]
<('TE[y;(PsnrD)).
By Lemma 6.17, lims_, v§(D) exists in L', where v§ is the restriction of vs to P§. This
yields that
E[° (PiN(rD))] < .
sanax [V*(PsN(rD))] < oo

Therefore, we can choose ¢’ small enough depending on s, r, T, and ( such that

E[N <ic.
s [N5(s,€)] < 5¢

Now, (6.19) follows from Markov’s inequality. O
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Figure 6.4. Proof of Proposition 6.11. By Lemma 6.35, for p sufficiently small, we know
that the two processes to the left (resp. right) connected by a vertical arrow are close with
high probability for the metric d, at any time ¢€[0,7]. By Lemma 6.37, we know that
(w?’p’é)te[oyT] :(wf’p"g)te[o’ﬂ with high probability for ¢ sufficiently small compared to p.

Proof of Proposition 6.11. We refer to Figure 6.4 for an illustration of the proof. Let
(w07p7§)t>0 be defined just as (w?);>0, except that, when the clock at a vertex v rings,

1P50

we do not flip its color unless vePY. We define (w;”°);>¢ similarly, with (w; ’5)t>0 in

place of (w )i>0. More precisely, if the clock at a vertex v rings at some time ¢, the color

P50

of v is flipped along the (w;”*°);>¢ dynamic if and only if v€P{ and v is an e-pivotal for

(h,w:°). Recall d, in Lemma 6.35. For any t€[0,T], by the triangle inequality,
dr (W, w]) S (Wf, W) i (W0, w00 (w0 ).

Fix (€(0,1). Recall p; and X; in Lemma 6.35. For pe€ (0, p1), with probability at least
1_Ca

e dp (@] ) (w0 ) <2

Recall X§ in Lemma 6.37. On the event {P{NX5C X5}, we have

0,p,6 )6
(w; P )te[o,T] = (wf g )te[O,T]'

By Lemma 6.37, this occurs with probability as least 1—(, if ¢ is small enough. For

such e, we have

£,0 S
P[tgf% dy (w 7wt)>24 <2 (6.21)

Sending § —0, we have

]P’{ rr[lax]d (wt,wt)>2g] <2,

which concludes the proof. O
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Appendix A. Proof of Lemma 5.28

We will prove Lemma 5.28 using ideas from [SWa], where related results for the case
of m4 equal to Lebesgue measure are proved. By the definition of a free Liouville field
(Definition 2.3), it is sufficient to consider the case where h is a zero-boundary Gaussian
free field. Let l/T:r”‘2/26"‘h"'mA. By the argument in [Brs, §6], in order to prove that
e®hm 4 exists, it is sufficient to prove that, for a fixed set U €D (recall that U €D means
UUoU CD), v,(U) has an a.s. limit as r—0.

Define h,(z)=ah,(z)+3a*logr. For any s€(0,r),

E{(0, (U) 1 (U))?] = / /U B =) ) )] iy ) (). (A1)

Let G:U xU—R denote the Green’s function, and for z€U let C(z;U) denote the con-
formal radius of z in U. Recall that
Var(h,(z)) =logr~ ' +log C(z; U),

and that
Covlh,(2), hs(w)]=G(z,w)

if |z—w|>r+s. Using these identities, we get that the integrand on the right-hand side

of (A.1) is zero when |z—w|>2r. Furthermore,
hs(2)—h,(2) L 4N —0.5a

for a standard normal random variable N and

r
a:=qay/log 3
which gives that, for some ¢>0
E[(eﬁr(z) _e}_zs(z))Q] _ ]E[eQ’_LT(Z)] E[(l _6713(2)—FLT(Z))2]

— CE[(1— N ~050%)2) c<<:>a —1).

Therefore, for any de(0,d) and some constant ¢>0,

E{(0,(0) 1, (U))?2] < / /U RO O di () dma ()

|z—w|<2r

G ), miomee

|z—w|<2r

CRETRE
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The integral on the right-hand side is finite, by (5.5). We see from this estimate that, for
any N €N, we have a.s. convergence of v,.(U) as r—0 along integer powers of 2-1/N To
obtain a.s. convergence as r—0 (without requiring that r is a power of 21/N ), we proceed
similarly as in the proof of [SWa, Theorem 1.1], and the argument is thus omitted.

We can find a small §>0 such that

[//UU dy|z w|Es q =

Therefore, v is a.s. non-atomic.
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