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1. Introduction

Consider the wave equation on RN , N⩾3, with an energy-critical focusing non-linearity:

∂2
t u−∆u= |u|4/(N−2)u, (1.1)

and initial data

u⃗ ↾t=0=(u0, u1)∈H, (1.2)

where u⃗:=(u, ∂tu) and H:=Ḣ1(RN )×L2(RN ). The equation is locally well posed in H
(see e.g. [48], [43], [4]): for any initial data (u0, u1)∈H, there exists a unique maximal

solution u⃗∈C0((T−, T+),H). The energy

E(u⃗(t))=
1

2

∫
RN

|∇t,xu(t, x)|2 dx−
N−2

2N

∫
RN

|u(t, x)|2N/(N−2) dx

of a solution is conserved, where

∇u=(∂xju)1⩽j⩽N and ∇t,xu=(∂tu,∇u).

The equation (1.1) has the following scaling invariance. For f∈Ḣ1(RN ) and λ>0, we

denote

f(λ)(x)=
1

λN/2−1
f

(
x

λ

)
.

If u is a solution of (1.1), then

1

λN/2−1
u

(
t

λ
,
x

λ

)
=u(λ)

(
t

λ
, x

)
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is also a solution.

As many other non-linear dispersive equations, equation (1.1) admits solitary waves

(or solitons) that are well-localized solutions traveling at a fixed speed. The soliton

resolution conjecture predicts that any global solution of this type of equations decouples

asymptotically as a sum of decoupled solitons, a radiative term (typically, a solution to

a linear equation) and a term going to zero in the energy space. For finite-time blow-up

solutions, a similar decomposition should hold depending on the nature of the blow-up.

Our main result (Theorem 1 below) is the soliton resolution for equation (1.1),

when N is odd and (u0, u1) is radial. To put this result into perspective, we start with a

discussion on the soliton resolution conjecture for general non-linear dispersive equations.

This conjecture arose from numerical simulations and the theory of integrable sys-

tems. It was observed in 1955 by Fermi, Pasta and Ulam [28] in one of the first numerical

experiments that a discretization of a wave equation with a quadratic non-linearity leads

to localized, soliton-like solutions. In 1965, Zabusky and Kruskal [67] highlighted numer-

ically the emergence of solitons and multisolitons solutions of the completely integrable

KdV. This explained the result in [28], as Kruskal found that, as the spacial mesh in the

discretization tends to zero, the solutions of the Fermi–Pasta–Ulam problem converge to

solutions of the KdV equation; see [47]. We refer to [35] for a survey on numerical work.

The first theoretical results in the direction of the soliton resolution were obtained for

the completely integrable KdV, mKdV and 1-dimensional cubic NLS, using the method

of inverse scattering. Namely, for KdV, a solution with smooth initial data decaying

sufficiently fast at infinity decomposes, for positive x, as a finite sum of solitons and a

term going to zero at infinity (see [26], [25]). Note that this is only a partial result, due

to the restriction on the initial data and also to the fact that the dispersive component,

localized in {x<0} is not completely described. We refer to [58] for mKdV, and [68],

[60], [59], [52], [2] for cubic NLS in one space dimension. A characteristic feature of

these integrable systems, already observed in [67], is that the collision between solitons

is elastic: a solution behaving as a sum of solitons as t!+∞ also behaves as a sum of

solitons, with the same parameters, as t!−∞.

Very few complete results are known for non-integrable models. A typical dispersive

partial differential equation for which the soliton resolution is believed to hold uncon-

ditionally is the energy critical wave maps. For this equation, the first known related

results were “bubble” theorems, stating that any solution developing a singularity in

finite or infinite time converges locally in space, along a sequence of times, to a soliton

(see [5], [63] for the equivariant case, [61] for the general case). Using the “channels of

energy” method coming from our previous works [18], [21], that is closely related to the

techniques that we will develop in this article, it was proved that the soliton resolution
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holds for wave maps, in an equivariant setting, with an additional assumption ruling out

a multi-soliton configuration [7], [8], and that it holds for a sequence of times without

this condition (see [6] and [39]). The limiting case of a pure 2-soliton is treated in [38],

where it is shown in particular that the collision between the two solitons is inelastic.

For wave maps without symmetry assumption, but with the same S2 target, a weak

form of the soliton resolution was proved along a sequence of times (see [32]), and the

complete resolution is only known close to the ground-state [17].

The proof of the soliton resolution conjecture seems out of reach for other non-

integrable non-linear dispersive equations, such as non-linear Schrödinger and Klein–

Gordon equations. Known results include scattering below a threshold given by the

ground state of the equation (see e.g. [42], [15], [34], [12]), local study close to the ground

state solution (see [51]), and in some particular cases the existence of a global compact

attractor (see [65]). We refer to the introduction of [16] for a more complete discussion

and more references on the subject.

Going back to equation (1.1), it is known that, if ∥(u0, u1)∥H is sufficiently small,

then T+=∞ and the solution scatters to a linear solution. It is also well known that

in general finite-energy solutions to equation (1.1) may blow up in finite time. Indeed,

using the finite speed of propagation for equation (1.1) to localize ODE-type blow-up

solutions, one can easily construct solutions u⃗ with T+<∞ and ∥u⃗(t)∥H!∞ as t!T+.

These solutions are called type-I blow-up solutions. It is expected that these solutions,

after a self-similar change of variable, satisfy a decomposition similar to the soliton

resolution. This type of result is only known in the 1-dimensional setting (see [50] and

references therein) and very little is known in the energy-critical case (see [13] for a local

study).

To rule out the ODE-type behavior, we will focus on solutions that are bounded in

the energy space, i.e. such that

sup
t∈[0,T+)

∥u⃗(t)∥H <∞. (1.3)

The dynamics of these solutions is very rich. Apart from the scattering solutions men-

tioned above, equation (1.1) admits also various types of finite-energy steady states

Q∈Ḣ1, i.e.

−∆Q= |Q|4/(N−2)Q in RN (1.4)

(see [11], [53], [54]). Among them, a distinguished role is played by the ground state

W :=

(
1+

|x|2

N(N−2)

)1−N/2

, (1.5)
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which is, as a consequence of [55], [29], the unique Ḣ1 radial solution of (1.4) on RN , up

to scaling and sign change, and the non-zero solution of (1.4) with least energy (see [64]).

Stationary solutions are not the only global, non-scattering solutions. It is indeed

possible to construct solutions of the form

u(t, x)=W(λ(t)(x)+vL(t, x),

where vL is a small solution of the free wave equation: see [44] (for λ(t)=1) and [14]

(λ(t)=tη, |η| small). There also exist, at least in high space dimensions, global solutions

that are asymptotically of the form W+W(λ(t)), where λ(t) goes to zero as t goes to

infinity (see [37]).

There are also solutions blowing up in finite time that are bounded in the energy

space. These solutions are called type-II blow-up solutions. In [46], [33], [45] and [36],

type-II blow-up solutions of the form of a rescaled ground state plus a small dispersive

term were constructed. More precisely, the solution is given by

u(t, x)=W(λ(t)(x)+ε(t, x),

where
λ(t)

T+−t
! 0+ as t!T+,

and ε⃗(t)=(ε, ∂tε) is small in the energy space. It is expected that multi-soliton con-

centration is also possible for type-II blow-up solutions, and it is an open problem to

construct such a solution.

In the radial setting, W is the unique steady state, and thus the only soliton up

to sign change and scaling. The soliton resolution conjecture predicts that any radial

solution that does not blow up with a type-I blow-up decomposes asymptotically as a

sum of ±W , decoupled by time-dependent scalings, a radiation term and a term going

to zero in the energy space. The radiation term should be a solution to the linear wave

equation in the global case, and a fixed element of H in the finite-time blow-up case. We

note that all the solutions mentioned above are in accordance with this conjecture. The

resolution was proved in [21] by the authors, for N=3. For other dimensions (still in

the radial case), soliton resolution is only known along a sequence of times; see [9], [57]

and [39]. For the non-radial setting, for a sequence of times, see [16].

With the method of proof used in [9], [57], [39], [16], relying on monotonicity laws

giving convergence only after averaging in time, we cannot hope for more than a decom-

position for a particular sequence of times. The difficulty in obtaining the resolution for

all times is illustrated by the harmonic map heat flow equation, for which the decompo-

sition for a sequence of times is known, but the soliton resolution for all times does not

hold in full generality because of an example of Topping [66].
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The soliton resolution for radial solutions of (1.1) holds in full generality [21] when

N=3. The key fact in the proof is the following dispersive estimate for radial non-zero

solutions u of (1.1), with (u0, u1) ̸=(±W(λ), 0), N=3. Assume (for simplicity) that u

exists globally in time. Then,∑
±

lim
t!±∞

∫
r⩾|t|

|∇t,xu(t, x)|2 dx> 0. (1.6)

The proof of (1.6) relies fundamentally, among other things, on the following “energy

channel” property of radial solution v of the linear wave equation in space dimension 3

(see [18], [21]). Let R>0,

P (R)=

{(
a

r
, 0

)
: a∈R

}
⊂H(R) := (Ḣ1×L2)({x∈R3 : |x|>R}).

Then, ∑
±

lim
t!±∞

∫
|x|>R+|t|

|∂t,rv(t)|2 dx⩾
1

2
∥Π⊥

P (R)(v0, v1)∥
2
H(R), (1.7)

where Π⊥
P (R) denotes the orthogonal projection onto the orthogonal complement of P (R)

in H(R). The analogue of (1.7) for higher odd dimension was obtained in [41], [40], but

the exceptional subspace P (R) is replaced by a finite-dimensional subspace of H(R) with

dimension increasing to infinity with N . The fact that the dimension of P (R) is strictly

greater than 1 for N⩾5 is responsible for the failure of this method, since we only have

here the 1-parameter scaling invariance to deal with this failure, to start the proof. Let

us mention however that it is possible, using (1.7), to prove that in odd space dimensions

N⩾5, any radial solution of (1.1) that does not satisfy (1.6) is asymptotically close, for

large r, to one of the elements of P (R) (see [24]).

The radial solution u of (1.1) is said to be a pure multi-soliton (asymptotically as

t!±∞) when there exist J⩾2 scaling parameters

0<λJ(t)≪ ...≪λ2(t)≪λ1(t)

and signs (ιj)j∈{±1}J such that

u⃗(t, x)=

J∑
j=1

(ιjW(λj(t)), 0)+o(1), t!±∞,

where o(1) goes to zero in H (see [37] for an example of pure multi-soliton). If u is

both a pure multi-soliton as t!+∞ and t!−∞, we say that the collision between the

solitons is elastic. In space dimension 3, the fact that (1.6) is valid for any non-stationary
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solution u rules out elastic collisions, in stark contrast to the integrable case [35]. One

of the main results in this work is a slightly weaker form of (1.6), namely that a radial

solution u of (1.1) that stays close to a sum of decoupled solitons for a sufficiently long

time must satisfy ∑
±

lim
t!±∞

∫
r⩾|t|−M

|∇t,xu(t, x)|2 dx> 0, (1.8)

for some large M>0 (see Propositions 5.1 and 6.1). As a consequence, there does not

exist a radial solution of (1.1) that is a pure multi-soliton both as t!∞ and t!−∞, i.e.

the collision of solitons is inelastic for (1.1), when N is odd. The proof of this property

depends heavily on the “energy channels” property for the linearized wave equation(
∂2
t −∆−N+2

N−2
W 4/(N−2)

)
u=0,

established in [23]. The M in (1.8) is needed to eliminate the extra dimensions arising

from P in (1.7), when N⩾5, odd.

The main result in this work, namely full resolution for (1.1), N odd, in the radial

case (assuming bounded energy norm) combines the sequence of times result in [57] with a

strengthened version of (1.8). The result of [57] allows us to reduce ourselves to studying

the dynamics close to a sum of solitons plus a dispersive term, and the strengthened

version of (1.8) allows us to take advantage of the fact that the collision of two or more

solitons produce dispersion, which then gives the full decomposition. We view this as a

“road map” to attack soliton resolution in non-integrable settings.

We now turn to the main results of this paper. If a and b are integers with a<b, we

denote Ja, bK=[a, b]∩N.

Theorem 1. Assume that N⩾5 is odd. Let u be a radial solution of (1.1), with

maximal time of existence T+, such that

sup
0⩽t<T+

∥u⃗(t)∥H <∞. (1.9)

Then, there exist J⩾0, signs (ιj)j∈{±1}J and scaling parameters (λj)j∈(0,∞)J

such that

lim
t!T+

λj(t)

λj+1(t)
=+∞ for all j ∈ J1, J−1K

and the following statements hold.

• (Type-II blow-up case) If T+<∞, then J⩾1 and there exists (v0, v1)∈H such

that

lim
t!T+

∥∥∥∥u⃗(t)−(v0, v1)−
J∑

j=1

(ιjW(λj), 0)

∥∥∥∥
H
=0.
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Furthermore,

lim
t!T+

λ1(t)

T+−t
=0.

• (Global in time case) If T+=+∞, then there exists a solution vL of the linear

wave equation such that

lim
t!+∞

∥∥∥∥u⃗(t)−v⃗L(t)−
J∑

j=1

(ιjW(λj), 0)

∥∥∥∥
H
=0.

Furthermore, if J⩾1,

lim
t!+∞

λ1(t)

t
=0.

As mentioned above, the proof of Theorem 1 yields the fact that the collision between

radial solitons in odd space dimension N⩾5 is inelastic.

Theorem 2. Assume that N⩾5 is odd. Let u be a radial, global solution of (1.1)

such that

sup
t∈R

∥u⃗(t)∥H <∞

and ∑
±∞

lim
t!±∞

∫
|x|>|t|−A

|∇t,xu(t, x)|2 dx=0 for all A> 0. (1.10)

Then, (u0, u1)=(0, 0) or there exist λ>0 and ι∈{±1} such that (u0, u1)=(ιW(λ), 0).

Note that (1.10) exactly means that the linear component vL is identically zero both

as t!+∞ and t!−∞, so that Theorem 2 rules out being asymptotically a multi-soliton

at both t=+∞ and t=−∞, in stark contrast to the completely integrable case [35]. For

results on inelastic soliton collisions for equation (1.1) without a radiality assumption,

see [49].

The outline of the paper is as follows. The preliminary §2 is mainly devoted to the

Cauchy theory for equation (1.1). We recall well-posedness results from [30], [31], [43],

and more particularly from [4], where the high-dimensional case is treated. Using finite

speed of propagation, we also recall a local and global Cauchy theory for the equation

(1.1) in the exterior of a wave cone {|x|>R+|t|}, R⩾0, as developed in [24]. §3 concerns

the bound from below of the exterior energy for linear equations with a potential. After

recalling the main result of [23], we state and prove an exterior energy bound for the

linearized operator close to a multi-soliton. In §4 we consider solutions of the equation

(1.1) such that

lim
t!+∞

∫
|x|>|t|+R

|∇t,xu|2 dx=0,
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for some fixed R>0. We recall from [24] that the initial data of these solutions (that we

call non-radiative solutions) have a prescribed asymptotic behaviour. We also consider

the case of non-radiative solutions that are close to a multi-soliton, proving a bound

from below of the exterior scaling parameter λ1. In §5, we reduce the proof of the soliton
resolution to the study of a finite-dimensional dynamical system on the scaling parameters

λj and some of the coefficients arising in the expansion of the solution. Finally, in §6,
we prove a blow-up/ejection result for this dynamical system and conclude the proof. §7
is dedicated to a short sketch of the proof of Theorem 2, which is a byproduct of part of

the proof of Theorem 1. A few computations are gathered in the appendix.

2. Preliminaries

2.1. Notation

We denote Ḣ1=Ḣ1(RN ), L2=L2(RN ), H=Ḣ1×L2. If λ>0, f∈Ḣ1 and g∈L2, we let

f(λ)(x)=
1

λN/2−1
f

(
x

λ

)
and g[λ](x)=

1

λN/2
g

(
x

λ

)
,

so that

∥f(λ)∥Ḣ1 = ∥f∥Ḣ1 and ∥g[λ]∥L2 = ∥g∥L2 .

If A is a space of distributions on RN , we will denote by Arad the subspace of A

consisting of the elements of A that are radial. We will, without making a distinction,

consider a radial function as depending on the variable x∈RN or the variable r=|x|.
If Ω is an open subset of Rn (n=N or n=N+1), and A=A(Rn) is a Banach space

of distributions on Rn, we recall that A(Ω) is the set of restrictions of elements of A to Ω,

with the norm

∥u∥A(Ω) := inf
ũ

∥ũ∥A(Rn),

where the infimum is taken over all ũ∈A(Rn) such that ũ↾Ω=u. To lighten notation, if

R>0 and n=N , we will set

A(R) :=Arad({x∈RN : |x|>R}).

We will mainly use this notation with H, so that H(R) is the space of radial distributions

(u0, u1) defined for r>R such that

u0 ∈L2N/(N−2)((R,+∞), rN−1dr),

∫ ∞

R

(∂ru0)
2rN−1 dr <∞

and

u1 ∈L2((R,+∞), rN−1 dr).
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We will often consider solutions of the wave equation in the exterior of wave cones.

For R>0, we denote

ΓR(t0, t1)= {|x|>R+|t| : t∈ [t0, t1]}.

To lighten notation, we will denote

ΓR(T )=ΓR(0, T ) and ΓR =ΓR(0,∞).

We denote by SL(t) the linear wave group:

SL(t)(u0, u1)= cos(t
√
−∆)u0+

sin(t
√
−∆)√

−∆
u1, (2.1)

so that the general solution (in the Duhamel sense) of{
(∂2

t −∆)u= f

u⃗ ↾t=t0=(u0, u1)∈H,
(2.2)

where I is an interval and t0∈I, is

u(t)=SL(t−t0)(u0, u1)+

∫ t

t0

SL(t−s)(0, f(s)) ds. (2.3)

We note that, by finite speed of propagation, the restriction of u to ΓR(T ) depends only

on the restriction of f to ΓR(T ) and the restriction of (u0, u1) to {r>R}.

2.2. Local and global Cauchy theory

We will denote by Ẇ s,p(RN ) the homogeneous Sobolev space defined as the closure of

C∞
0 (RN ) with respect to the norm ∥ · ∥Ẇ s,p defined by

∥f∥Ẇ s,p := ∥Dsf∥Lp ,

where Ds is the Fourier multiplier of symbol |ξ|s. We denote by Ḃs
p,q the standard

homogeneous Besov space, which can be defined using Littlewood–Paley decomposition

or the real interpolation method: Ḃs
p,q=[Lp, Ẇ 1,p]s,q, 0<s<1, 1⩽p, q⩽∞.

Following [4], we define

S : =L2(N+1)/(N−2)(R1+N ),

W : =L2(N+1)/(N−1)(R, Ḃ1/2
2(N+1)/(N−1),2(R

N )),

W′ : =L2(N+1)/(N+3)(R, Ḃ1/2
2(N+1)/(N+3),2(R

N )).
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If I is an interval, we will denote by S(I), W(I) and W′(I) the restriction of these spaces,

respectively, to I×RN .

We will need the following Strichartz estimates (see [62] [31]): if t0∈I, f∈W′(I) and

(u0, u1)∈H, then u (defined by (2.3)) is in S(I)∩W(I) and

sup
t∈R

∥u⃗(t)∥H+∥u∥S(I)+∥u∥W(I) ≲ ∥(u0, u1)∥H(I)+∥f∥W′(I). (2.4)

We denote F (u)=|u|4/(N−2)u.

Definition 2.1. Let I be an interval with t0∈I, (u0, u1)∈H. If N⩾6, we call solution

of (1.1) on I×RN with initial data

u⃗ ↾t=t0=(u0, u1) (2.5)

a function u∈C0(I, Ḣ1) such that ∂tu∈C0(I, L2) and

u(t)=SL(t−t0)(u0, u1)+

∫ t

t0

SL(s−t0)F (u(s)) ds for all t∈ I. (2.6)

If N∈{3, 4, 5}, a solution is defined in the same way, with the additional requirement

that u∈S(J×RN ) for all compact intervals J⊂I.

It is known (see [31], [43] and [4]) that, for all initial data (u0, u1), there is a unique

maximal solution u defined on a maximal interval (T−, T+) and that satisfies the following

blow-up criterion:

T+ <∞ =⇒ ∥u∥S([t0,T+)) =∞.

We next recall from [24] the definition and some properties of solutions of (1.1) on

the exterior ΓR(t0, t1) of wave cones. We will use the following continuity property of

multiplication by characteristic functions on a Besov space (see [24, Lemma 2.3]).

Lemma 2.2. Let R⩾0.

• The multiplication by the characteristic function 11{|x|>R} is a continuous function

from Ḃ
1/2
2(N+1)/(N+3),2(R

N ) into itself, and from Ẇ 2/N,2(N+1)/(N+3)(RN ) into itself. In

both cases, the operator norm is independent of R.

• Let I be an interval. The multiplication by the characteristic function 11{|x|>R+|t|}

is continuous from W′(I) into itself. The operator norm is independent of R and I.

We also recall the following chain rule for fractional derivative outside wave cones:

∥11ΓR(T )F (u)∥W′((0,T )) ≲ ∥u∥4/(N−2)
S(ΓR(T )) ∥u∥W((0,T )), (2.7)

which is proved in [24] as a consequence of Lemma 2.2, Hölder’s inequality and the usual

chain rule for fractional derivative ([4, Lemma 2.10]).
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Definition 2.3. Let t0<t1, R⩾0. Let (u0, u1)∈H(R). A solution u of (1.1) on

ΓR(t0, t1) with initial data (u0, u1) is the restriction to ΓR(t0, t1) of a solution ũ∈
C0([t0, t1], Ḣ

1), with ∂tũ∈C0([t0, t1], L
2), to the equation

∂2
t ũ−∆ũ= |ũ|4/(N−2)ũ11{|x|>R+|t|}, (2.8)

with an initial data
⃗̃u ↾t=t0=(ũ0, ũ1), (2.9)

where (ũ0, ũ1)∈H is an extension of (u0, u1)

Note that, by finite speed of propagation, the value of u on ΓR(t0, t1) does not

depend on the choice of (ũ0, ũ1), provided (ũ0, ũ1) and (u0, u1) coincide for r>R.

Using Lemma 2.2 and finite speed of propagation, the Cauchy theory in [4] (or [43]

for the case N∈{3, 4, 5}) adapts easily to the case of solutions outside wave cones. We

give some of the statements, and omit the proofs that are the same as in [43], [4]. We

refer to [24, §2] for a more complete exposition. The space S(ΓR(T )) in the following

proposition is defined in §2.1.

Proposition 2.4. (Local well-posedness) Let R⩾0, (u0, u1)∈H(R) and T>0. As-

sume

∥(u0, u1)∥H(R) ⩽A.

Then, there exists η=η(A) such that, if

∥SL(t)(u0, u1)∥S(ΓR(T )) <η,

then there exists a unique solution u to (1.1) on ΓR(T ). Furthermore, for all t∈[0, T ],

∥u⃗(t)−S⃗L(t)(u0, u1)∥H(R+|t|) ⩽CηθNA1−θN

for some constant θN depending only on N .

(See [4, Theorem 3.3].) We have the following blow-up criterion (see [24, Lemma 2.8]):

if u∈S(ΓR(T
+

R)), then T+

R=+∞. Furthermore, u scatters to a linear solution for

{|x|>R+|t|},

that is, there exists a solution vL of the linear wave equation on R×RN such that

lim
t!+∞

∥u⃗(t)−v⃗L(t)∥H(R+|t|) =0. (2.10)

We also have the following long-time perturbation theory result (see [43, Theo-

rem 2.20], [4, Theorem 3.6] and [57, Proposition A.1]).
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Proposition 2.5. Let A>0. There exists η0=η0(A) with the following property.

Let R>0, T∈(0,∞], (u0, u1)∈H(R) and (v0, v1)∈H(R). Assume that v is a restriction

to ΓR(0, T ) of a function V such that V⃗ ∈C0([0, T ],H) and

∂2
t V −∆V =11{|x|>R+|t|}(F (V )+e1+e2),

with

sup
0⩽t⩽T

∥V (t)∥H(R+|t|)+∥V ∥W(0,T ) ⩽A

and

∥(u0, u1)−(v0, v1)∥H(R)+∥e1∥W′(0,T )+∥e2∥L1((0,T ),L2) = η⩽ η0.

Then, the solution with initial data (u0, u1) is defined on ΓR(T ) and

∥v−u∥S(ΓR(T )) ⩽CηcN ,

for some constant cN∈(0, 1] depending only on N⩾3.

Remark 2.6. In [43], [4] and [57] we have e2=0, but the argument easily adapts to

the setting of Proposition 2.5.

2.3. Profile decomposition

Let {(u0,n, u1,n)}n be a bounded sequence of radial functions in H. We say that it admits

a profile decomposition if for all j⩾1, there exist a solution U j
F to the free wave equation

with initial data in H and sequences of parameters {λj,n}n∈(0,∞)N and {tj,n}n∈RN

such that, for j ̸=k,

lim
n!∞

(
λj,n

λk,n
+
λk,n

λj,n
+
|tj,n−tk,n|

λj,n

)
=+∞, (2.11)

and, denoting

U j
F,n(t, r)=

1

λ
N/2−1
j,n

U j
F

(
t−tj,n
λj,n

,
r

λj,n

)
, j⩾ 1 (2.12)

wJ
n(t)=SL(t)(u0,n, u1,n)−

J∑
j=1

U j
F,n(t), (2.13)

one has

lim
J!∞

lim sup
n!∞

∥wJ
n∥S(R) =0. (2.14)
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We recall (see [1], [3]) that any bounded sequence in H has a subsequence that admits a

profile decomposition. We recall also that the properties above imply that the following

weak convergences hold, for j⩽J :

(λ
N/2−1
j,n wJ

n(tj,n, λj,n·), λN/2
j,n ∂tw

J
n(tj,n, λj,n ·))−−−−⇀

n!∞
0 in H. (2.15)

If {(u0,n, u1,n)}n admits a profile decomposition, we may assume, extracting subse-

quences and time-translating the profiles if necessary, that the following limit exists:

lim
n!∞

−tj,n
λj,n

= τj ∈{−∞, 0,+∞}.

Using the existence of wave operator for the equation (1.1) if τj∈{±∞}, or the local

well-posedness if τj=0, we define the non-linear profile U j associated with

(U j
F , {λj,n}n, {tj,n}n)

as the unique solution to the non-linear wave equation (1.1) such that

lim
t!τj

∥U⃗ j(t)−U⃗ j
F (t)∥H =0.

We also denote by U j
n the rescaled non-linear profile:

U j
n(t, r)=

1

λ
N/2−1
j,n

U j

(
t−tj,n
λj,n

,
r

λj,n

)
.

Then, we have the following superposition principle outside the wave cone

Γ0 := {(t, x)∈R×RN : |x|>t> 0}.

Proposition 2.7. Let {(u0,n, u1,n)}n be a bounded sequence in Hrad. Assume that,

for all j such that τj=0, the non-linear profile U j can be extended to a solution on Γ0 (in

the sense of Definition 2.3) such that U j∈S(Γ0). Then, for large n, there is a solution

un defined on Γ0 with initial data {(u0,n, u1,n)}n at t=0. Furthermore, setting, for J⩾1

and (t, r)∈Γ0,

RJ
n(t, r)=un(t, r)−

J∑
j=1

U j
n(t, r)−wJ

n(t, r),

we have

lim
J!∞

lim
n!∞

(
∥RJ

n∥S(Γ0)+sup
t⩾0

∥R⃗J
n(t)∥H(t)

)
=0.
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We omit the proof, which is similar to the proof when the solution is not restricted

to the exterior of a wave cone (see [57, Proposition 2.3]). Let us emphasize the fact that,

under the assumptions of Proposition 2.7, the profiles U j
n(t, r) are well defined on Γ0,

so that the conclusion of the proposition makes sense. If τj=0, this follows from the

assumption that U j is defined on Γ0 and, if τj=+∞, from the fact that U j is globally

defined in the future. Finally, if τj=−∞, it follows from the fact that U j is globally

defined in the past, and also, using small data theory, defined on a cone ΓR(T,+∞)

where T is fixed in the interval of existence of U j and R is large (see also the discussion

after Proposition 2.11 in [24]).

2.4. Wave equation with a potential outside a wave cone

Lemma 2.8. Let N⩾3 and M∈(0,∞). There exists CM>0 such that, for all

V ∈L
2(N+1)/(N+4)
loc (R, L2(N+1)/3(RN ))

with

∥11{|x|⩾|t|}V ∥L2(N+1)/(N+4)(R,L2(N+1)/3(RN )) ⩽M, (2.16)

and for all solutions u of

∂2
t u−∆u+V u= f1+f2, u⃗ ↾t=0=(u0, u1)∈H, (2.17)

where f1∈L1(R, L2(RN )) and f2∈W′, one has

∥u11{|x|⩾|t|}∥L2(N+1)/(N−2)(R×RN )+sup
t∈R

∥11{|x|⩾|t|}∇t,xu(t)∥L2

⩽CM (∥(u0, u1)∥H+∥11{|x|⩾|t|}f1∥L1(R,L2)+∥11{|x|⩾|t|}f2∥W′).

(2.18)

If N∈{3, 4, 5}, one also has

∥u11{|x|⩾|t|}∥L(N+2)/(N−2)(R,L2(N+2)/(N−2))

⩽CM (∥(u0, u1)∥H+∥11{|x|⩾|t|}f1∥L1(R,L2)+∥11{|x|⩾|t|}f2∥W′).
(2.19)

Finally, there exists g∈L2([0,+∞)) such that

lim
t!∞

∫ +∞

t

|r(N−1)/2∂ru(t, r)−g(r−t)|2 dr=0. (2.20)
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Proof. By Strichartz inequality, for all T>0,

∥11{|x|⩾|t|}u∥L2(N+1)/(N−2)([0,T ]×RN )

≲ ∥(u0, u1)∥H+∥11{|x|⩾|t|}f1∥L1(R,L2)+∥11{|x|⩾|t|}f2∥W′+∥11{|x|⩾|t|}V u∥L1((0,T ),L2).

Using Hölder inequality in the space variable, we deduce that

∥11{|x|⩾|t|}u∥L2(N+1)/(N−2)([0,T ]×RN )

≲ ∥(u0, u1)∥H+∥11{|x|⩾|t|}f1∥L1(R,L2)+∥11{|x|⩾|t|}f2∥W′

+

∫ T

0

∥11{|x|⩾|t|}V ∥L2(N+1)/3 ∥11{|x|⩾|t|}u∥L2(N+1)/(N−2) dt,

and thus, using a Grönwall-type lemma ([27, Lemma 8.1]), we obtain

∥11{|x|⩾|t|}u∥L2(N+1)/(N−2)([0,T ]×RN )

⩽CM (∥(u0, u1)∥H+∥11{|x|⩾|t|}f1∥L1(R,L2)+∥11{|x|⩾|t|}f2∥W′).

Using Strichartz and Hölder’s inequalities again, we deduce the rest of (2.18) and (2.19).

By an argument similar to the one in the proof of [24, Lemma 2.8], one can prove

that there exists a solution uF of the free wave equation such that

lim
t!+∞

∫
|x|>|t|

|∇t,x(u−uF )|2 dx=0.

Since there exists g∈L2(R) such that

lim
t!+∞

∫ +∞

0

|r(N−1)/2∂ruF (t, r)−g(r−t)|2 dr=0,

(see e.g. the appendix of [22]), property (2.20) follows.

3. Channels of energy for the linearized operator close to a multi-soliton

This section is devoted to the proof of an exterior energy bound, stated in §3.2, for the
equation (1.1) linearized around a multi-soliton. We start (see §3.1) by recalling previous

results obtained in [20] and [23], on exterior energy bounds for the free wave equation

and the linearized equation around a single soliton.

3.1. Channels of energy for the free and the linearized wave equations

In [20], we have obtained the following exterior energy lower bound for solutions of the

free wave equation.
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Theorem 3.1. Assume N is odd. Let uF be a solution of the free wave equation

∂2
t uF −∆uF =0 (3.1)

with initial data in (u0, u1)∈H. Then,∑
±

lim
t!±∞

∫
|x|>|t|

|∇t,xuF |2 dx= ∥(u0, u1)∥2H.

Let W be the ground-state stationary solution of (1.1), given by (1.5). Consider the

linearized equation:

∂2
t u+LWu=0, (3.2)

where LW is the linearized operator:

LW =−∆−N+2

N−2
W 4/(N−2). (3.3)

The existence and uniqueness of solutions of (3.2) with initial data in H can be easily

proved by standard semi-group theory. In [23], we have proved an analogue of Theo-

rem 3.1 for solutions of (3.2) that we will now describe. To lighten notation, we will

restrict to radial functions in space dimension N⩾5. Let

ΛW :=x·∇W+
(
1
2N−1

)
W.

Then,

span{ΛW}= {Z ∈ Ḣ1
rad :LWZ =0}.

Indeed, the inclusion ⊂ is due to the fact that (1.1) is invariant by scaling. The other

inclusion is a well-known non-degeneracy property ofW (see e.g. [56]). Note that ΛW∈L2

since N⩾5. Let

Z := span{ΛW}×span{ΛW}.

If (u0, u1)∈Z, then the solution u of (3.2) with initial data (u0, u1) is given by

u(t, x)=u0(x)+tu1(x),

and in particular ∑
±

lim
t!±∞

∫
|x|⩾|t|

|∇t,xu(t, x)|2 =0.

If V is a closed subspace of H, we denote by V ⊥ its orthogonal in H, and πV the

orthogonal projection on V . Theorem 1 of [23] states that the solutions with initial data

in Z are the only solutions that do not satisfy an exterior energy lower bound.
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Theorem 3.2. Assume N⩾5 is odd. Then, there exists a constant C>0 such that,

for all (u0, u1)∈Hrad,

∥πZ⊥(u0, u1)∥2 ⩽C
∑
±

lim
t!±∞

∫
|x|⩾|t|

|∇t,xu(t, x)|2, (3.4)

where u is the solution of (3.2) with initial data (u0, u1).

Theorem 1 of [23] is indeed more general: it holds without the assumption that

(u0, u1) is radial, and also in space dimension N=3, with a suitable definition of Z. We

refer to [23] for the details.

3.2. Bound from below of the exterior energy close to a multi-soliton

As a corollary of Theorem 3.2, we will prove an exterior energy lower bound for the

linearized operator close to an approximate radial multi-soliton solution. We will consider

only radial solutions, and fix J⩾2.

We denote by GJ the following subset of (0,∞)J :

GJ = {λ=(λj)1⩽j⩽J , 0<λJ <λJ−1 < ...<λ1}. (3.5)

If λ∈GJ , we set

γ(λ)= max
2⩽j⩽J

λj

λj−1
∈ (0, 1), (3.6)

Lλ =−∆−
J∑

j=1

N+2

N−2
W

4/(N−2)
(λj)

, (3.7)

Zλ =span{((ΛW )(λj), 0), (0, (ΛW )[λj ])) (3.8)

(see §2.1 for the notation (ΛW )(λj) and (ΛW )[λj ]). Then, we have the following.

Corollary 3.3. Assume N⩾5 is odd. For any J⩾2, there exist γ∗>0 and C>0

with the following property. For any λ with γ(λ)⩽γ∗ and for any solution u of

∂2
t u+Lλu=0, u⃗ ↾t=0=(u0, u1)∈H, (3.9)

one has

∥πZ⊥
λ
(u0, u1)∥2H

⩽C

(∑
±

lim
t!±∞

∫
|x|⩾|t|

|∇t,xu(t, x)|2 dx+γ(λ)2θN ∥πZλ
(u0, u1)∥2H

)
,

(3.10)

where θ5=
1
2 , θ7=

3
2 and θN=2 if N⩾9.
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Corollary 3.3 also has a version for N=3, that we will not need here. We skip it for

the sake of simplicity. We prove Corollary 3.3 in the next subsection. In §4.2, we will

apply this corollary to a solution of (1.1) close to a multi-soliton manifold.

3.3. Proof of the exterior energy lower bound for the linearized equation

We prove Corollary 3.3 by contradiction. For this, we assume that there exists a sequence

{λn}n with

lim
n!∞

γ(λn)= 0, (3.11)

and a sequence {(u0,n, u1,n)}n in H such that, denoting by un the solution of

∂2
t un+Lλn

un =0, u⃗n ↾t=0=(u0,n, u1,n), (3.12)

one has

lim
n!∞

∑
±

lim
t!±∞

∫
|x|⩾|t|

|∇t,xun(t, x)|2 dx+γ(λn)
2θN ∥πZλn

(u0,n, u1,n)∥2H =0 (3.13)

and

∥πZ⊥
λn

(u0,n, u1,n)∥H =1. (3.14)

Step 1. (Projection on the orthogonal of the singular directions) Let vn be the

solution of

∂2
t vn+Lλn

vn =0, v⃗n ↾t=0=πZ⊥
λn

(u0,n, u1,n). (3.15)

We claim that

lim
n!∞

∑
±

lim
t!±∞

∫
|x|⩾|t|

|∇t,xvn(t, x)|2 dx=0. (3.16)

In view of (3.13), it is sufficient to prove that

lim
n!∞

∑
±

lim
t!±∞

∫
|x|⩾|t|

|∇t,x(un−vn)(t, x)|2 dx=0. (3.17)

By definition of Zλn , we can write

πZλn
(u0,n, u1,n)=

J∑
j=1

(αj,n(ΛW )(λj,n), βj,n(ΛW )[λj,n]), (3.18)

where, by (3.13),

lim
n!∞

(|αj,n|+|βj,n|)γ(λn)
θN =0 for all j ∈ J1, JK. (3.19)
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We consider

wn =

J∑
j=1

(αj,n(ΛW )(λj,n)+tβj,n(ΛW )[λj,n]), (3.20)

and prove that wn is, outside the wave cone, an approximate solution of the linearized

equation around the multi-soliton in the following sense:

lim
n!∞

∥11{|x|⩾|t|}(∂
2
t +Lλn

)wn∥L1(R,L2) =0. (3.21)

Indeed,

∥11{|x|⩾|t|}(∂
2
t +Lλn

)wn∥L1(R,L2)

≲
∑

1⩽j⩽J

k ̸=j

|αj,n| ∥11{|x|⩾|t|}W
4/(N−2)
(λk,n)

(ΛW )(λj,n)∥L1(R,L2)

+
∑

1⩽j⩽J

k ̸=j

|βj,n| ∥t11{|x|⩾|t|}W
4/(N−2)
(λk,n)

(ΛW )[λj,n]∥L1(R,L2).

By Claim A.2 in the appendix, we have

∥11{|x|⩾|t|}W
4/(N−2)
(λk,n)

(ΛW )(λj,n)∥L1(R,L2)

+∥t11{|x|⩾|t|}W
4/(N−2)
(λk,n)

(ΛW )[λj,n]∥L1(R,L2) ≲ (γ(λn))
θN ,

(3.22)

which yields (3.21) in view of (3.19). To conclude Step 1, we see that (3.21) implies

lim
n!∞

∥11{|x|⩾|t|}(∂
2
t +Lλn

)(un−vn−wn)∥L1(R,L2) =0,

and, since (u⃗n−v⃗n−w⃗n)↾t=0=0, (3.17) follows from Lemma 2.8, the fact that wn satisfies

lim
n!∞

∑
±

lim
t!±∞

∫
|x|⩾|t|

|∇t,xwn(t, x)|2 dx=0

and the following bounds:

11|x|⩾|t|W
4/(N−2) ∈L2(N+1)/(N+4)(R, L2(N+1)/3) (3.23)

and ∥∥∥∥11|x|⩾|t|

J∑
j=1

W
4/(N−2)
(λj,n)

∥∥∥∥
L2(N+1)/(N+4)(R,L2(N+1)/3)

⩽ J∥11|x|⩾|t|W
4/(N−2)∥L2(N+1)/(N+4)(R,L2(N+1)/3).

(3.24)
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The bound (3.24) follows from (3.23) and scaling invariance. To prove (3.23), we use the

bound

|W (x)|4/(N−2) ≲min

(
1,

1

|x|4

)
.

This proves that W 4/(N−2)∈L2(N+1)/3(RN ) and

∥11{|x|⩾|t|}W
4/(N−2)∥2(N+1)/3

L
2(N+1)/3
x

≲
∫ ∞

t

1

r8(N+1)/3
rN−1 dr≲

1

t(5N+8)/3
.

Hence,

∥11{|x|⩾|t|}W
4/(N−2)∥2(N+1)/(N+4)

L
2(N+1)/3
x

≲
1

t(5N+8)/(N+4)
,

which yields (3.23) and concludes this step.

Step 2. (Profile decomposition) As it is recalled in §2.3, extracting subsequences,

we may assume that the sequence {(v0,n, v1,n} has a profile decomposition with profiles

{U j
F }j⩾1, and parameters {λj,n}n∈(0,∞)N and {tj,n}n∈RN. We denote by U j

F,n the

rescaled linear profiles, defined in (2.12), and by

wK
n =SL(t)(v0,n, v1,n)−

K∑
j=1

U j
F,n

the remainder, so that

lim
K!∞

lim sup
n!∞

∥wK
n ∥S(R) =0. (3.25)

Reordering the profiles, we may assume

tj,n =0 for 1⩽ j⩽ J ,

(where J is the number of solitons), and that, for 1⩽j⩽J , the parameters λj,n are the

same λj,n as in the beginning of the proof. Indeed, one can define the J first profiles by

U⃗ j
F (0)=w-lim

n!∞
(λ

N/2−1
j,n v0,n(λj,n ·), λN/2

j,n vJ1,n(λj,n ·)) in H,

then carry on with the profile decomposition to extract all the other profiles. Of course,

in doing so, we do not exclude the fact that some of the profiles U j
F , 1⩽j⩽J , might be

identically zero.

We will approximate vn as follows. If 1⩽j⩽J , we let U j be the solution of

(∂2
t +LW )U j =0, U⃗ j(0)= U⃗ j

F (0). (3.26)
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If j⩾J+1, we let U j=U j
F . We define

U j
n(t, x)=

1

λ
N/2−1
j,n

U j

(
t−tj,n
λj,n

,
x

λj,n

)
and vKn (t, x)=

K∑
j=1

U j
n+wK

n (t, x). (3.27)

In this step we prove:

lim
K!∞

lim sup
n!∞

(
sup
t∈R

∥11{|x|⩾|t|}∇t,x(vn(t, x)−vKn (t, x))∥L2

)
=0. (3.28)

Denote by rKn =vn−vKn . Then,

∂2
t r

K
n +Lλn

rKn =−
K∑
j=1

(∂2
t +Lλn

)U j
n−(∂2

t +Lλn
)wK

n and r⃗Kn ↾t=0=(0, 0).

If 1⩽j⩽J , we have, by (3.26),

(∂2
t +Lλn)U

j
n =−N+2

N−2

∑
1⩽k⩽J

k ̸=j

W
4/(N−2)
(λk,n)

U j
n.

If j⩾J+1, then

(∂2
t +Lλn)U

j
n =−N+2

N−2

∑
1⩽k⩽J

W
4/(N−2)
(λk,n)

U j
n.

Finally, for all K⩾1,

(∂2
t +Lλn

)wK
n =−N+2

N−2

∑
1⩽k⩽J

W
4/(N−2)
(λk,n)

wK
n .

Using the pseudo-orthogonality (2.11) of the parameters and the property (3.25) of wK
n ,

we obtain

lim
K!∞

lim
n!∞

∥(∂2
t +Lλn

)rKn 11{|x|⩾|t|}∥L1(R,L2) =0.

By (3.24) and the approximation Lemma 2.8, we deduce (3.28).

Step 3. (End of the proof) Using the profile decomposition of the preceding step,

we prove the corollary. We claim that

∥U⃗ j
n(0)∥2H ≲

∑
±

lim
t!±∞

∫
|x|>|t|

|∇t,xU
j
n(t, x)|2 dx for all j⩾ 1, (3.29)

∥wK
n (0)∥2H ≲

∑
±

lim
t!±∞

∫
|x|⩾|t|

|∇t,xw
K
n (t, x)|2 dx for all K ⩾ 1 (3.30)
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(where the implicit constants are independent of j, K and n), and

lim
n!∞

lim
t!±∞

∫
|x|>|t|

|∇t,xU
j
n(t, x)|2 dx=0 for all j⩾ 1, (3.31)

∑
±

lim
t!±∞

∫
|x|⩾|t|

|∇t,xw
K
n (t, x)|2 dx=0 for all K ⩾ 1. (3.32)

Of course, combining inequalities (3.29)–(3.32) and Step 2, we would obtain

lim
n!∞

∥v⃗n(0)∥H =0,

a contradiction with (3.14). It remains to prove these four assertions.

Recall that U j (for j⩾J+1) and wK
n (for any K⩾1) are solutions of the free wave

equation. The inequalities (3.29) for j⩾J+1, and (3.30) thus follow from the exterior

energy bound in odd dimension proved in [19] (recalled in Theorem 3.1 above). We

next prove (3.29) when j satisfies 1⩽j⩽J . According to the channels of energy for the

linearized equation at W (Theorem 3.2), it is sufficient to prove that∫
∇U j(0, x)·∇ΛW (x) dx=

∫
∂tU

j(0, x)ΛW (x)= 0. (3.33)

To prove (3.33), notice that, by weak convergence,∫
∇U j(0, x)·∇ΛW (x) dx= lim

n!∞

∫
λ
N/2
j,n ∇v0,n(λj,nx)ΛW (x) dx

= lim
n!∞

∫
∇v0,n∇(ΛW )(λj,n) =0,

since (v0,n, v1,n)∈Z⊥
λn

. By the same proof,∫
∂tU

j(0, x)ΛW (x) dx=0,

concluding the proof of (3.33), and thus of (3.29).

We next prove (3.31) and (3.32). We will use the pseudo-orthogonality of the pa-

rameters (2.11). We focus on the limits as t!+∞, the proof for the limits as t!−∞
being the same. Using the radiation term for the free wave equation (see appendix of

[22]) if j⩾J+1, or for the linearized wave equation (see (2.20)) if 1⩽j⩽J , we obtain

that, for all j⩾1, there exists gj∈L2(R) such that

lim
t!∞

∫ +∞

t

|r(N−1)/2∂rU
j(t, r)−gj(r−t)|2 dr=0, (3.34)

lim
t!∞

∫ +∞

t

|r(N−1)/2∂tU
j(t, r)+gj(r−t)|2 dr=0, (3.35)

lim
t!∞

∫ +∞

t

1

r2
|U j(t, r)|2rN−1 dr=0. (3.36)
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If j⩾J+1, the preceding limits hold true with
∫∞
t

replaced by
∫∞
0

. Also, for all K⩾1

and n, there exist GK
n ∈L2(R) such that

lim
t!∞

∫ +∞

0

|r(N−1)/2∂rw
K
n (t, r)−GK

n (r−t)|2 dr=0, (3.37)

lim
t!∞

∫ +∞

0

|r(N−1)/2∂tw
K
n (t, r)+GK

n (r−t)|2 dr=0. (3.38)

Fix j⩾1 and ε>0. Then, there exists K≫1 such that K>j and (by (3.28) and (3.16))

lim
t!+∞

∫
|x|>t

|∂t,xvKn (t, x)|2 dx⩽ ε. (3.39)

Using the definition (3.27) of vKn , we obtain∫
|x|>t

∇t,xv
K
n (t)·∇t,xU

j
n(t)=

∫
|x|>t

|∇t,xU
j
n(t)|2

+
∑

1⩽k⩽K

j ̸=k

∫
|x|>|t|

∇t,xU
j
n(t)·∇t,xU

k
n(t)

+

∫
|x|>|t|

∇t,xU
j
n(t)∇t,xw

K
n (t),

where U j
n is as usual the modulated profile (see (3.27)).

If j ̸=k, we have, in view of (3.34) and (3.35),

lim
t!+∞

∫
|x|>t

∇t,xU
j
n(t)·∇t,xU

k
n(t)

= 2 lim
t!∞

∫ +∞

t

1

λ
1/2
j,n

gj
(
r−|t−tj,n|

λj,n

)
1

λ
1/2
k,n

gk
(
r−|t−tk,n|

λk,n

)
dr

=2

∫ +∞

0

1

λ
1/2
j,n

gj
(
r+tj,n
λj,n

)
1

λ
1/2
k,n

gk
(
r+tk,n
λk,n

)
dr.

In view of the pseudo-orthogonality (2.11) of the parameters, we deduce that

lim
n!∞

lim
t!+∞

∫
|x|>t

∇t,xU
j
n(t)·∇t,xU

k
n(t)= 0. (3.40)

Next, we consider

lim
t!+∞

∫
|x|>t

∇t,xU
j
n(t)·∇t,xw

K
n (t)

= 2 lim
t!∞

∫ +∞

t

1

λ
1/2
j,n

gj
(
r−|t−tj,n|

λj,n

)
GK

n (r−t) dr

=2

∫ +∞

0

1

λ
1/2
j,n

gj
(
r+tj,n
λj,n

)
GK

n (r) dr.
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If tj,n=0 for all n, we obtain

lim
t!+∞

∫
|x|>t

∇t,xU
j
n(t)·∇t,xw

K
n (t)= 2

∫ +∞

0

1

λ
1/2
j,n

gj
(

r

λj,n

)
GK

n (r) dr,

and the right-hand side goes to zero as n goes to infinity, since the condition

w-lim
n!∞

(λ
N/2−1
j,n wK

n (0, λj,n ·), λN/2
j,n ∂tw

K
n (0, λj,n ·))= 0

(see (2.15)) implies

lim
n!∞

∫
R

1

λ
1/2
j,n

g

(
r

λj,n

)
GK

n (r) dr=0 for all g ∈L2(R). (3.41)

If limn tj,n/λj,n=+∞, then we have∣∣∣∣∫ +∞

0

1

λ
1/2
j,n

gj
(
r+tj,n
λj,n

)
GK

n (r) dr

∣∣∣∣≲ ∥gj∥L2(r⩾tj,n/λj,n) −−−−!n!∞
0

Finally, if

lim
n!∞

tj,n
λj,n

=−∞,

we have

lim
n!∞

∫ 0

−∞

∣∣∣∣ 1

λ
1/2
j,n

gj
(
t+tj,n
λj,n

)∣∣∣∣2 dr=0,

and thus

lim
n!∞

∫ +∞

0

1

λ
1/2
j,n

gj
(
r+tj,n
λj,n

)
GK

n (r) dr= lim
n!∞

∫
R

1

λ
1/2
j,n

gj
(
r+tj,n
λj,n

)
GK

n (r) dr=0,

where we have used that, by the weak limit property (2.15) of wK
n ,

lim
n!∞

∫
∇t,xU

j
n(0, x)·∇t,xw

K
n (0, x) dx=0.

Combining the properties above, we obtain

lim
n!∞

lim
t!+∞

∫
|x|⩾|t|

|∇t,xU
j
n(t, x)|2 dx= lim

n!∞
lim

|x|>|t|

∫
∇t,xv

K
n ·∇t,xU

j
n =0.

This yields (3.31). By a similar proof, we obtain (3.32), concluding this step.
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4. Non-radiative solutions close to a multi-soliton

4.1. Preliminaries

Definition 4.1. Let t0∈R, and let u be a solution of the non-linear wave equation

(1.1) (or another wave equation considered in this paper). We say that u is non-radiative

at t=t0 if u is defined on {|x|>|t−t0|} and

∑
±

lim
t!±∞

∫
|x|⩾|t−t0|

|∇t,xu(t, x)|2 dx=0.

We say that u is weakly non-radiative if, for large R>0, u is defined on {|x|>|t|+R} and

∑
±

lim
t!±∞

∫
|x|⩾|t|+R

|∇t,xu(t, x)|2 dx=0.

If N⩾3 is odd, according to the equirepartition property recalled in Theorem 3.1,

the only non-radiative solution of (3.1) is zero. This fact persists if N⩾4 is even (see

[24, Proposition 1]), as a consequence of the asymptotic formula in [10].

In odd space dimension N⩾5, the non-radiative solutions for the linearized wave

equation around the stationary solutions W are also known, as a consequence of the

main result of [23] (recalled in Theorem 3.2 above in the radial case).

Radial weakly non-radiative solutions of the free wave equation were explicited

in [40]. Let

P =

{(
1

rN−2k1
, 0

)
: 1⩽ k1 ⩽

⌊
N+2

4

⌋}
∪
{(

0,
1

rN−2k2

)
: 1⩽ k2 ⩽

⌊
N

4

⌋}
,

and, for R>0, let P (R) be the subspace of H(R) spanned by P. According to [40], if

N⩾3 is odd and v is a radial solution ∂2
t v−∆v=0, then∑

±
lim

t!±∞

∫
R+|t|

|∇t,xu(t, x)|2 dx=0

if and only if v⃗(0)∈P (R).

From [21], if N=3, the only radial, non-radiative solutions of (1.1) are the station-

ary solutions. The proof is specific to dimension 3, and the results available in higher

dimension are less precise. We next recall from [24] some of these results, that will be

needed in the sequel. Let m= 1
2 (N−1) be the number of elements of P. As in [24], we

denote by P={Ξk}k∈J1,mK, choosing Ξk so that

∥Ξk∥H(R) =
ck

Rk−1/2
, (4.1)
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for some constant ck ̸=0. In particular, we choose Ξm(r)=(r2−N , 0). By scaling, one can

check that, if U∈P (R) and (θk(R))k∈J1,mK are its coordinates in (Ξ1, ...,Ξm), then

∥U∥H(R) ≈
m∑

k=1

|θk(R)|
Rk−1/2

,

where the implicit constant is independent of R>0 (see [24, Claim 3.2]). Then, we have

the following.

Theorem 4.2. Assume N⩾5 is odd. There exists ε0>0 with the following property.

Let u be a radial weakly non-radiative solution of (1.1). Then, there exist k0∈J1,mK and

ℓ∈R (with ℓ ̸=0 if k0<m) such that, for all t0∈R and R0>0, if u is defined on

{(t, r) : r > |t−t0|+R0},

∥u⃗(t0)∥H(R0)<ε0 and

∑
±

lim
t!±∞

∫
|x|>|t−t0|+R0

|∇t,xu(t, r)|2 dx=0,

then, for all R>R0,

∥u⃗(t0)−ℓΞk0
∥H(R) ⩽Cmax

{(
R0

R

)(k0−1/2)(N+2)/(N−2)

,

(
R0

R

)k0+1/2}
.

See [24, Theorem 2 and Remark 3.4]. If k0=m, the theorem implies that u is close,

for large r, to one of the stationary solutions 0 (if ℓ=0) or ±W(λ) for some λ depending

on ℓ (if ℓ ̸=0). Under the stronger assumption that u is non-radiative, [24, Theorem 3]

gives a uniqueness result in this case.

Theorem 4.3. Assume N⩾5 is odd. Let u be a radial non-radiative solution

of (1.1). Let k0 be as in Theorem 4.2. Assume that k0=m. Then, u is a stationary

solution.

In the remainder of this section, we will assume N⩾5 is odd and consider a non-

radiative solution close to a multi-soliton. In §4.2, we will use the exterior energy bound

for the linearized equation proved in §3 to give a first-order expansion of the solution.

In §4.3 we will use Theorems 4.2 and 4.3 to give a lower bound of the exterior scaling

parameter of the multi-soliton. These properties will be crucial in the proofs of the

soliton resolution in §5 and §6.
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4.2. Estimates on the coefficients

In this subsection, we assume as before that N⩾5 is odd. We fix J⩾1, (ιj)∈{±1}J , and
consider a radial solution u of (1.1), defined on {(t, x)∈RN :|x|>t}, which is non-radiative

at t=0 (see Definition 4.1). We assume that there exists λ=(λj)
J∈GJ such that

∥u⃗(0)−(M, 0)∥H =: δ⩽ εJ ≪ 1, where M =

J∑
j=1

ιjW(λj), (4.2)

γ⩽ εJ ≪ 1, (4.3)

where, as before, γ :=γ(λ)=max1⩽j⩽J−1 λj+1/λj . Denote

h0 =u0−M.

By the implicit function theorem (see Lemma B.1), we can change the scaling parameters

(λj)j so that the following orthogonality relations hold:∫
∇xh0∇x(ΛW )(λj) =0 for all j ∈ J1, JK. (4.4)

We expand u1=∂tu(0) as follows:

u1 =

J∑
j=1

αj(ΛW )[λj ]+g1, (4.5)

where ∫
g1(ΛW )[λj ] =0 for all j ∈ J1, JK. (4.6)

We will prove the following result.

Proposition 4.4. We have

∥(h0, g1)∥H ≲ γN/4+δN/(N−2), (4.7)∣∣∣∣δ2− J∑
j=1

α2
j∥ΛW∥2L2

∣∣∣∣≲ γ(N−1)/2+δ2(N−1)/(N−2). (4.8)

We start by proving the following lemma.

Lemma 4.5. Let u be as above. Then,

∥πZ⊥
λ
((u0, u1)−(M, 0))∥H ≲ γN/4+δN/(N−2).
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Proof. We let h(t)=u(t)−M . Then, ∥h⃗(0)∥H=δ and

∂2
t h+Lλh=F (h)+N (h), (4.9)

where

N (h)=F (M+h)−
J∑

j=1

F (ιjW(λj))−F (h)−N+2

N−2

J∑
j=1

W
4/(N−2)
(λj)

h.

By finite speed of propagation, h coincide, for |x|>|t|, with the solution h̃ of

∂2
t h̃+Lλh̃=(F (h)+N (h))11{|x|⩾|t|}. (4.10)

Let T>0 and set

Γ(T )= {(t, x) : |t|⩽min{|x|, T}}.

By the fractional chain rule (2.7), we have+++

∥F (h)11{|x|⩾|t|}∥W′((0,T )) = ∥F (h̃)11{|x|⩾|t|}∥W′((0,T )) ≲ ∥h̃∥W((0,T ))∥h̃∥
4/(N−2)
S(Γ(T )) . (4.11)

We first assume that N⩾7. We use the inequality∣∣∣∣F( J∑
j=1

yj+h

)
−

J∑
j=1

F (yj)−F (h)−N+2

N−2

J∑
j=1

|yj |4/(N−2)h

∣∣∣∣
≲
∑
j ̸=k

min{|yj |4/(N−2)|yk|, |yk|4/(N−2)|yj |}+
J∑

j=1

|yj | |h|(N+1)/(N−2),

(4.12)

proved in the appendix (see Claim A.5). We obtain

|N (h)|≲
∑
j ̸=k

min(W
4/(N−2)
(λj)

W(λk))+

J∑
j=1

W
1/(N−2)
(λj)

|h|(N+1)/(N−2).

If j ̸=k, we have, by Claim A.3 in the appendix,

∥11{|x|⩾|t|} min{W 4/(N−2)
(λj)

W(λk),W
4/(N−2)
(λj)

W(λk)}∥L1
tL

2
x
≲ γ(N+2)/4.

Furthermore,

∥11Γ(T )W
1/(N−2)
(λj)

|h|(N+1)/(N−2)∥L1
tL

2

⩽ ∥11Γ(T )W
1/(N−2)
(λj)

∥L2
tL

∞
x
∥11Γ(T )|h|(N+1)/(N−2)∥L2

t,x

≲ ∥h̃∥(N+1)/(N−2)
S(Γ(T ) ,
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where we have used that, since

W 1/(N−2) ≲
1

1+|x|
,

we have W 1/(N−2)11{|x|⩾t}∈L2
t (R, L∞

x (RN )). We let hL(t) be the solution of

∂2
t hL+LλhL =0 and h⃗L↾t=0=(u0, u1)−(M, 0).

In view of the estimate (3.24) on the potential
∑

j W
(N+2)/(N−2)
(λj)

, we can use the ap-

proximation lemma (Lemma 2.8). Due to the estimates above, we obtain

∥h̃−hL∥S(ΓT ) ≲ γ(N+2)/4+∥h̃∥(N+1)/(N−2)
S(ΓT ) +∥h̃∥4/(N−2)

S(ΓT ) ∥h̃∥W((0,T ).

Using again Strichartz estimates, we deduce that

sup
−T⩽t⩽T

∥⃗̃h(t)−h⃗L(t)∥H+∥h̃−hL∥W((0,T ))∩S((0,T ))

≲ γ(N+2)/4+∥h̃∥(N+1)/(N−2)
S(ΓT ) +∥h̃∥4/(N−2)

S(ΓT ) ∥h̃∥W((0,T ),

(4.13)

and thus, since ∥hL∥W((0,T ))∩S((0,T ))≲δ,

∥h̃∥W((0,T ))∩S((0,T )) ≲ γ(N+2)/4+δ.

Going back to (4.13), we obtain

sup
−T⩽t⩽T

∥⃗̃h(t)−h⃗L(t)∥H ≲ γ(N+2)/4+δ(N+1)/(N−2).

This estimate is uniform in T . Hence,

sup
t∈R

∥⃗̃h(t)−h⃗L(t)∥H ≲ γ(N+2)/4+δ(N+1)/(N−2).

Using that u is non-radiative, we deduce that

∑
±

(
lim

t!±∞

∫
{|x|>|t|}

|∇t,xhL(t, x)|2 dx
)1/2

≲ γ(N+2)/4+δ(N+1)/(N−2).

By Corollary 3.3,

∥πZ⊥
λ
(h0, h1)∥H ≲ γθN δ+γ(N+2)/4+δ(N+1)/(N−2),

where θ7=
3
2 and θN=2 if N⩾9. The conclusion of the proposition follows, noting that

γθN δ≲ γ(N+2)/4+δ(N+1)/(N−2)
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if N⩾7. Note that, in this case, the bound is slightly stronger, but we will not need this

in the sequel.

The proof is almost the same when N=5, but we must replace the inequality (4.12)

by

∣∣∣∣F( J∑
j=1

yj+h

)
−

J∑
j=1

F (yj)−
7

3

J∑
j=1

|yj |4/3h
∣∣∣∣ ≲

∑
j ̸=k

|yj |4/3|yk|+
J∑

j=1

|yj |1/3|h|2+F (h),

and use that, by Claim A.2, if j ̸=k,

∥11{|x|⩾|t|}W
4/3
(λj)

W(λk)∥L1(R,L2) ≲ γ3/2.

We omit the details.

Proof of Proposition 4.4. According to Lemma 4.5, we have

∥πZ⊥
λ
(h0, u1)∥H ≲ δN/(N−2)+γN/4. (4.14)

In view of the orthogonality condition (4.4) and the expansion (4.5) of u1, we deduce

(4.7). Since

δ2 = ∥h0∥2L2+∥g1∥2L2+

∥∥∥∥ J∑
j=1

αj(ΛW )[λj ]

∥∥∥∥2
L2

,

and, by Claim A.1, ∫
|(ΛW )[λj ](ΛW )[λk]|≲ γN/2−2,

we obtain ∣∣∣∣δ2− J∑
j=1

α2
j∥ΛW∥2L2

∣∣∣∣≲ γN/2−2
J∑

j=1

α2
j+δ2N/(N−2)+γN/2. (4.15)

Noting that the previous inequality implies easily that

J∑
j=1

α2
j ≲ δ2+γN/2,

and thus

γN/2−2
J∑

j=1

α2
j ≲ γN−2+δ2γN/2−2 ≲ γN−2+δ2(N−1)/(N−2)+γ(N−4)(N−1)/2,

we deduce (4.8).
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4.3. Lower bound for the exterior scaling parameter

Let u be as in §4.2, and denote by ℓ and k0 the parameters defined by Theorem 4.2.

Assume that u is non-stationary so that, by Theorem 4.3, k0⩽m−1.

Proposition 4.6. There exists a constant C0>0 such that, if u is as above, we

have

|ℓ|⩽C0δ
2/Nλ

k0−1/2
1 .

Proof. Step 1. We note that, for R⩾λ1, we have

∥u⃗(0)∥H(R) ≲ δ+

(
λ1

R

)m−1/2

.

Indeed, ∥u⃗(0)−(M, 0)∥H(R)≲δ and

∥W(λj)∥Ḣ1(R) = ∥W∥Ḣ1(R/λj)
≲

(
λj

R

)m−1/2

,

which yields the announced estimate.

Step 2. Let ε0 be as in Theorem 4.2. Fixing B>0 large enough, and using the

smallness assumption (4.2) on δ, we see that

∥u⃗(0)∥H(Bλ1) ⩽ ε0.

In view of Theorem 4.2, we see that, for all R⩾Bλ1,∣∣∣∣∥u⃗(0)∥H(R)−
ck0

ℓ

Rk0−1/2

∣∣∣∣≲max

{(
Bλ1

R

)k0+1/2

,

(
Bλ1

R

)(k0−1/2)(N+2)/(N−2)}
.

Combining with the estimate of Step 1, and using that k0⩽m−1, we deduce that, for all

R⩾Bλ1,

|ℓ|
Rk0−1/2

≲ δ+

(
λ1

R

)ak0

and ak0 :=min

{
k0+

1

2
,

(
k0−

1

2

)
N+2

N−2

}
.

Choosing R such that (λ1/R)ak0 =δ, that is R=λ1δ
−1/ak0 , we obtain

|ℓ|≲λ
k0−1/2
1 δ1−(k0−1/2)/ak0 ,

which yields the conclusion of the proposition, since

min
1⩽k0⩽m−1

1− k0−1/2

ak0

=
2

N
.
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5. Reduction to a system of differential inequalities

The proof of Theorem 1 is by contradiction. Consider a global solution that does not

satisfy the soliton resolution conjecture. Then by the work of Rodriguez [57], it is close,

for a sequence of times {tn}n going to infinity, to a sum of rescaled solitary waves.

Using the study on non-radiative solutions carried out in §4 and the equation (1.1),

linearized around a sum of solitary waves, we will obtain an approximate differential

system satisfied around tn by the scaling parameters modulating the stationary solutions.

We then deduce a contradiction from this system and differential inequality arguments.

We divide the proof into two sections. In this section we will set up the contradiction

argument and obtain some differential inequalities. In the next section we will restrict

the time interval to prove a crucial lower bound (consequence of Proposition 4.6 above)

on one of the scaling parameters, and prove that the differential system, together with

this lower bound leads to a contradiction.

This section and §6 concern the case of global solution. We omit the very close proof

for finite-time blow-up solutions (see e.g. [21, §4]).

5.1. Setting of the proof of the soliton resolution

Let u be a solution of (1.1) such that T+(u)=+∞ and

lim sup
t!+∞

∥u⃗(t)∥H <∞. (5.1)

Let vL be the unique solution of the free wave equation (3.1) such that, for all A∈R,

lim
t!+∞

∫
|x|⩾A+|t|

|∇t,x(u−vL)(t, x)|2 dx=0 (5.2)

(see [57, Proposition 4.1]). For J⩾1, ι∈{±1}J and (f, g)∈H, we set

dJ,ι(f, g)= inf
λ∈GJ

{∥∥∥∥(f, g)− J∑
j=1

ιj(W(λj), 0)

∥∥∥∥
H
+γ(λ)

}
, (5.3)

where, as before,

GJ = {(λj)j ∈ (0,∞)J : 0<λJ < ...<λ2 <λ1} and γ(λ)= max
2⩽j⩽J

λj

λj−1
∈ (0, 1).

Assume that u does not scatter forward in time. By [57], we know that there exists J⩾1,

ι∈{±1}J and a sequence {tn}n!+∞ such that

lim
n!∞

dJ,ι(u⃗(tn)−v⃗L(tn))= 0. (5.4)
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We will prove by contradiction that

lim
t!∞

dJ,ι(u⃗(t)−v⃗L(t))= 0.

We thus assume that there exists a small ε0>0 and a sequence {t̃n}n!+∞ such that

t̃n <tn for all n, (5.5)

dJ,ι(u⃗(t)−v⃗L(t))<ε0 for all n and all t∈ (t̃n, tn], (5.6)

dJ,ι(u⃗(t̃n)−v⃗L(t̃n))= ε0 for all n. (5.7)

We will denote U=u−vL and use notation that is analogous to the one of §4.2, although
the setting is a bit different.

The implicit function theorem (see Lemma B.1 in the appendix) implies that, for all

t∈[t̃n, tn], we can choose λ(t)=(λ1(t), ..., λJ(t))∈GJ such that, for all j∈J1, JK,∫
∇(u(t)−vL(t)−M(t))·∇(ΛW )(λj(t)) =0, (5.8)

where

M(t)=

J∑
j=1

ιjW(λj(t))

and, in view of Remark B.2,

∥u⃗(t)−v⃗L(t)−(M(t), 0)∥H+γ(λ)≈ dJ,ι(u⃗(t)−vL(t)). (5.9)

In the sequel, we will denote

h(t)=u(t)−vL(t)−M(t)=U(t)−M(t),

γ(t)= γ(λ(t)),

δ(t)=
√

∥h(t)∥2
Ḣ1

+∥∂t(u−vL)(t)∥2L2 .

We will expand ∂tU=∂tu−∂tvL as follows:

∂tU(t)=

J∑
j=1

αj(t)ιjΛW[λj(t)]+g1(t), (5.10)

where, for all j∈J1, JK, ∫
g1(t)ΛW[λj(t)] =0. (5.11)

We also define

βj(t)=−ιj

∫
(ΛW )[λj(t)]∂tU(t) dx. (5.12)

In this section we prove the following result.
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Proposition 5.1. For all large n, for all t∈[t̃n, tn],

δ≲ γ(N−2)/4+on(1) (5.13)∣∣βj−∥ΛW∥2L2λ′
j

∣∣⩽CγN/4+on(1) for all j ∈ J1, JK, (5.14)∣∣∣∣12
J∑

j=1

β2
j −κ1

∑
1⩽j⩽J−1

ιjιj+1

(
λj+1

λj

)(N−2)/2∣∣∣∣⩽Cγ(N−1)/2+on(1), (5.15)

∣∣∣∣λjβ
′
j+κ0

(
ιjιj+1

(
λj+1

λj

)(N−2)/2

−ιjιj−1

(
λj

λj−1

)(N−2)/2)∣∣∣∣ (5.16)

⩽Cγ(N−1)/2+on(1) for all j ∈ J1, JK,

where on(1) goes to zero as n!∞, uniformly with respect to n and t∈[t̃n, tn], and

κ0 =
NN/2−1(N−2)N/2

2

∫
1

|x|N−2
W (N+2)/(N−2)dx,

κ1 = ∥ΛW∥2L2

∫
(N(N−2))N/2−1

|x|N−2
W (N+2)/(N−2) dx.

Let us mention that the constants κ0 and κ1 can be computed explicitly. However,

we will not need their exact values in the sequel.

The proof of Proposition 5.1 is based on the results of §4.2 on non-radiative solutions.

We will first consider, in §5.2, a profile decomposition for a sequence of

U⃗(sn)= u⃗(sn)−v⃗L(sn),

(where sn!∞), observing that any non-linear profile in this decomposition is non-

radiative. In §5.3, we will use this observation and an expansion of the energy to deduce

estimates on λj , βj , γ and δ. In §5.4, we will obtain estimates on λ′
j and β′

j using equation

(1.1) and the orthogonality conditions, and conclude the proof of (5.13)–(5.16).

We refer to [38, Proposition 3.8] for modulation equations similar to the ones of

Proposition 5.1, in the context of equivariant wave maps, when J=2, at the threshold

energy (so that in this work the analogue of the radiation term vL is 0). One important

novelty here compared to [38, Proposition 3.8] and its proof, is the proof that the non-

linear profiles associated with a sequence {U⃗(sn)} are non-radiative solutions of (1.1)

(see Lemma 5.2 below), yielding a crucial additional information.

5.2. Expansion along a sequence of times and renormalization

Consider a sequence of times {sn}n, with sn∈[t̃n, tn] for all n. Extracting subsequences,

we define a partition of the interval J1, JK as follows. We let 1=j1<j2<...<jK+1=J+1,
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so that

J1, JK=
K⋃

k=1

Jjk, jk+1−1K,

with

lim
n!∞

λjk+1
(sn)

λjk(sn)
= 0 for all k∈ J1,K−1K, (5.17)

and,

νj = lim
n!∞

λj(sn)

λjk(sn)
> 0 for all k∈ J1,KK and all j ∈ Jjk, jk+1−1K. (5.18)

We note that νjk=1. In this subsection, we prove the following result.

Lemma 5.2. Under the above assumptions, for all k∈J1,KK, there exists (V k
0 , V k

1 )

in H such that, denoting by V k the solution of (1.1) with initial data (V k
0 , V k

1 ), then

V k is defined on {|x|>|t|} and is non-radiative. Furthermore, letting Jk=jk+1−jk,

ιk=(ιjk , ..., ιjk+1−1) and

V k
n (t, x)=

1

λ
(N−2)/2
jk

(sn)
V k

(
t

λjk(sn)
,

x

λjk(sn)

)
,

we have (extracting subsequences if necessary),

lim
n!∞

∥∥∥∥u⃗(sn)−v⃗L(sn)−
K∑

k=1

V⃗ k
n (0)

∥∥∥∥
H
=0 (5.19)

and

dJk,ιk(V
k
0 , V k

1 )⩽Cε0. (5.20)

More precisely, after extraction,
V k
0 =

jk+1−1∑
j=jk

ιjW(νj)+ȟk
0

V k
1 =

jk+1−1∑
j=jk

ιjα̌j(ΛW )[νj ]+ǧk1 ,

(5.21)

where

ȟk
0 =w-lim

n!∞
λ
(N−2)/2
jk

(sn)h(sn, λjk(sn) ·), (5.22)

α̌j = lim
n!∞

αj(sn), (5.23)

ǧk1 =w-lim
n!∞

λ
N/2
jk

(sn)g1(sn, λjk(sn) ·). (5.24)

Furthermore, we have

JE(W, 0)=

K∑
k=1

E(V⃗ k(0)) (5.25)
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Note that the limits (5.18), (5.22), (5.23) and (5.24) imply the orthogonality condi-

tions ∫
∇ȟk

0 ·∇(ΛW )(νj) =

∫
ǧk1 ·∇(ΛW )[νj ] =0 for all j ∈ Jjk, jk+1−1K. (5.26)

Proof of Lemma 5.2. In all the proof, we will denote

µk,n =λjk(sn).

By (5.18),

lim
n!∞

λj(sn)

µk,n
= νj for all j ∈ Jjk, jk+1−1K.

Step 1. Denoting by

M(t)=

J∑
j=1

ιjW(λj(t)),

we see that, for k∈J1,KK,

µ
N/2−1
k,n M(sn, µk,n ·)−−−−⇀

n!∞

jk+1−1∑
j=jk

ιjW(νj).

Extracting subsequences, so that the limits (5.22)–(5.24) exist, we obtain

(µ
N/2−1
k,n ((u−vL)(sn, µk,n ·), µN/2

k,n ∂t(u−vL)(sn, µk,n ·)))−−−−⇀
n!∞

(V k
0 , V k

1 ), (5.27)

where (V k
0 , V k

1 ) is defined by (5.21). Note that, by (5.6),

∥∥∥∥(V k
0 , V k

1 )−
jk+1−1∑
j=jk

ιj(W(νj), 0)

∥∥∥∥
H
≲ ε0, (5.28)

and that, for j∈Jjk, jk+1−2K,

νj+1

νj
⩽ lim

n!∞
γ(λ(sn))⩽ ε0. (5.29)

In particular, (5.20) is satisfied. The bounds (5.28) and (5.29) also imply, setting

νk =(νjk , ..., νjk+1−1),

that ∣∣∥(V k
0 , V k

1 )∥2H−Jk∥∇W∥2L2

∣∣≲ ε0+γ(νk)N/2−2 = oε0(1), (5.30)
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where oε0(1) goes to zero as ε0 goes to zero. We have used the bound∣∣∣∣∫ ∇W(νj) ·∇W(νℓ)

∣∣∣∣≲ γ(νk)N/2−2.

(see Claim A.1 in the appendix). Notice also that∣∣∥M(sn)∥2Ḣ1−J∥∇W∥2L2

∣∣= oε0(1). (5.31)

As a consequence of the weak limit (5.27), we see that the sequence {u⃗(sn)−v⃗L(sn)}n
has (after extraction of subsequences) a profile decomposition with profiles (V k

F )k⩾1 and

parameters {µk,n, sk,n}n, k⩾1, where, for k∈J1,KK, µk,n=λjk(sn), sk,n=0 and V k
F is the

solution of the free linear wave equation with initial data (V k
0 , V k

1 ) (defined by (5.21)).

Combining (5.27), (5.28), (5.30), (5.31) and the Pythagorean expansion of the profile

decomposition, we obtain ∑
k⩾K+1

∥V⃗ k
F (0)∥2H = oε0(1). (5.32)

As usual, we will denote by V k the non-linear profile associated with V k
F , {sk,n}n and

{µk,n}n.

Step 2. (Approximation for {|x|⩾|t|} and lack of radiation) We claim that, for all

k∈J1,KK, the non-linear profile V k is defined on {|x|⩾|t|} and

V k ∈S({|x|> |t|}). (5.33)

This follows from (5.28) and long-time perturbation theory. By Minkowski’s inequality

and scaling arguments,∥∥∥∥ jk+1−1∑
j=jk

ιjW(νj)

∥∥∥∥
W({|x|⩾|t|})

⩽ J∥W∥W({|x|⩾|t|}).

One can check easily that the right-hand side of the preceding inequality is finite. This

can be done directly. One can also use that W coincides for |x|>|t| with the solution W̃

of

(∂2
t −∆)W̃ =W (N+2)/(N−2)11{|x|⩾|t|},

with

W (N+2)/(N−2)11{|x|>|t|} ∈L1L2,

so that, by the Strichartz inequality (2.4),

W̃ ∈W({|x|> |t|}).
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By (5.29) and the Claim A.5 (with h=0) in the appendix, denoting

rk =(∂2
t −∆)

( jk+1−1∑
j=jk

ιjW(νj)

)
−F

( jk+1−1∑
j=jk

ιjW(νj)

)
,

where F (z)=|z|4/(N−2)z, we have

∥11{|x|⩾|t|}rk∥L1L2 = oε0(1).

Taking ε0>0 small enough, we deduce, by long time perturbation theory (Proposi-

tion 2.5), that V k is defined on {|x|⩾|t|} and satisfies (5.33).

In view of (5.32), all the non-linear profiles V k, k⩾K+1, are globally defined and

scatter. From the profile approximation property (Proposition 2.7), we obtain that, for

large n, the solution (τ, x) 7!u(sn+τ, x) is defined on {|x|⩾|τ |}, and that, for all ℓ≫1,

u(sn+τ)= vL(sn+τ)+

ℓ∑
k=1

V k
n (τ)+wℓ

n(τ)+rℓn(τ), (5.34)

where wℓ
n is the solution of the free wave equation (3.1) with initial data

u⃗(sn)−v⃗L(sn)−
ℓ∑

k=1

V⃗ k
n (0),

and rℓn satisfies

lim
ℓ!∞

lim sup
n!∞

sup
τ∈R

∥11{|x|⩾|τ |}∇τ,xr
ℓ
n(τ)∥L2 =0. (5.35)

We next prove that, for all k⩾1,

lim
n!∞

∑
±

lim
τ!±∞

∫
|x|⩾|τ |

|∇τ,xV
k
n (τ, x)|2 dx=0. (5.36)

and that, for all ℓ⩾1,

lim
n!∞

∑
±

lim
τ!±∞

∫
|x|⩾|τ |

|∇τ,xw
ℓ
n(τ, x)|2 dx=0. (5.37)

The proof is similar to that of the analogous properties (3.31) and (3.32) in the proof of

the exterior energy bound for the linearized equation close to a soliton. Using (5.34) and
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fixing 1⩽k<ℓ, we see that, for all τ ,∫
|x|⩾|τ |

∇τ,x(u(sn+τ, x)−vL(sn+τ, x))·∇τ,yV
k
n (τ, x) dx

=

∫
|x|⩾|τ |

|∇τ,xV
k
n (τ, x)|2 dx

+
∑

0⩽j⩽ℓ

j ̸=k

∫
|x|⩾|τ |

∇τ,xV
j
n (τ, x)·∇τ,xV

k
n (τ, x) dx

+

∫
|x|⩾|τ |

∇τ,xw
ℓ
n(τ, x)·∇τ,xV

k
n (τ, x) dx

+

∫
|x|⩾|τ |

∇ℓ
τ,xr

ℓ
n(τ, x)∇τ,xV

k
n (τ, x) dx.

(5.38)

Since, for all j, V j
n scatters in both time directions in {|x|⩾|τ |} (in the sense that it

satisfies (2.10)), we have, using the pseudo orthogonality of the parameters as in the

proof mentioned above,

lim
n!∞

∑
±

lim
τ!±∞

∣∣∣∣∫
|x|⩾|τ |

∇τ,xV
j
n (τ, x)·∇τ,xV

k
n (τ, x) dx

∣∣∣∣=0 for all j ̸= k, (5.39)

and also, if k⩽ℓ,

lim
n!∞

∑
±

lim
τ!±∞

∣∣∣∣∫
|x|⩾|τ |

∇τ,xw
ℓ
n(τ, x)·∇τ,xV

k
n (τ, x) dx

∣∣∣∣=0.

Furthermore, by (5.35),

lim
ℓ!∞

lim sup
n!∞

∑
±

lim
τ!±∞

∣∣∣∣∫
|x|⩾|τ |

∇τ,xr
ℓ
n(τ, x)·∇τ,xV

k
n (τ, x) dx

∣∣∣∣=0.

By the definition of vL, we have that, for all n,

lim
τ!+∞

∫
|x|⩾τ

|∇t,x(u(sn+τ, x)−vL(sn+τ, x))|2 dx

= lim
σ!+∞

∫
|x|⩾σ−sn

|∇t,x(u(σ, x)−vL(σ, x))|2 dx=0.

(5.40)

On the other hand,

lim
τ!−∞

∫
|x|⩾|τ |

|∇t,x(u(sn+τ, x)−vL(sn+τ, x))|2 dx

= lim
σ!−∞

∫
|x|⩾sn−σ

|∇t,x(u(σ, x)−vL(σ, x))|2 dx.
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By the small data theory, there exists a solution uF of the free linear equation such that,

if A≫1,

lim
t!−∞

∫
|x|>A−t

|∇t,x(u−uF )(t, x)|2 dx=0.

Combining with the large time asymptotics for linear wave equation, we deduce that

there exists g∈L2([A,+∞) (for a fixed A≫1), such that

lim
τ!−∞

∫
|x|⩾|τ |

|∇t,x(u(sn+τ, x)−vL(sn+τ, x))|2 dx=
∫
η⩾sn

|g(η)|2 dη. (5.41)

Note that the right-hand side of (5.41) goes to zero as n goes to infinity. Combining

(5.38)–(5.41), we obtain the desired estimate (5.36). A similar proof yields (5.37).

Step 3. (Consequence of the equirepartition of the energy) Let k⩾K+1. Then, by

(5.32),

sup
n

∥V k
n (0)∥2H = oε0(1).

Using the small data theory and the equirepartition of the energy outside the wave cone

for the free wave equation proved in [19] (see Theorem 3.1 above), we deduce, if ε0 is

small enough, that∑
±

lim
t!±∞

∫
|x|⩾|t|

|∇t,xV
k
n (t, x)|2 dx⩾ 1

2

∫
|∇t,xV

k
n (0, x)|2 dx⩾ 1

4
∥V k(0)∥2H.

From (5.36), we deduce that V k≡0 for k⩾K+1. As a consequence, wℓ
n does not depend

on ℓ if ℓ⩾K. Setting wn=wℓ
n, we have, by (5.37),

lim
n!∞

∑
±

lim
τ!±∞

∫
|x|⩾|τ |

|∇τ,xwn(τ, x)|2 dx=0.

Since wn is a solution of the free wave equation, we deduce (using Theorem 3.1 again),

that

lim
n!∞

∫
|∇t,xwn(0, x)|2 dx=0,

and hence (5.19). It remains to observe that, if 1⩽k⩽K, the property (5.36) implies,

since the time parameter sk,n is identically zero, that∑
±

lim
t!±∞

∫
|x|⩾|t|

|∇t,xV
k(t, x)|2 dx=0,

i.e. that V k is non-radiative at t=0.

For further use, we state the following important consequence of the proof of Lemma 5.2

(see (5.34)).
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Claim 5.3. (Exterior expansion for all time) We have, for |x|⩾|τ |,

u(sn+τ)= vL(sn+τ)+

K∑
k=1

V k
n (τ)+rn(τ), (5.42)

where

lim
n!∞

sup
τ

∫
|x|⩾|τ |

|∇τ,xrn|2 dx=0.

5.3. Estimates on λj and βj

Recall from the introduction of this section the definitions of h(t), g1(t), αj(t), βj(t), γ(t)

and δ(t).

Lemma 5.4. There exists a constant C>0, depending only on J and N , such that,

under the preceding assumptions, for all t∈[t̃n, tn], we have

∥(h, g1)∥H ⩽ on(1)+C(γN/4+δN/(N−2)), (5.43)∣∣∣∣δ2− J∑
j=1

α2
j∥ΛW∥2L2

∣∣∣∣⩽ on(1)+C(γ(N−1)/2+δ2(N−1)/(N−2)), (5.44)

∣∣βj+αj∥ΛW∥2L2

∣∣⩽ on(1)+C(γN/4+δN/(N−2)), (5.45)

where, in all inequalities, on(1) goes to zero as n goes to infinity uniformly with respect

to t∈[t̃n, tn].

Proof. Note that (5.43) and (5.44) are time-dependent version of the estimates (4.7)

and (4.8) for non-radiative solution. We will prove (5.44) as a consequence of (4.8). The

proof of (5.43) using (4.7) is very similar and we omit it. We argue by contradiction.

If (5.44) does not hold, there exists, after extraction, a sequence of times {sn}n with

sn∈[t̃n, tn], and an ε1>0 such that, for all n,∣∣∣∣δ2(sn)− J∑
j=1

α2
j (sn)∥ΛW∥2L2

∣∣∣∣⩾C(δ2(N−1)/(N−2)(sn)+γ(N−1)/2(sn))+ε1. (5.46)

Using Lemma 5.2, we have

lim
n!∞

∥∥∥∥u⃗(sn)−v⃗L(sn)−
K∑

k=1

V⃗ k
n (0)

∥∥∥∥
H
=0, (5.47)

where the rescaled profiles V k
n are defined as in Lemma 5.2:

V k
n (t, x)=

1

λ
N/2−1
jk

(sn)
V k

(
t

λjk(sn)
,

x

λjk(sn)

)
,
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and V k is a non-radiative solution to the non-linear wave equation with initial data

(V k
0 , V k

1 ), and 
V k
0 =

jk+1−1∑
j=jk

ιjW(νj)+ȟk
0 ,

V k
1 =

jk+1−1∑
j=jk

ιjα̌jΛW[νj ]+ǧk1 ,

where ȟk
0 and ǧk1 are defined as weak limits of h(sn) and g1(sn), respectively, after an

appropriate rescaling (see (5.22) and (5.24)), and

α̌j = lim
n!∞

αj(sn).

Since, for all k∈J1,KK, V k is non-radiative, we can use the estimate (4.8), which writes

∣∣∣∣δ2k−jk+1−1∑
j=jk

α̌2
j∥ΛW∥2L2

∣∣∣∣⩽C(δ
2(N−1)/(N−2)
k +γ

(N−1)/2
k ), (5.48)

where

δ2k = ∥∂tV k(0)∥2L2+∥hk
0∥2Ḣ1

and

γk = max
jk⩽j⩽jk+1−2

νj
νj+1

(as usual, if jk+1=1+jk, we let γk=0).

Observe that

lim
n!∞

γ(sn)= max
1⩽k⩽K

γk

and, by the expansion (5.47),

lim
n!∞

δ2(sn)=

K∑
k=1

δ2k.

Summing up (5.48), we deduce that

∣∣∣∣δ2(sn)− J∑
j=1

α2
j (sn)∥ΛW∥2L2

∣∣∣∣⩽CJ(δ
2(N−1)/(N−2)(sn)+γ(N−1)/2(sn)+on(1)),

where the constant CJ depends only on J . This contradicts (5.46) for large n. The proof

is complete.
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We next compare αj and βj and prove (5.45). We have, expanding ∂tU by (5.10),

βj(t)=−ιj

∫
(ΛW )[λj ]∂tU

=−ιj

∫
(ΛW )[λj ]g1︸ ︷︷ ︸

0

−αj∥ΛW∥2L2−ιjιk
∑
k ̸=j

αk

∫
(ΛW )[λj ](ΛW )[λk].

By (5.44) and Claim A.1 in the appendix,∣∣∣∣αk

∫
(ΛW )[λj ](ΛW )[λk]

∣∣∣∣≲ (δ+γ(N−1)/2+on(1))γ
N/2−2

≲ δN/(N−2)+γN(N−4)/4γN−5/2+on(1),

which yields (5.45).

We next prove the following result.

Lemma 5.5. (Expansion of the energy)

∣∣∣∣12δ2−κ′
1

∑
1⩽j⩽J−1

ιjιj+1

(
λj+1

λj

)(N−2)/2∣∣∣∣≲ on(1)+γ(N−1)/2, (5.49)

δ≲ γ(N−2)/4+on(1), (5.50)

∥(h(t), g1(t))∥H ≲ on(1)+γN/4, (5.51)

where on(1)!0 as n!∞, uniformly with respect to t∈[t̃n, tn], and

κ′
1 =

∫
(N(N−2))N/2−1

|x|N−2
W (N+2)/(N−2) dx=

1

∥ΛW∥2L2

κ1.

Proof. Note that (5.51) follows from (5.50) and (5.43).

We are thus left with proving (5.50) and (5.49). Recall that

lim
t!∞

E(u⃗(t)−v⃗L(t))=JE(W, 0).

Expanding the energy

E(u⃗−v⃗L)=E

( J∑
j=1

ιjW(λj)+h,

J∑
j=1

αj(ΛW )[λj ]+g1

)
,
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we obtain, in view of the inequality∣∣∣∣∣N−2

2N

∣∣∣∣ J∑
j=1

yj+h

∣∣∣∣2N/(N−2)

−N−2

2N

J∑
j=1

|yj |2N/(N−2)

−
J∑

j=1

|yj |4/(N−2)yjh−
∑

1⩽j,k⩽J

j ̸=k

|yj |4/(N−2)yjyk

∣∣∣∣∣
≲ |h|2N/(N−2)+

J∑
j=1

|yj |4/(N−2)|h|2

+
∑

1⩽j<k⩽J

(min{|yj |4/(N−2)y2k, |yk|4/(N−2)y2j }

+min{|yj |(N+2)/(N−2)|yk|, |yk|(N+2)/(N−2)|yj |}),

proved in Appendix A.3, and the estimate∫
|ΛW[λj ]ΛW[λk]|≲ γN/2−2

(see Claim A.1 in the appendix),∣∣∣∣J2 ∥∇W∥2L2+
∑

1⩽j<k⩽J

ιjιk

∫
∇W(λj) ·∇W(λk)+

∑
1⩽j⩽J

ιj

∫
∇W(λj) ·∇h

−N−2

2N
J

∫
W 2N/(N−2)−

J∑
j=1

ιj

∫
W

(N+2)/(N−2)
(λj)

h

−
∑

1⩽j,k⩽J

k ̸=j

ιjιk

∫
W

(N+2)/(N−2)
(λj)

W(λk)+
1

2

J∑
j=1

α2
j∥ΛW∥2L2−JE(W, 0)

∣∣∣∣
≲

∑
1⩽j<k⩽J

∫
(min{W 4/(N−2)

(λj)
W 2

(λk)
,W

4/(N−2)
(λk)

W 2
(λj)

}

+min{W (N+2)/(N−2)
(λj)

W(λk),W
(N+2)/(N−2)
(λk)

W(λj)})

+∥g1∥2L2+∥∇h∥2L2+γN/2−2δ2+on(1).

We note that, for all j and k,∫
∇W(λj) ·∇W(λk) =

∫
W

(N+2)/(N−2)
(λj)

W(λk),∫
∇W(λj) ·∇h=

∫
W

(N+2)/(N−2)
(λj)

h.
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Furthermore, we have∫
min{W (N+2)/(N−2)

(λj)
W(λk),W

(N+2)/(N−2)
(λk)

W(λj)}

+

∫
min{W 4/(N−2)

(λj)
W 2

(λk)
,W

4/(N−2)
(λk)

W 2
(λj)

}

≲
∫

W
N/(N−2)
(λj)

W
N/(N−2)
(λk)

≲ γN/2,

by Claim A.1.

As a consequence, using also the estimate (5.43) on h and g1, we have

∣∣∣∣12
J∑

j=1

α2
j∥ΛW∥2L2−

∑
1⩽j<k⩽J

ιjιk

∫
W

(N+2)/(N−2)
(λj)

W(λk)

∣∣∣∣
≲ γN/2+γN/2−2δ2+δ2N/(N−2)+on(1).

(5.52)

We next estimate, for j<k,

∫
W

(N+2)/(N−2)
(λj)

W(λk) =

(
λj

λk

)(N−2)/2 ∫
W (N+2)/(N−2)(x)W

(
λjx

λk

)
dx

=

(
λk

λj

)(N−2)/2 ∫
(N(N−2))(N−2)/2

|x|N−2
W (N+2)/(N−2) dx

+O
((

λk

λj

)(N+1)/2 ∫
W (N+2)/(N−2) 1

|x|N−1/2
dx

)
,

where we have used ∣∣∣∣W (x)− ((N−2)N)(N−2)/2

|x|N−2

∣∣∣∣≲ 1

|x|N−1/2
.

In particular, if j<k−1, we see that∫
W

(N+2)/(N−2)
(λj)

W(λk) ≲ γN−2.

Combining with (5.44) and (5.52), we obtain

δ2 ≲ γ(N−2)/2+γN/2−2δ2+δ2N/(N−2)+on(1),

which yields δ≲γ(N−2)/4+on(1), i.e. (5.50). Going back to (5.52), we deduce (5.49).



soliton resolution for radial critical wave equation 47

5.4. System of equations and estimates on the derivatives

Under the above assumptions, we let as before U(t)=u(t)−vL(t), so that

h(t)=U(t)−
J∑

j=1

ιjW(λj) =U(t)−M(t).

Expanding the non-linear wave equation (1.1), we see that (h(t), ∂tU(t)) satisfy the

following system of equations for t∈[t̃n, tn]:
∂h

∂t
=

∂U

∂t
+

J∑
j=1

ιjλ
′
j(t)(ΛW )[λj(t)],

∂

∂t

(
∂U

∂t

)
−∆h=F (U)−

J∑
j=1

F (ιjW(λj))+σ(h, vL),

(5.53)

where

σ(h, vL) :=F (M+h+vL)−F (M+h) (5.54)

satisfies

|σ(h, vL)|≲ |vL(t)|(N+2)/(N−2)+

J∑
j=1

(W
4/(N−2)
(λj)

+|h(t)|4/(N−2))|vL(t)|. (5.55)

We next estimate λ′
j(t), using the orthogonality condition (5.8) and the first equation in

(5.53). More precisely, we will prove the following.

Lemma 5.6. (Derivative of the scaling parameters)

|λ′
j+αj |≲ γN/4+on(1), (5.56)

where on(1) goes to zero as n!∞, uniformly with respect to t∈[t̃n, tn].

Proof. According to (5.8),∫
h(t)

1

λ
N/2
j

(∆ΛW )

(
x

λj(t)

)
dx=0 for all t∈ I.

Differentiating with respect to t, we obtain

0=

∫
∂h

∂t

1

λ
N/2
j

(∆ΛW )

(
x

λj

)
dx−N

2
λ′
j

∫
h

1

λ
1+N/2
j

(Λ0∆ΛW )

(
x

λj

)
dx,
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where Λ0=
1
2N+x·∇. By the first equation in (5.53),

0=

∫
∂U

∂t

1

λ
N/2
j

(∆ΛW )

(
x

λj

)
dx

+

J∑
k=1

ιkλ
′
k

∫
1

λ
N/2
k

(ΛW )

(
x

λk

)
1

λ
N/2
j

(∆ΛW )

(
x

λj

)
dx

−N

2
λ′
j

∫
h

1

λ
1+N/2
j

(Λ0∆ΛW )

(
x

λj

)
dx.

In view of the definition (5.10) of g1, we have

∂tU =
∑
k

ιkαk(ΛW )[λk]+g1.

By the estimate (5.51) on g1, the bound (5.50) on δ and the estimate∣∣∣∣∫ (ΛW )[λj ](∆ΛW )[λk]

∣∣∣∣≲ γN/2−2, j ̸= k

(see (A.5) in the appendix), we obtain∫
∂U

∂t

1

λ
N/2
j

(∆ΛW )

(
x

λj

)
=

∫
g1

1

λ
N/2
j

(∆ΛW )

(
x

λj

)
−αjιj∥ΛW∥2

Ḣ1+
∑
k ̸=j

ιkαk

∫
(ΛW )[λj ](∆ΛW )[λk]

=−αjιj∥ΛW∥2
Ḣ1+O(γN/4).

By the estimate (5.51) on h,∣∣∣∣λ′
j

∫
h

1

λ
1+N/2
j

(Λ0∆ΛW )

(
x

λj

)
dx

∣∣∣∣≲ |λ′
j | ∥∇h∥L2 ≲ (γN/4+on(1))|λ′

j |.

Combining, we obtain, for all j,∣∣αj∥ΛW∥2
Ḣ1+λ′

j∥ΛW∥2
Ḣ1

∣∣≲ γN/4(|λ′
j |+1)+γ1/2

∑
k ̸=j

|λ′
k|+on(1),

and thus, letting α=(α1, ..., αJ),

|λ′+α|≲ |λ′|γ1/2+γN/4+on(1).

This implies, recalling that, by (5.50), δ≲γ(N−2)/4,

|λ′|≲ |α|+γN/4 ≲ δ+γN/4+on(1)≲ γ(N−2)/4+on(1).

The desired estimate (5.56) follows immediately from the two bounds above.
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Lemma 5.7. (Second derivative of the scaling parameter) For all j∈J1, JK,∣∣∣∣λjβ
′
j+κ0

(
ιjιj+1

(
λj+1

λj

)N/2−1

−ιjιj−1

(
λj

λj−1

)N/2−1)∣∣∣∣≲ γ(N−1)/2+on(1), (5.57)

where κ0 is defined in Proposition 5.1, and, by definition, ι0=ιJ+1=0.

Note that βj is, according to (5.45), (5.50) and (5.56), proportionate to λ′
j up to

lower-order terms, so that (5.57) can be interpreted as an estimate on the second deriv-

ative of λj .

Proof. Differentiating the definition (5.12) of βj , we obtain

λjβ
′
j(t)= ιjλ

′
j

∫
(Λ0ΛW )[λj ]∂tU−ιjλj

∫
(ΛW )[λj ]∂

2
tU.

We first prove that the first term of this sum is small. Using the expansion (5.10) of ∂tU ,

we obtain∫
(Λ0ΛW )[λj ]∂tU =

∫
(Λ0ΛW )[λj ]g1

+ιjαj

∫
(Λ0ΛW )[λj ](ΛW )[λj ]︸ ︷︷ ︸

0

+
∑
k ̸=j

∫
ιkαk(Λ0ΛW )[λj ](ΛW )[λk].

Hence, by (5.50), (5.51), (5.44), (5.56) and the estimate∣∣∣∣∫ (Λ0ΛW )[λj ](ΛW )[λk]

∣∣∣∣≲ γN/2−2

(see (A.2) in the appendix), we obtain∣∣∣∣λ′
j

∫
(Λ0ΛW )[λj ]∂tU

∣∣∣∣≲ γ(N−1)/2+on(1). (5.58)

By the second equation in (5.53), we have

λj

∫
(ΛW )[λj ]∂

2
tU

=−
∫
(ΛW )(λj)LW(λj)

h (5.59)

+

∫
(ΛW )(λj)σ(h, vL) (5.60)

+

∫
(ΛW )(λj)

(
F (ιjW(λj)+h)−F (ιjW(λj))−

N+2

N−2
W

4/(N−2)
(λj)

h

)
(5.61)

+

∫
(ΛW )λj

(F (M+h)−F (M)+F (ιjW(λj))−F (ιjW(λj)+h)) (5.62)

+

∫
(ΛW )(λj)

(
F (M)−

J∑
k=1

F (ιkW(λk))

)
, (5.63)
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where

LW(λj)
=−∆−N+2

N−2
W

4/(N−2)
(λj)

.

The leading term in this equality is (5.63). We first prove that the other terms are of

order O(γN/2)+on(1).

Estimates on lower-order terms. We first note that, by integration by parts,∫
(ΛW )(λj)LW(λj)

h=

∫
LW(λj)

(ΛW )(λj)h=0,

so that the term on the right-hand side of (5.59) is zero.

By Hölder inequality, and the estimate (5.55) on σ(h, vL), we have

|(5.60)|≲ ∥vL∥L2N/(N−2)+∥vL∥(N+2)/(N−2)

L2N/(N−2) .

Since vL is a solution to the linear wave equation, we have

lim
n!∞

∥vL(t)∥L2N/(N−2) =0,

which proves that the term (5.60) is on(1).

To bound (5.61), we use the inequality

|F (a+b)−F (a)−F ′(a)b|≲ b211{|b|⩽|a|}a
(6−N)/(N−2)+b(N+2)/(N−2)11{|b|⩾|a|}

proved in the appendix (see Claim A.6). We obtain

|(5.61)|≲
∫

|(ΛW )(λj)|h
211{|h|⩽W(λj)

}W
(6−N)/(N−2)
(λj)

+

∫
|(ΛW )(λj)|h

(N+2)/(N−2)11{|h|⩾W(λj)
}.

Since |(ΛW )(λj)|≲W(λj), we deduce

|(5.61)|≲
∫

h2W
4/(N−2)
(λj)

+

∫
|h|2N/(N−2) ≲ ∥h∥2L2N/(N−2)+∥h∥2N/(N−2)

L2N/(N−2) ≲ γN/2+on(1),

where we have used the estimate (5.51) on h.

To bound (5.62), we distinguish between the case N⩾7 and the case N=5. If N⩾7,

we use the inequality

|F (a+b+c)−F (a+b)−F (a+c)+F (a)|≲ |c| |b|(N+2)/2(N−2)|a|(6−N)/2(N−2)
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(see again Claim A.6), with a=ιjW(λj), b=
∑

k ̸=j ιkW(λk) and c=h. We obtain

|(5.62)|≲
∫

|ΛW(λj)|W
(6−N)/2(N−2)
(λj)

|h|
∣∣∣∣∑
j ̸=k

ιkW(λk)

∣∣∣∣(N+2)/2(N−2)

.

Since |(ΛW )(λj)|≲W(λj), we deduce that

|(5.62)|≲
∑
k ̸=j

∫
|h|W (N+2)/2(N−2)

(λk)
W

(N+2)/2(N−2)
(λj)

≲ ∥h∥L2N/(N−2)

∑
k ̸=j

(∫
W

N/(N−2)
(λk)

W
N/(N−2)
(λj)

)(N+2)/2N

.

By the estimate (5.51) on h and the bound∫
W

N/(N−2)
(λk)

W
N/(N−2)
(λj)

≲ γN/2

(see Claim A.1), we deduce that, if N⩾7,

|(5.62)|≲ γ(N+1)/2+on(1).

If N=5, the inequality

|F (a+b+c)−F (a+b)−F (a+c)+F (a)|≲ |c| |b| (|a|+|b|+|c|)1/3

proved in Claim A.6, with a=ιjW(λj), b=
∑

k ̸=j ιkW(λk) and c=h, yields

|(5.62)|≲
∑
k ̸=j

(∫
W

4/3
(λk)

W(λj)|h|+
∫

W(λk)W
4/3
(λj)

|h|+
∫

|h|4/3W(λj)W(λk)

)
.

By Hölder’s inequality, we deduce that

|(5.62)|≲ ∥h∥L10/3

∑
1⩽k,ℓ⩽J

k ̸=ℓ

∥W(λℓ)W
4/3
(λk)

∥L10/7+∥h∥4/3
L10/3

∑
1⩽k,ℓ⩽J

k ̸=ℓ

(∫
W

5/3
(λℓ)

W
5/3
(λk)

)3/5
.

Together with the estimates (A.3) and (A.4) of Claim A.1 in the appendix, and the

bound (5.51) of h, we deduce that, when N=5,

|(5.62)|≲ γ5/4γ3/2+γ5/3γ3/2+on(1)≲ γ11/4+on(1).

As a conclusion,

|(5.59)|+|(5.60)|+|(5.61)|+|(5.62)|≲ γN/2+on(1).
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Estimate on the leading term. To conclude the proof, we will prove that

∣∣∣∣∫
RN

(
F (M)−

J∑
k=1

F (ιkW(λk))

)
(ΛW )(λj) dx

−κ0

(
ιj+1

(
λj+1

λj

)N/2−1

−ιj−1

(
λj

λj−1

)N/2−1)∣∣∣∣≲ γN/2.

(5.64)

We will prove (5.64) as a consequence of the following inequalities:

∣∣∣∣∫
RN

(
F (M)−

J∑
k=1

F (ιkW(λk))

)
(ΛW )(λj) dx (5.65)

−N+2

N−2

∫
RN

(ιj+1W
4/(N−2)
(λj)

W(λj+1)+ιj−1W
4/(N−2)
(λj)

W(λj−1))(ΛW )(λj)dx

∣∣∣∣≲ γN/2,

(where, by convention, ι0=ιJ+1=0),∣∣∣∣∫
RN

W
4/(N−2)
(λj)

W(λj+1)(ΛW )(λj)

−
(
λj+1

λj

)N/2−1
NN/2−1(N−2)N/2+1

2(N+2)

∫
1

|x|N−2
W (N+2)/(N−2)dx

∣∣∣∣≲ γN/2

(5.66)

for 1⩽j⩽J−1, and∣∣∣∣∫
RN

W
4/(N−2)
(λj)

W(λj−1)(ΛW )(λj)

+

(
λj

λj−1

)N/2−1
NN/2−1(N−2)N/2+1

2(N+2)

∫
1

|x|N−2
W (N+2)/(N−2)dx

∣∣∣∣≲ γN/2

(5.67)

for 2⩽j⩽J .

Proof of (5.65). We adopt the convention λ0=+∞ and λJ+1=0. We first notice

that there exists a constant C such that, for any k, ℓ∈J1, JK, we have

√
λk+1λk ⩽ |x|⩽

√
λk−1λk =⇒ W(λℓ) ≲W(λk) (5.68)

(this follows easily from the facts that W is positive and W (x)≈1/|x|N−2 for large |x|).
To prove (5.65), we write

∫
RN

Pj(x) dx=

J∑
k=1

∫
√

λkλk+1⩽|x|⩽
√

λkλk−1

Pj(x) dx, (5.69)
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where

Pj(x) := (ΛW )(λj)×
(
F (M)−

J∑
ℓ=1

F (ιℓW(λℓ))

−N+2

N−2
ιj+1W

4/(N−2)
(λj)

W(λj+1)

−N+2

N−2
ιj−1W

4/(N−2)
(λj)

W(λj−1)

)
.

If j ̸=k, using that, if
√
λkλk+1⩽|x|⩽

√
λkλk−1,

|F (M)−F (ιkW(λk))|≲W
4/(N−2)
(λk)

∑
ℓ ̸=k

W(λℓ),

and that |(ΛW )(λj)|≲W(λj), we obtain∫
√

λkλk+1⩽|x|⩽
√

λkλk−1

|Pj(x)| dx

≲
∑
ℓ ̸=k

∫
√

λkλk+1⩽|x|⩽
√

λkλk−1

W
4/(N−2)
(λk)

W(λℓ)W(λj)

+
∑
ℓ ̸=k

∫
√

λkλk+1⩽|x|⩽
√

λkλk−1

W
(N+2)/(N−2)
(λℓ)

W(λj)

+

∫
√

λkλk+1⩽|x|⩽
√

λkλk−1

W
(N+2)/(N−2)
λj

(W(λj+1)+W(λj−1)) dx

Since j ̸=k, and, by (5.68), ℓ ̸=k implies W(λℓ)≲W(λk) on the domain of integration, we

can bound all the terms of the right-hand side of the preceding inequality by∑
ℓ ̸=k

∫
√

λkλk+1⩽|x|⩽
√

λkλk−1

W(λk)W
(N+2)/(N−2)
(λℓ)

≲
∑
ℓ ̸=k

∫
√

λkλk+1⩽|x|⩽
√

λkλk−1

W
N/(N−2)
(λk)

W
N/(N−2)
(λℓ)

≲ γN/2,

by Claim A.1 in the appendix. Thus, we have proved that, for k ̸=j,∫
√

λkλk+1⩽|x|⩽
√

λkλk−1

|Pj(x)| dx≲ γN/2. (5.70)

Next, by Claim A.6, we observe, setting

Ej :=

{
x∈RN :

∣∣∣∣∑
ℓ ̸=j

ιℓW(λℓ)(x)

∣∣∣∣⩽W(λj)(x)

}
,
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that, for all x such that
√

λjλj+1⩽|x|⩽
√
λjλj−1, we have∣∣∣∣F (M)−F (ιjW(λj))−

N+2

N−2
W

4/(N−2)
(λj)

∑
ℓ̸=j

ιℓW(λℓ)

∣∣∣∣
≲ 11Ej

∑
ℓ̸=j

W 2
(λℓ)

W
(6−N)/(N−2)
(λj)

+11RN\Ej

(∑
ℓ ̸=j

ιℓW(λℓ)

)(N+2)/(N−2)

≲
∑
ℓ ̸=j

W 2
(λℓ)

W
(6−N)/(N−2)
(λj)

,

where we have used the following facts.

• If N⩾7, we have used that (N+2)/(N−2)<2 and that, on RN \Ej , one has

W 2
(λj)

≲
∑
ℓ ̸=j

W 2
(λℓ)

.

• If N=5, (N+2)/(N−2)= 7
3>2. However, the preceding inequality holds for√
λjλj+1 ⩽ |x|⩽

√
λjλj−1,

since in this set one has ∣∣∣∣∑
ℓ ̸=j

ιℓW(λℓ)(x)

∣∣∣∣≲W(λj)(x)

and 6−N>0.

As a consequence, using also |(ΛW )(λj)|≲W(λj),∫
√

λjλj+1⩽|x|⩽
√

λjλj−1

|Pj(x)| dx≲
∑
ℓ ̸=j

∫
√

λjλj+1⩽|x|⩽
√

λjλj−1

W 2
(λℓ)

W
4/(N−2)
(λj)

+
∑

ℓ/∈{j−1,j,j+1}

∫
RN

W(λℓ)W
(N+2)/(N−2)
(λj)

.

Using again (5.68), we obtain, by (A.4) in the appendix,∑
ℓ ̸=j

∫
√

λjλj+1⩽|x|⩽
√

λjλj−1

W 2
(λℓ)

W
4/(N−2)
(λj)

≲
∑
ℓ ̸=j

∫
W

N/(N−2)
(λℓ)

W
N/(N−2)
(λj)

≲ γN/2.

Furthermore, if ℓ /∈{j−1, j, j+1}, by estimate (A.1) in the appendix,∫
W(λℓ)W

(N+2)/(N−2)
(λj)

=

∫
∇W(λℓ) ·∇W(λj)

≲min

{(
λj

λℓ

)(N−2)/2

,

(
λℓ

λj

)(N−2)/2}
≲ γN−2.

Combining, we obtain ∫
√

λjλj+1⩽|x|⩽
√

λjλj−1

|Pj(x)| dx≲ γN/2, (5.71)

which, together with (5.70), yields the desired inequality (5.65).
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Proof of (5.66). Recall that

W (x)=

(
1+

|x|2

N(N−2)

)(2−N)/2

and ΛW (x)=x·∇W (x)+
N−2

2
W.

Thus,

|W (x)−1|+
∣∣∣∣ΛW (x)−N−2

2

∣∣∣∣≲ |x| (5.72)

and ∣∣∣∣W (x)− (N(N−2))N/2−1

|x|N−2

∣∣∣∣+∣∣∣∣ΛW (x)+
(N(N−2))N/2

2N |x|N−2

∣∣∣∣≲ 1

|x|N−1
. (5.73)

By (5.73),∫
W

4/(N−2)
(λj)

W(λj+1)(ΛW )(λj)

=

(
λj

λj+1

)(N−2)/2 ∫
W 4/(N−2)(x)ΛW (x)W

(
λjx

λj+1

)
dx

=

(
λj+1

λj

)(N−2)/2 ∫
W 4/(N−2)(x)ΛW (x)

(N(N−2))N/2−1

|x|N−2
dx+O(γN/2),

where we have used that the integral∫
W 4/(N−2)ΛW

1

|x|N−1
dx

converges. Furthemore, by an easy integration by parts,∫
W 4/(N−2)x·∇W

1

|x|N−2
dx=

−2(N−2)

N+2

∫
1

|x|N−2
W (N+2)/(N−2) dx,

and thus ∫
1

|x|N−2
W 4/(N−2)ΛW dx=

(N−2)2

2(N+2)

∫
1

|x|N−2
W (N+2)/(N−2) dx.

Combining, we obtain (5.66).

Proof of (5.67). By (5.72),∫
W

4/(N−2)
(λj)

W(λj−1)(ΛW )(λj)

=

(
λj

λj−1

)(N−2)/2 ∫
W 4/(N−2)ΛW (x)W

(
λjx

λj−1

)
dx

=

(
λj

λj−1

)(N−2)/2 ∫
W 4/(N−2)ΛW (x)

(
1+O

(
λj |x|
λj−1

))
dx

=

(
λj

λj−1

)(N−2)/2 ∫
W 4/(N−2)ΛW (x) dx+O(γN/2).
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By a straightforward integration by parts, we obtain∫
W 4/(N−2)ΛW dx=− (N−2)2

2(N+2)

∫
W (N+2)/(N−2) dx,

and thus ∫
W

4/(N−2)
(λj)

W(λj−1)(ΛW )(λj)

=− (N−2)2

2(N+2)

(
λj

λj−1

)(N−2)/2∫
W (N+2)/(N−2)+O(γN/2).

(5.74)

Finally, we observe that, for σ>0,

W (N+2)/(N−2)

(
N(N−2)

σ

)
=

σN+2

(N(N−2))(N+2)/2
W (N+2)/(N−2)(N(N−2)σ),

and thus, by the change of variable r=N(N−2)/σ,∫ ∞

0

1

rN−2
W (N+2)/(N−2)(r)rN−1 dr

=
1

(N(N−2))(N−2)/2

∫ ∞

0

W (N+2)/(N−2)(σ)σN−1 dσ.

Combining with (5.74), we obtain (5.67).

The proof of (5.64) is now complete.

End of the proof of Proposition 5.1. We next gather the results of the preceding

Lemmas to conclude the proof of Proposition 5.1.

The estimate (5.13) is exactly (5.50) in Lemma 5.5.

By (5.45), (5.56) and (5.50),∣∣βj−λ′
j∥ΛW∥2L2

∣∣≲ ∣∣βj+αj∥ΛW∥2L2

∣∣+∣∣λ′
j+αj∥ΛW∥2L2

∣∣≲ γN/4+on(1),

hence (5.14).

Combining (5.44), (5.45) and (5.49), we have∣∣∣∣12
J∑

j=1

β2
j −κ1

J−1∑
j=1

ιjιj+1

(
λj+1

λj

)(N−2)/2∣∣∣∣
≲

1

2

∣∣∣∣∥ΛW∥4L2

J∑
j=1

α2
j−

J∑
j=1

β2
j

∣∣∣∣
+
1

2

∣∣∣∣δ2−∥ΛW∥2L2

J∑
j=1

α2
j

∣∣∣∣ ∥ΛW∥2L2

+

∣∣∣∣12δ2−κ′
1

J∑
j=1

ιjιj+1

(
λj+1

λj

)(N−2)/2∣∣∣∣ ∥ΛW∥2L2

≲ γ(N−1)/2+on(1).
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Hence (5.15). We have used that (5.45) and the estimate

|βj |+|αj |≲ γ(N−2)/4

(consequence of (5.44), (5.45) and (5.50)) implies that

∣∣β2
j −∥ΛW∥4L2α2

j

∣∣= ∣∣(βj−∥ΛW∥2L2αj)(βj+∥ΛW∥2L2αj)
∣∣≲ γN/4γ(N−2)/4+on(1).

Finally, (5.16) is exactly (5.57) in Lemma 5.7.

6. End of the proof

6.1. Exit time for a system of differential inequalities

Using Proposition 5.1 and a lower bound on one of the scaling parameters λj (consequence

of Proposition 4.6), we will reduce the proof to the following proposition.

Proposition 6.1. Let C>0, J0⩾2, a>0. There exists ε=ε(C, J0, a)>0 such that,

for all L>0, there exists T ∗=T ∗(L,C, J0, a) with the following property. For all T>0

and for all C1 functions

λ=(λj)j : [0, T ]P −!GJ0
and β=(βj)j : [0, T ]−!RJ0

satisfying, for all t∈[0, T ],

γ(λ)=: γ⩽ ε (6.1)∣∣βj−∥ΛW∥2L2λ′
j

∣∣⩽CγN/4 for all j, (6.2)∣∣∣∣12 ∑J0

j=1 β
2
j −κ1

∑
1⩽j⩽J0−1 ιjιj+1

(
λj+1

λj

)(N−2)/2∣∣∣∣⩽Cγ(N−1)/2 (6.3)∣∣∣∣λjβ
′
j+κ0

(
ιjιj+1

(
λj+1

λj

)(N−2)/2

−ιjιj−1

(
λj

λj−1

)(N−2)/2)∣∣∣∣⩽Cγ(N−1)/2 for all j, (6.4)

L⩽Cγ(N−2)/2

(
λ1

λ1(0)

)a
, (6.5)

we have

T ⩽T ∗λ1(0).

Remark 6.2. Let us emphasize that T ∗ is independent of ε>0 if it is chosen small

enough, and that ε does not depend on L.
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We postpone the proof of Proposition 6.1 to §6.4, and conclude the proof of Theo-

rem 1 in the two next subsections. In view of Proposition 5.1, (λj)1⩽j⩽J and (βj)1⩽j⩽J

satisfy the assumptions of Proposition 6.1, except for the lower bound (6.5) and up to

terms that are on(1). In §6.2, we will eliminate the on(1) terms. In order to do this, we

will ignore all the exterior profiles that are equal to ±W , restricting to indices j∈JJ̃ , JK
for an appropriate index J̃ and to a time interval [t̃n, t

′
n] strictly included in [t̃n, tn]. In

§6.3 we will show that the new exterior scaling parameter λJ̃ satisfies the lower bound

(6.5) and conclude the proof of Theorem 1 assuming Proposition 6.1. Finally, in §6.4, we
prove Proposition 6.1.

6.2. Restriction of the indices and of the time interval

Recall from §5.1 the definitions of tn, t̃n, J and, for j∈J1, JK, ιj , αj(t), βj(t) and λj(t).

After extraction of subsequences, the following weak limits exits in H:

(Ũ j
0 , Ũ

j
1 )=w-lim

n!∞
(λj(t̃n)

N/2−1U(t̃n, λj(t̃n) ·), λj(t̃n)
N/2∂tU(t̃n, λj(t̃n) ·)), (6.6)

where, as before, U=u−vL. We note that there exists j∈J1, JK such that

(Ũ j
0 , Ũ

j
1 ) ̸=(ιjW, 0).

If not, for all k∈J1,K−1K, by (5.27)–(5.29), jk+1=jk+1 and, by the definition (5.17)

of jk, we see that, for all j∈J1, JK,

lim
n!+∞

λj+1(t̃n)

λj(t̃n)
= 0.

This implies limn!∞ γ(t̃n)=0 yielding, by Proposition 5.1, limn!∞ δ(t̃n)=0, a contra-

diction with the definition of t̃n. We define J̃ as the unique index in J1, JK such that

(Ũ j
0 , Ũ

j
1 )= (ιjW, 0) for all j ∈ J1, J̃−1K, (6.7)

(Ũ J̃
0 , Ũ

J̃
1 ) ̸=(ιJ̃W, 0). (6.8)

If (Ũ1
0 , Ũ

1
1 ) ̸=(ι1W, 0), we let J̃=1. By the argument above,

lim
n!+∞

λj+1(t̃n)

λj(t̃n)
= 0 for all j ∈ J1, J̃−1K. (6.9)

We set

λJ̃,n :=λJ̃(t̃n) and γ̃(t) := γ((λj(t))J̃⩽j⩽J)= max
J̃⩽j⩽J−1

λj+1(t)

λj(t)
. (6.10)

In this subsection, we prove the following lemmas.
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Lemma 6.3. We have

lim
n!∞

tn− t̃n
λJ̃,n

=+∞. (6.11)

Lemma 6.4. Let T>0 and

t′n = t̃n+TλJ̃,n.

Then, for large n, for all t∈[t̃n, t′n] and for all j∈JJ̃ , JK,∣∣βj−∥ΛW∥2L2λ′
j

∣∣⩽Cγ̃N/4, (6.12)∣∣∣∣λjβ
′
j+κ0

(
ιjιj+1

(
λj+1

λj

)(N−2)/2

−ιjιj−1

(
λj

λj−1

)(N−2)/2)∣∣∣∣⩽Cγ̃(N−1)/2, (6.13)

and, for all t∈[t̃n, t′n],∣∣∣∣12
J∑

j=J̃

β2
j −κ1

J−1∑
j=J̃

ιjιj+1

(
λj+1

λj

)(N−2)/2∣∣∣∣⩽Cγ̃(N−1)/2. (6.14)

Proof of Lemma 6.3. Step 1. (Expansion of the solution along the sequence {t̃n}n)
Extracting subsequences if necessary, we introduce, as in the beginning of §5.2, the

following partition of J1, JK:

J1, JK=
K̃⋃

k=1

Jȷ̃k, ȷ̃k+1−1K,

with

1= ȷ̃1 < ȷ̃2 < ...< ȷ̃K̃+1 = J+1

and letting

λk,n =λȷ̃k(t̃n) for all k∈ J1, K̃K,

we have

lim
n!∞

λj(t̃n)

λk,n
> 0 for all k∈ J1, K̃K and all j ∈ Jȷ̃k, ȷ̃k+1−1K, (6.15)

lim
n!∞

λk+1,n

λk,n
=0 for all k∈ J1, K̃−1K. (6.16)

We set

(Uk
0 , U

k
1 ) :=w-lim

n!∞
(λ

(N−2)/2
k,n U(t̃n, λk,n ·), λN/2

k,n ∂tU(t̃n, λk,n ·)). (6.17)

Note that, by (6.9),

(Uk
0 , U

k
1 )= (ιkW, 0) for all k∈ J1, J̃−1K and ȷ̃k = k for all k∈ J1, J̃ K. (6.18)
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We let Uk be the solution of the non-linear wave equation (1.1) with initial data (Uk
0 , U

k
1 ).

According to Lemma 5.2, Uk is defined for |x|>|t|, non-radiative and, denoting

Uk
n(t, x)=

1

λ
(N−2)/2
k,n

Uk

(
t

λk,n
,

x

λk,n

)
, (6.19)

we can expand u⃗(t̃n) as follows:

lim
n!∞

∥∥∥∥u⃗(t̃n)−v⃗L(t̃n)−
K̃∑

k=1

U⃗k
n(0)

∥∥∥∥
H
=0. (6.20)

We now make a crucial observation on (U J̃
0 , U

J̃
1 ). Since, by the definition of J̃ ,

(U J̃
0 , U

J̃
1 ) ̸=(ιJ̃W, 0),

we see, by the analogue of the expansion (5.21) (where k=J̃ and (V k
0 , V k

1 ) has to be re-

placed by (U J̃
0 , U

J̃
1 )), the orthogonality relations (5.26) and the uniqueness in Lemma B.1,

that (U J̃
0 , U

J̃
1 ) is not the initial data of a stationary solution. Since the correspond-

ing solution is non-radiative, we deduce from Theorems 4.2 and 4.3 that there exist

p0∈
q
1, 1

2 (N−1)
y
and ℓ∈R\{0} such that, for all t∈R and all R large (depending on t),

∥U⃗ J̃(t)−ℓΞp0
∥H(R) ≲max

(
1

R(p0−1/2)(N+2)/(N−2)
,

1

Rp0+1/2

)
, (6.21)

where the implicit constant might depend on R (but of course not on t).

Step 2. (Contradiction argument) Assuming that (6.11) does not hold, we have,

extracting subsequences if necessary,

lim
n!∞

tn− t̃n
λJ̃,n

=T ∈ [0,∞). (6.22)

By the expansion (5.42), with τ=tn− t̃n and sn= t̃n, we have

u⃗(tn)= v⃗L(tn)+

K̃∑
k=1

U⃗k
n(tn− t̃n)+r⃗n(tn− t̃n), |x|> |tn− t̃n|, (6.23)

where

lim
n!∞

∫
|x|⩾|tn−t̃n|

|∇t,xrn(tn− t̃n)|2 dx=0. (6.24)

Let

(AJ̃
0 , A

J̃
1 )=w-lim

n!∞
(λ

(N−2)/2

J̃,n
u(tn, λJ̃,n ·), λ

N/2

J̃,n
∂tu(tn, λJ̃,n ·)). (6.25)
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We claim that

(AJ̃
0 , A

J̃
1 )(x)= U⃗ J̃(T, x), |x|> |T |, (6.26)

where T is defined by (6.22). Indeed, let φ∈C∞
0 ({x∈RN :|x|>T}). Then, by the defini-

tion (6.19) of U J̃
n , we have∫
λ
(N−2)/2

J̃,n
U J̃
n (tn− t̃n, λJ̃,nx)φ(x) dx

=

∫
U J̃

(
tn− t̃n
λJ̃,n

, x

)
φ(x) dx−−−−!

n!∞

∫
U J̃(T, x)φ(x) dx,

where we have used (6.22) and the fact that U J̃ ↾{|x|>|t|} is the restriction to {|x|>|t|} of

an element of C0(R, Ḣ1) (see Definition 2.3). Furthermore, if k∈J1, K̃K\{J̃},∫
λ
(N−2)/2

J̃,n
Uk
n(tn− t̃n, λJ̃,nx)φ(x) dx (6.27)

=

∫ (
λk,n

λJ̃,n

)(N+2)/2

Uk

(
tn− t̃n
λk,n

, y

)
φ

(
λk,n

λJ̃,n

y

)
dy. (6.28)

Using that there exists T ′>T such that |x|⩾T ′ in the support of φ, we see by (6.22)

that |y|>(tn− t̃n)/λk,n for large n in the support of the integrand in (6.28). Thus, for

large n, (6.28) (or equivalently (6.27)) does not depend on the values of Uk(t, x) for

|x|⩽|t|. Recall that, after extraction,

lim
n!∞

λk,n

λJ̃,n

∈{0,+∞}. (6.29)

If (after extraction)

lim
n

tn− t̃n
λk,n

=σ ∈ [0,∞),

then, using that Uk↾{|x|>|t|} is the restriction to {|x|>|t|} of an element of C0(R, Ḣ1),

lim
n!∞

Uk

(
tn− t̃n
λk,n

)
=Uk(σ) in Ḣ1({|x|>σ}),

and, since (
λk,n

λJ̃,n

)(N+2)/2

φ

(
λk,n

λJ̃,n

·
)

converges weakly to zero in Ḣ−1, we have that (6.28) (and hence (6.27)) goes to zero as

n goes to infinity. On the other hand, if

lim
n

tn− t̃n
λk,n

=+∞,
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using that, by Lemma 5.2, Uk is non-radiative, we obtain again that (6.27) goes to zero

as n goes to infinity.

Finally, we have

lim
n!∞

∫
λ
(N−2)/2

J̃,n
rn(tn− t̃n, λJ̃,nx)φ(x) dx=0,

by (6.24) and (6.22), and

lim
n!∞

∫
λ
(N−2)/2

J̃,n
vL(tn, λJ̃,nx)φ(x) dx=0

by the standard asymptotics of the linear wave equation. This yields∫
AJ̃

0 (x)φ(x) dx=

∫
U J̃
0 (T, x)φ(x) dx for all φ∈C∞

0 ({|x|>T}),

and thus, arguing similarly on AJ̃
1 and U J̃

1 , the desired equality (6.26) follows.

Since limn!∞ dJ,ι(tn)=0, we obtain that (AJ̃
0 , A

J̃
1 )=(0, 0) or (AJ̃

0 , A
J̃
1 )=(±W(µ), 0)

for some sign ± and scaling parameter µ>0, contradicting (6.21), and concluding the

proof of Lemma 6.3.

Remark 6.5. The same proof yields the following: let {sn} be a sequence of times

with sn∈[t̃n, tn] such that

lim
n!∞

dJ,ι(sn)= 0.

Then,

lim
n!∞

sn− t̃n
λJ̃,n

=+∞.

Proof of Lemma 6.4. We will show that

lim
n!∞

max
t̃n⩽t⩽t′n

(
|βj(t)|+

λj+1(t)

λj(t)

)
=0 for all j ∈ J1, J̃−1K, (6.30)

lim inf
n!∞

min
t̃n⩽t⩽t′n

γ̃(t)> 0. (6.31)

Assuming (6.30) and (6.31), the conclusion of Lemma 6.4 follows easily from Proposi-

tion 5.1. Indeed, by (6.30) and (6.31), restricting t to [t̃n, t
′
n], we can replace γ(t)+on(1)

by γ̃(t) in the right-hand sides of (5.14)–(5.16). Similarly, using again (6.30) and (6.31),

we can restrict the indices in the sums in the left-hand side of (5.15) to J̃⩽j. This yields

that (6.12), (6.13) (for j∈[J̃ , J ]) and (6.14) hold for all large n and t∈[t̃n, t′n].
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Proof of (6.30). We first claim that

lim
n!∞

sup
t̃n⩽t⩽t′n

∣∣∣∣ λj(t)

λj(t̃n)
−1

∣∣∣∣=0 for all j ∈ J1, J̃−1K. (6.32)

Indeed, by the estimates (5.14) and (5.15), which imply |λ′|⩽Cγ(N−2)/4+on(1), we see

that, for all t∈[t̃n, t′n],

|λj(t)−λj(t̃n)|≲ sup
t∈[t̃n,t′n]

(γ(N−2)/4(t)+on(1))(t
′
n− t̃n),

and thus, for large n, ∣∣∣∣1− λj(t)

λj(t̃n)

∣∣∣∣≲ t′n− t̃n

λj(t̃n)
=T

λJ̃,n

λj(t̃n)
=T

λJ̃(t̃n)

λj(t̃n)
, (6.33)

and (6.32) follows in view of the fact that, by (6.9) and the definition of J̃ ,

lim
n!∞

λj(t̃n)

λj+1(t̃n)
=+∞ for all j ∈ J1, J̃−1K. (6.34)

Combining (6.32) with (6.34), we obtain

sup
t̃n⩽t⩽t′n

λj+1(t)

λj(t)
= 0 for all j ∈ J1, J̃−1K. (6.35)

By the definition (5.12) of βj and the definition of J̃ , we also have

lim
n!∞

|βj(t̃n)|=0 for all j ∈ J1, J̃−1K. (6.36)

By Lemma 5.7,

|β′
j(t)|≲

γN/2−1(t)+on(1)

λj(t)
≲

1

λj(t)
for all t∈ [t̃n, t

′
n] and all j ∈ J1, J̃−1K.

Integrating in time, we obtain

|βj(t)−βj(t̃n)|≲
λJ̃,n

λj(t)
≲ sup

s∈[t̃n,t′n]

λJ̃(t̃n)

λj(s)
,

where the implicit constants depend on T . By (6.32) and (6.35), the right-hand side of

the preceding inequality goes to zero as n tends to ∞. Combining with (6.35) and (6.36),

we obtain (6.30).

We finally prove (6.31). We argue by contradiction, assuming, after extraction of

a subsequence, that there exists a sequence of times {sn}n with sn∈[t̃n, t′n] such that

limn!∞ γ̃(sn)=0. By (6.30), limn!∞ γ(sn)=0. By Lemma 5.5, limn!∞ δ(sn)=0. Thus,

limn!∞ dJ,ι(sn)=0, a contradiction with the conclusion of Remark 6.5 since

t̃n ⩽ sn ⩽ t̃n+TλJ̃,n.
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6.3. Lower bound for the exterior scaling parameter and end of the proof

In this subsection we conclude the contradiction argument started in §5, using the same

notation as in §5 and §6.2. We recall in particular that t′n= t̃n+TλJ̃,n, where the sequence

{t̃n}n is defined by (5.5)–(5.7), λJ̃,n=λJ̃(t̃n), and T is a large positive parameter that will

be chosen at the end of the proof in order to obtain a contradiction with Proposition 6.1.

The small parameter ε0 appearing in (5.7) does not depend on T . The constants are

independent of ε0 and T .

Lemma 6.6. Let ℓ and p0 be defined by (6.21). Then, if ε0 is chosen small enough

(independently of T ), then, for large n,

|ℓ|⩽ 2C0

(
λJ̃(t)

λJ̃(t̃n)

)p0−1/2

δ(t)2/N for all t∈ [t̃n, t
′
n],

-where C0 is the constant of Proposition 4.6.

End of the proof of Theorem 1. We first assume Lemma 6.6 and conclude the proof

of Theorem 1. By (5.13), for large n,

δ(t)2/N ≲ γ(t)(N−2)/(2N)+on(1)≲ γ(t)(N−2)/2+on(1) for all t∈ [t̃n, t
′
n].

Combining with (6.30) and (6.31), we see that

δ(t)2/N ≲ γ̃(t)(N−2)/2 for all t∈ [t̃n, t
′
n].

Thus, Lemma 6.6 implies that there exists a constant C>0 such that

|ℓ|⩽C

(
λJ̃(t)

λJ̃(t̃n)

)p0−1/2

γ̃(t)(N−2)/2 for all t∈ [t̃n, t
′
n]. (6.37)

By (6.37) and the estimates (6.12)–(6.14) of the preceding subsection, the parameters

(βj)J̃⩽j⩽J and (λj)J̃⩽j⩽J satisfy the assumptions of Proposition 6.1 for times t∈[t̃n, t′n].
The conclusion of the proposition yields t′n− t̃n⩽T∗λJ̃(t̃n) for large n, and thus T⩽T∗,

for a constant T∗ depending only on the solution u and the parameters ℓ and p0. Since

we can take T arbitrarily large, we obtain a contradiction, concluding the proof of the

theorem except for the fact that

lim
t!∞

λ1(t)

t
=0,

which follows from finite speed of propagation and the small data theory (see e.g. the

proof of (3.53) in [21]).
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Proof of Lemma 6.6. We argue by contradiction, assuming (after extraction) that

either

|ℓ|⩾ 2C0δ(t̃n)
2/N for all n, (6.38)

or |ℓ|<2C0δ(t̃n)
2/N for all n and there exists a sequence {s̃n}n, with s̃n∈[t̃n, t′n], such

that

|ℓ|=2C0

(
λJ̃(s̃n)

λJ̃(t̃n)

)p0−1/2

δ(s̃n)
2/N for all n. (6.39)

If (6.38) holds, we will let s̃n= t̃n.

We use the expansion (5.42), as in the proof of Lemma 6.3 (see (6.23)) at sn= t̃n

and τ=s̃n− t̃n. This yields

u⃗(s̃n)= v⃗L(s̃n)+

K̃∑
k=1

U⃗k
n(s̃n− t̃n)+r⃗n(s̃n− t̃n), |x|> s̃n− t̃n,

where the Uk
n are defined in (6.17) and (6.19), and

lim
n!∞

∫
{|x|>|s̃n−t̃n|}

|∇t,xrn(s̃n− t̃n)|2 dx=0.

Let

(BJ̃
0 , B

J̃
1 )=w-lim

n!∞
(λ

(N−2)/2

J̃,n
U(s̃n, λJ̃,n ·), λ

N/2

J̃,n
∂tU(s̃n, λJ̃,n ·)), (6.40)

σ= lim
n!∞

s̃n− t̃n
λJ̃,n

. (6.41)

Note that σ∈[0,∞), since
t′n− t̃n
λJ̃,n

=T.

As in the proof of Lemma 6.3 (see (6.26)), we obtain

(BJ̃
0 (x), B

J̃
1 (x))= U⃗ J̃(σ, x), |x|>σ. (6.42)

We will next use Lemma 5.2 along the sequence {s̃n}. For this, we recall (see (6.32))

lim
n!∞

λj(s̃n)

λj(t̃n)
= 1 for all j ∈ J1, J̃−1K. (6.43)

On the other hand, after extraction,

lim
n!∞

λJ̃(t̃n)

λJ̃(s̃n)
=: λ̃∈ (0,∞). (6.44)
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Indeed, if (6.38) holds, then t̃n=s̃n for all n and (6.44) is trivial, with λ̃=1. If not,

then (6.39) holds, and (6.44) follows since δ(s̃n) is small and bounded from below by

Remark 6.5 and the fact that s̃n⩽t′n, which implies that

lim
n!∞

s̃n− t̃n
λJ̃,n

<∞.

By Lemma 5.2, letting

(V J̃
0 , V J̃

1 )=w-lim
n!∞

(λ
(N−2)/2

J̃
(s̃n)U(s̃n, λJ̃(s̃n) ·), λ

N/2

J̃
(s̃n)∂tU(s̃n, λJ̃(s̃n) ·)), (6.45)

we have

V J̃
0 =

jJ̃+1−1∑
j=J̃

ιjW(νj)+h̃J̃
0 and V J̃

1 =

jJ̃+1−1∑
j=J̃

α̃j(ΛW )[νj ]+g̃J̃1 , (6.46)

where

νj = lim
n!∞

λj(s̃n)

λJ̃(s̃n)
> 0, j ∈ JJ̃ , jJ̃+1−1K, (6.47)

and jJ̃+1 is the first index j>J̃ such that

lim
n!∞

λj(s̃n)

λJ̃(s̃n)
= 0 (6.48)

(as usual, if (6.48) is not satisfied for any j>J̃ , we take jJ̃+1=J+1), and h̃J̃
0 and g̃J̃1

satisfy the orthogonality conditions∫
∇h̃k

0∇(ΛW )(ν̃j) =

∫
g̃k1 (ΛW )[ν̃j ] =0, j ∈ Jȷ̃k, ȷ̃k+1−1K, (6.49)

By (6.44), (6.45) and the definition (6.40) of (BJ̃
0 , B

J̃
1 ), we see that

BJ̃
0 = λ̃(N−2)/2V J̃

0 (λ̃ ·) and BJ̃
1 = λ̃N/2V J̃

1 (λ̃ ·).

Using (6.21) and (6.42), we deduce that, for large R,

∥(λ̃(N−2)/2V J̃
0 (λ̃ ·), λ̃N/2V J̃

1 (λ̃ ·))−ℓΞp0
∥H(R) ≲max

{
1

R(p0−1/2)(N+2)/(N−2)
,

1

Rp0+1/2

}
,

and, after rescaling, for large R,

∥(V J̃
0 , V J̃

1 )−λ̃p0−1/2ℓΞp0
∥H(R) ≲max

{
1

R(p0−1/2)(N+2)/(N−2)
,

1

Rp0+1/2

}
. (6.50)
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We next note that (V J̃
0 , V J̃

1 ) satisfies the assumptions of §4.2 and §4.3. Indeed, it is close
to the multi-soliton

M̃ =

jJ̃+1−1∑
j=J̃

ιjWνj

(see (5.28)), and the solution with initial data (V J̃
0 , V J̃

1 ) is, by Lemma 5.2, non-radiative.

We use Proposition 4.6 on (V J̃
0 , V J̃

1 ). In view of (6.46) and the orthogonality conditions

(6.49) satisfied by h̃J̃
0 and h̃J̃

1 , the exterior scaling parameter (denoted by λ1 in Proposi-

tion 4.6) is νJ̃ who is, by definition, equal to 1 (see (6.47)). By (6.50), we must replace,

in the conclusion of Proposition 4.6, |ℓ| by λ̃p0−1/2|ℓ|. This yields

λ̃p0−1/2|ℓ|⩽C0δ(s̃n)
2/N . (6.51)

Using (6.44), we obtain (
λJ̃(t̃n)

λJ̃(s̃n)

)p0−1/2

|ℓ|⩽ 3

2
C0δ(s̃n)

2/N

for large n. By (6.39), we get

2C0δ(s̃n)
2/N ⩽ 3

2C0δ(s̃n)
2/N

for large n, which is a contradiction, since δ(s̃n) ̸=0.

6.4. Study of a system of differential inequalities

In this subsection, we prove Proposition 6.1.

We first observe that, by the following change of variable of unknwown functions:

τ =
t

λ1(0)
, λ̌j(τ)=

λj(t)

λ1(0)
and β̌j(τ)=βj(t),

we may assume

λ1(0)= 1.

The proof is by contradiction and relies on a monotonicity formula that follows from the

modulation equations (6.2)–(6.5). In all the proof, the estimates are uniform in t∈[0, T ],
and we must follow the dependence of the constants with respect to L. The implicit

constants implied by the symbols ≲, ≪, ... will thus never depend on L and t∈[0, T ].
We will introduce in the course of the proof two constants m and M depending only on

L and the parameters of the system. To simplify notation, we will let

κ2 :=
1

∥ΛW∥2L2

.
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We note that (6.3) and the smallness assumption (6.1) imply

J0∑
j=1

|βj |≲ γ(N−2)/4. (6.52)

Together with (6.2), we obtain

J0∑
j=1

|λ′
j |≲Cγ(N−2)/4. (6.53)

The idea of the proof is to construct a function V which is of the same order as λ2
1 and is

convex. We first introduce a positive quantity B(t) which will appear in the computation

of V ′′(t).

Step 1. (Introduction of a positive quantity) We define θ1,...,θJ0
as follows: θ1=1

and, for all j∈J2, J0K,

θj =

{
2θj−1, if ιjιj−1 =1,
1
2θj−1, if ιjιj−1 =−1.

We let

B(t)=

J0∑
j=1

θjλj(t)β
′
j(t).

In this step, we prove

B(t)⩾
κ0

2J0+1
γ(t)(N−2)/2 for all t∈ [0, T ], (6.54)

where κ0 is the constant appearing in the formula (6.4) for β′
j . Indeed, by (6.4), setting

ι0=ιJ0+1=0, we have

B(t)=κ0

J0∑
j=1

θj

(
ιjιj−1

(
λj

λj−1

)(N−2)/2

−ιjιj+1

(
λj+1

λj

)(N−2)/2)
+O(γ(N−1)/2)

=κ0

J0∑
j=2

ιjιj−1

(
λj

λj−1

)(N−2)/2

(θj−θj−1)+O(γ(N−1)/2).

By the definition of θj , for 2⩽j⩽J0, we have

ιj−1ιj(θj−θj−1)=

{
θj−1, if ιj−1ιj =1,
1
2θj−1, if ιj−1ιj =−1.

Hence, ιj−1ιj(θj−θj−1)⩾1/2J0 , and (6.54) follows, since γ is small.
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Step 2. (Approximate first derivative of V ) We let

A(t)=

J0∑
j=1

θjλj(t)βj(t). (6.55)

In this step, we prove

A′(t)≳ γ(N−2)/2(t) (6.56)

and that there exists C>0 such that

A′(t)⩾ (κ−1
2 +C−1)

J0∑
j=1

θjλ
′
j
2
(t), (6.57)

A′(t)⩾ (κ2+C−1)

J0∑
j=1

θjβ
2
j (t). (6.58)

Indeed,

A′(t)=

J0∑
j=1

θjλ
′
j(t)βj(t)+B(t)=κ2

J0∑
j=1

θjβ
2
j (t)+B(t)+O(γ(N−1)/2),

where we have used (6.2) and (6.52). By (6.54), we deduce that

A′(t)⩾κ2

J0∑
j=1

θjβ
2
j (t)+

1

C
γ(t)(N−2)/2,

and hence (6.56). The estimate (6.58) follows also immediately, since∑
j

β2
j ≲ γ(N−2)/2.

Together with (6.2), we also obtain (6.57).

Step 3. (Choice of an intermediate time) In this step, we will show that A(1/L) is

bounded from below by a constant depending only on L. By (6.5) and (6.56), recalling

that λ1(0)=1, we have

L≲CA′(t)λa
1(t).

Integrating between 0 and τ⩽T , we obtain

Lτ ≲
∫ τ

0

A′(t)λa
1(t) dt. (6.59)
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Furthermore, by integration by parts, using again that λ1(0)=1,∫ τ

0

A′(t)λa
1(t) dt=A(τ)λa

1(τ)−A(0)−a

∫ τ

0

A(t)λ′
1(t)λ

a−1
1 (t) dt

=A(τ)λa
1(τ)−A(0)− a

κ2

∫ τ

0

(λ′
1)

2λa
1+O

(∫ τ

0

|λ′
1|γN/4λa

1

)
.

For this, we have used that, by (6.2) and the bound |βj |λj≲γ(N+2)/4λ1 (for j⩾2) which

follows from (6.52) and the definition of γ, we have

A(t)=

J∑
j=1

θjλjβj =κ−1
2 λ1λ

′
1+(β1−κ−1

2 λ′
1)λ1+

J0∑
j=2

θjλjβj

=κ−1
2 λ1λ

′
1+O(λ1γ

N/4).

(6.60)

Combining with the bound (6.53) on |λ′
1|, we deduce that∫ τ

0

A′(t)λa
1(t) dt=A(τ)λa

1(τ)−A(0)− a

κ2

∫ τ

0

(λ′
1(t))

2λa
1(t) dt+O

(∫ τ

0

γ(N−1)/2λa
1

)
.

Using (6.59) and the fact that, by (6.56),∫ τ

0

A′(t)λa
1(t) dt≳

∫ τ

0

γ(N−2)/2λa
1 ≳

1√
ε

∫ τ

0

γ(N−1)/2λa
1 ,

we deduce, if ε is small enough, that, for all τ∈(0, T ],

1

2
Lτ+

a

κ2

∫ τ

0

(λ′
1(t))

2λa
1(t) dt+A(0)⩽A(τ)λa

1(τ). (6.61)

Assume in all the sequel that T⩾1/L. Using that |λ′
1|⩽1 (see (6.53)), we obtain

λ1

(
1

L

)
⩽ 1+

1

L
.

Noting that, by (6.5) at t=0, and since ε is small, 1/L⩾1, we deduce, taking ε small

enough, that

λ1

(
1

L

)
⩽

2

L
(6.62)

Going back to (6.61), using that |A(0)|⩽ 1
100 , we obtain

A

(
1

L

)
⩾

1

2

1

λa
1(1/L)

⩾
La

2a+1
. (6.63)

Note that, since A′(t)⩾0 by Step 2, (6.63) implies that A(t)>0 for all t∈[1/L, T ].
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Step 4. (Bound from above of λ1) We let

V (t)=

J0∑
j=1

θjλ
2
j ,

and note that, using that θ1=1 and that λj⩽ελ1 for j⩾2,

|V (t)−λ2
1(t)|≲ ε2λ2

1(t).

In this step, we show that there exists C>0 and M=M(L)>0 such that

V (t)⩽Mε1/C for all t∈
[
1

L
, T

]
. (6.64)

Indeed,

V ′(t)= 2

J0∑
j=1

θjλjλ
′
j ,

and thus

V ′(t)A(t)= 2

J0∑
j=1

θjλjλ
′
j

J0∑
j=1

θjλjβj ⩽ 2V (t)

√√√√ J0∑
j=1

θjλ′
j
2

√√√√ J0∑
j=1

θjβ2
j ⩽ 2−V (t)A′(t),

by Step 2. Here,

2− =
2

(κ−1
2 +C−1)(κ2+C−1)

is a fixed positive constant, smaller than 2, and independent of L. Recall that, for t⩾1/L,

we have A(t)>0. For such t, we deduce that

2−A′(t)

A(t)
⩾

V ′(t)

V (t)
, (6.65)

and thus, for t⩾1/L,

d

dt

(
A2−(t)

V (t)

)
⩾ 0. (6.66)

Hence, by (6.62) (which implies V (1/L)≲1/L2) and (6.63), for t⩾1/L,

A2−(t)

V (t)
⩾

A2−(1/L)

V (1/L)
≳L2+2−a. (6.67)

Using the inequality

A(t)≲
√
V (t)γ(N−2)/4(t),
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we deduce that, for all t⩽1/L,

(γ(N−2)/2)2
−/2 ≳

A(t)2
−

V (t)2−/2
≳V (t)(2−2−)/2A

2−(t)

V (t)
≳L2+2−aV (t)(2−2−)/2.

This yields (6.64), with

M =
1

L2(2+2−a)/(2−2−)
.

Step 5. (Bound from below of λ1) By (6.65), we have, for t⩾1/L,

d

dt

(
A(t)√
V (t)

)
⩾ 0.

As a consequence, for t⩾1/L,

A(t)√
V (t)

⩾
A(1/L)√
V (1/L)

.

By the bound (6.62) on λ1, the fact that V (t)≈λ2
1(t) and the bound (6.63) on A(1/L),

we have
A(t)√
V (t)

⩾
A(1/L)√
V (1/L)

≳La+1 =:m. (6.68)

Since |V ′(t)−2κ2A(t)|≲γN/4(t)λ1(t) (see (6.60)), we deduce from (6.68) that

V ′(t)√
V (t)

≳m+O(γN/4(t)) for all t⩾
1

L
.

Integrating, we obtain

∫ t

1/L

γN/4(s) ds+
√

V (t)−

√
V

(
1

L

)
≳

(
t− 1

L

)
m,

and thus, by the bound (6.64) on V ≈λ2
1,

√
Mε1/(2C)+

∫ t

1/L

γN/4(s) ds≳

(
t− 1

L

)
m for all t∈

[
1

L
, T

]
. (6.69)

Notice that, by Step 2, for t∈[1/L, T ],

∫ t

1/L

γN/4 ⩽
√
ε

∫ t

1/L

γ(N−2)/4(s) ds≲
√
ε
√
t

√∫ t

1/L

A′(s) ds

≲
√
ε
√
t
√
A(t)≲

√
ε
√
t ε(N−2)/8

√
λ1(t)≲ ε(N+2)/8

√
tM1/4,
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where we have used the bound |A(t)|≲λ1(t)γ
(N−2)/4 and, to get the last inequality, the

bound (6.64) on V . Going back to (6.69), we obtain

m

(
t− 1

L

)
≲ ε1/(2C)

√
M+ε(N+2)/8M1/4

√
t. (6.70)

Taking ε small, we deduce

m

(
T− 1

L

)
⩽
√
M+M1/4

√
T , (6.71)

i.e. (√
T−M1/4

2m

)2
⩽

1

L
+

√
M

m
+

√
M

4m2
,

which implies

T ⩽T ∗ :=

(√
1

L
+

√
M

m
+

√
M

4m2
+
M1/4

2m

)2
,

concluding the proof, since the constants m and M depend only on L and the parameters

of the system.

7. Inelastic collision

This section is dedicated to the proof of Theorem 2. The proof is almost contained in the

proof of Theorem 1 and we only sketch it. Let u satisfy the assumptions of Theorem 2.

If u scatters forward in time, then

lim
t!+∞

∥u⃗(t)∥H =0,

and, by the small data theory, u is identically zero. Thus, u does not scatter as t!∞,

and according to Theorem 1, there exist J⩾1, signs {ιj}1⩽j⩽J and parameters λj(t)

defined for large t such that

0<λJ(t)<λJ−1(t)< ...<λ1(t), lim
t!∞

γ(t)= 0, lim
t!∞

λ1(t)

t
=0

(where γ(t)=γ(λ(t))=maxj∈J1,J−1K λj+1(t)/λj(t)) and

lim
t!∞

∥∥∥∥u⃗(t)− J∑
j=1

(ιjW(λj(t)), 0)

∥∥∥∥
H
=0.

Note that (1.10) implies that vL≡0. We will use the notation of §5. Using Lemma B.1

in the appendix, we can choose the λj(t), for large t, such that∫
∇(u(t)−M(t))·∇(ΛW(λj(t)))= 0 for all j ∈ J1, JK, (7.1)
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where

M(t) :=

J∑
j=1

ιjW(λj(t)).

For t⩾T , T large, we expand

u(t)=M(t)+h(t) and ∂tu(t)=

J∑
j=1

αj(t)ιj(ΛW )[λj(t)]+g1(t),

and denote

δ(t) :=
√
∥h(t)∥2

Ḣ1
+∥∂tu(t)∥2L2 and βj(t) :=−ιj

∫
(ΛW )[λj(t)]∂tu(t).

Observe that the expansions above are valid for all large times, as opposed to the anal-

ogous expansions in §5 that are made on intervals of the form [t̃n, tn], where t̃n, tn!∞
as n!∞.

Then, we have the following variant of Proposition 5.1:

Proposition 7.1. There exists C>0 such that, for all t⩾T ,

δ⩽Cγ(N−2)/4 (7.2)∣∣βj−∥ΛW∥2L2λ′
j

∣∣⩽CγN/4 for all j ∈ J1, JK, (7.3)∣∣∣∣12
J∑

j=1

β2
j −κ1

∑
1⩽j⩽J−1

ιjιj+1

(
λj+1

λj

)(N−2)/2∣∣∣∣⩽Cγ(N−1)/2 (7.4)

∣∣∣∣λjβ
′
j+κ0

(
ιjιj+1

(
λj+1

λj

)(N−2)/2

−ιjιj−1

(
λj

λj−1

)(N−2)/2)∣∣∣∣ (7.5)

⩽Cγ(N−1)/2 for all j ∈ J1, JK,

where the positive constants κ0 and κ1 are as in Proposition 5.1.

Sketch of proof. The proof is the same as the proof of Proposition 5.1 in §5.3 and

§5.4, observing that in the context of Proposition 7.1, we do not need §5.2 and we can

remove all the on(1) in the estimates. More precisely, we have the following.

• The estimates of Lemma 5.4 hold for t⩾T , without the on(1) terms, as a direct

consequence of Proposition 4.4.

• The estimates of Lemma 5.5 can be proved for all t⩾T , without the on(1) terms,

expanding the equality

E(u⃗(t))=JE(W, 0),
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and with the same proof. In Lemma 5.5, the terms on(1) came from the fact that the

preceding equality was replaced by the weaker statement

lim
t!∞

E(u⃗(t)−v⃗L(t))=JE(W, 0).

• Similarly, one can prove Lemmas 5.6 and 5.7 for t⩾T without on(1) with the same

proofs, observing that in the proofs of these lemmas, the on(1) terms come either from

the on(1) terms of §5.3, or from the term σ(h, vL) defined in (5.54) and which is zero in

our setting.

Assuming that u is not stationary, it is now easy to obtain a contradiction: by

Proposition 4.6,

|ℓ|⩽Cδ(t)2/Nλ
k0−1/2
1 for all t⩾T .

Combining with the estimates of Proposition 7.1, we see that this contradicts Proposi-

tion 6.1, concluding the proof.

Appendix A. Proof of some estimates

In this appendix, we gather a few purely computational proofs.

A.1. Estimates on integrals in the space variable

Claim A.1. Let 0<λ<µ. Assume N⩾5. Then,∫
RN

|∇(ΛW(λ)) ·∇(ΛW(µ))|+
∫
RN

|∇W(λ) ·∇W(µ)|≲
(
λ

µ

)N/2−1

, (A.1)

∫
RN

|(ΛW )[λ](ΛW )[µ]|+
∫
RN

|(ΛW )[λ](Λ0ΛW )[µ]|≲
(
λ

µ

)N/2−2

, (A.2)

∥W(λ)W
4/(N−2)
(µ) ∥L2N/(N+2) ≲

(
λ

µ

)(N−2)/2

,

∥W(µ)W
4/(N−2)
(λ) ∥L2N/(N+2) ≲

(
λ

µ

)2
,

(A.3)

∣∣∣∣∫
RN

W
N/(N−2)
(λ) W

N/(N−2)
(µ)

∣∣∣∣≲(
λ

µ

)N/2

, (A.4)

∫
|(ΛW )[λ](∆ΛW )[µ]|≲

(
λ

µ

)N/2−2

,∫
|(ΛW )[µ](∆ΛW )[λ]|≲

(
λ

µ

)N/2

.

(A.5)
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Proof. We have

|Λ0ΛW (x)|+|ΛW (x)|+|W (x)|≲min

{
1,

1

|x|N−2

}
(A.6)

|∇ΛW (x)|+|∇W (x)|≲min

{
1,

1

|x|N−1

}
,

|∆ΛW |≲min

{
1,

1

|x|N

}
.

(A.7)

In view of these bounds, the estimates (A.1)–(A.5) are consequences of the following

inequality, which holds for any a, b∈R with a+b>N , and can be proved by integrating

separately on {|x|<λ}, {λ<|x|<µ} and {|x|>µ}:∫
RN

min

(
1,

{
λ

|x|

}a)
min

{
1,

(
µ

|x|

)b}
dx≲λaµN−a. (A.8)

We will prove (A.3). The proofs of (A.1), (A.2), (A.4) and (A.5) are very similar. By

(A.6), we have∫
W

2N/(N+2)
(λ) W

8N/((N−2)(N+2))
(µ)

≲
1

λN(N−2)/(N+2)µ4N/(N+2)

×
∫

min

{
1,

(
λ

|x|

)2N(N−2)/(N+2)}
min

{
1,

(
µ

|x|

)8N/(N+2)}
,

and the first estimate of (A.3) follows from (A.8) with a=2N(N−2)/(N+2). Similarly,∫
W

2N/(N+2)
(µ) W

8N/((N−2)(N+2))
(λ)

≲
1

µN(N−2)/(N+2)λ4N/(N+2)

×
∫

min

{
1,

(
µ

|x|

)2N(N−2)/(N+2)}
min

{
1,

(
λ

|x|

)8N/(N+2)}
,

and the second estimate of (A.3) follows from (A.8) with a=8N/(N+2).

A.2. Estimates on space time norms

Claim A.2. Assume N⩾5. Let 0<λ<µ. Then,

∥11{|x|⩾|t|}W
4/(N−2)
(λ) W(µ)∥L1(R,L2) ≲


(
λ

µ

)3/2
, if N =5,(

λ

µ

)2
, if N ⩾ 7,

(A.9)
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∥11{|x|⩾|t|}W
4/(N−2)
(µ) W(λ)∥L1(R,L2) ≲


(
λ

µ

)3/2
, if N =5,(

λ

µ

)2
, if N ⩾ 7,

(A.10)

∥11{|x|⩾|t|}tW
4/(N−2)
(λ) W[µ]∥L1(R,L2) ≲

(
λ

µ

)2
(A.11)

∥11{|x|⩾|t|}tW
4/(N−2)
(µ) W[λ]∥L1(R,L2) ≲



(
λ

µ

)1/2
, if N =5,(

λ

µ

)3/2
, if N =7,(

λ

µ

)2
, if N ⩾ 9.

(A.12)

The same inequalities remain valid when replacing W by ΛW anywhere in the preceding

norms.

Proof. In all of the proof of the claim, we will use the bound

|W (x)|+|ΛW (x)|≲min{1, |x|2−N}. (A.13)

By scaling, we may assume that µ=1. By symmetry, it is sufficient to bound the integrals

for t⩾0. The proofs for all four bounds are the same. We divide the domain of integration

for r in three parts, (0, λ), (λ, 1) and (1,∞), writing∫ +∞

0

(∫ +∞

t

... rN−1 dr

)1/2
dt≲

∫ λ

0

(∫ λ

t

... rN−1 dr

)1/2
dt

+

∫ 1

0

(∫ 1

max{t,λ}
... rN−1 dr

)1/2
dt

+

∫ +∞

0

(∫ +∞

max{t,1}
... rN−1 dr

)1/2
dt

=(1)+(2)+(3),

where ... is either

(W
4/(N−2)
(λ) W )2, (W 4/(N−2)W(λ))

2, (tW
4/(N−2)
(λ) W )2 or (tW 4/(N−2)W[λ])

2.

In the integrals (1), we use the bound W (r/λ)+W (r)≲1, in the integrals (2), we use the

bounds W (r/λ)≲(λ/r)N−2 and W (r)≲1, and in the integrals (3), we use the bounds

W (r/λ)≲(λ/r)N−2 and W (r)≲1/rN−2.

We will detail the proof of (A.9) and sketch the proof of the other estimates.
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Proof of (A.9). We have

(1)=

∫ λ

0

(∫ λ

t

W 2 1

λ4
W 8/(N−2)

(
r

λ

)
rN−1 dr

)1/2
dt

≲
1

λ2

∫ λ

0

(∫ λ

t

rN−1 dr

)1/2
dt≲λ(N−2)/2.

If N∈{5, 7}, we have

(2)=

∫ 1

0

(∫ 1

max{t,λ}
W 2 1

λ4
W 8/(N−2)

(
r

λ

)
rN−1 dr

)1/2
dt

≲λ2

∫ λ

0

(∫ 1

λ

rN−9 dr

)1/2
dt+λ2

∫ 1

λ

(∫ 1

t

rN−9 dr

)1/2
dt

≲λ2

∫ λ

0

λ(N−8)/2 dt+λ2

∫ 1

λ

t(N−8)/2 dt

≲

{
λ2, if N =7,

λ3/2, if N =5.

If N⩾9, we obtain

(2)≲λ2

∫ λ

0

(∫ 1

λ

rN−9 dr

)1/2
dt+λ2

∫ 1

λ

(∫ 1

t

rN−9 dr

)1/2
dt≲λ2.

It remains to bound the third integral:

(3)=

∫ +∞

0

(∫ +∞

max{1,|t|}
W

8/(N−2)
(λ) W 2rN−1 dr

)2
dt

≲
∫ +∞

0

(∫ +∞

max{1,|t|}

λ4

r8+2(N−2)
rN−1 dr

)2
dt≲λ2.

Combining the preceding bounds, we obtain (A.9).

Sketch of proof of (A.10)–(A.12). By analogous arguments, we obtain the following

bounds.

• For (A.10),

(1)≲λ2, (2)≲

{
λ3/2, if N =5,

λ2, if N ⩾ 7,
and (3)≲λ(N−2)/2.

• For (A.11),

(1)≲λN/2, (2)≲λ2 and (3)≲λ2.

• For (A.12),

(1)≲λ2, (2)≲


λ1/2, if N =5,

λ3/2, if N =7,

λ2, if N ⩾ 9,

and (3)≲λ(N−4)/2.
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This concludes the proof of Claim A.2.

Claim A.3. Assume N⩾5. Let 0<λ<µ. Then,

∥11{|x|⩾|t|} min{W 4/(N−2)
(λ) W(µ),W

4/(N−2)
(µ) W(λ)}∥L1(R,L2) ≲

(
λ

µ

)(N+2)/4

. (A.14)

Proof. As before, we will use continuously the bound

|W (x)|≲min{1, |x|2−N}.

By scaling, we may assume that µ=1 (and thus λ⩽1). We note that

√
λ≲ r =⇒ W(λ) ≲W and r≲

√
λ =⇒ W(λ) ≳W.

We divide the space into four regions, writing

1

2
∥11{|x|⩾|t|} min{W 4/(N−2)

(λ) W,W 4/(N−2)W(λ)}∥L1(R,L2)

=

∫ +∞

0

(∫ +∞

t

min{W 4/(N−2)
(λ) W,W 4/(N−2)W(λ)}rN−1 dr

)1/2
dt

≲
∫ λ

0

(∫ λ

t

...

)1/2
dt+

∫ √
λ

0

(∫ √
λ

max{t,λ}
...

)1/2
dt

+

∫ 1

0

(∫ 1

max{t,
√
λ}

...

)1/2
dt+

∫ +∞

0

(∫ +∞

max{t,1}
...

)1/2
dt

=A1+A2+A3+A4.

Case 1. (N⩾7) In this case, 4/(N−2)<1. We have

A1 ≲
∫ λ

0

(∫ λ

|t|
W 2 1

λ4
W 8/(N−2)

(
r

λ

)
rN−1 dr

)1/2
dt.

Using that W is bounded, we obtain

A1 ≲
1

λ2

∫ λ

0

(∫ λ

0

rN−1 dr

)1/2
dt≲λ(N−2)/2. (A.15)

We next consider A2:

A2 ≲
∫ √

λ

0

(∫ √
λ

max{t,λ}
W 2 1

λ4
W 8/(N−2)

(
r

λ

)
rN−1 dr

)1/2
dt.

Using the bounds

W 2 ≲ 1 and W 8/(N−2)

(
r

λ

)
≲

λ8

r8
,
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we obtain

A2 ≲λ2

∫ √
λ

0

(∫ √
λ

max{t,λ}
rN−9 dr

)1/2
dt.

If N=7, this yields

A2 ≲λ2

∫ λ

0

1

λ1/2
dt+λ2

∫ √
λ

λ

1√
t
dt≲λ9/4.

If N⩾9, we deduce that

A2 ≲λ2

∫ √
λ

0

λ(N−8)/4 dt=λ(N+2)/4.

In both cases, we have obtained

A2 ≲λ(N+2)/4. (A.16)

We have

A3 ≲
1

λ(N−2)/2

∫ 1

0

(∫ 1

max{t,
√
λ}

W 2

(
r

λ

)
W 8/(N−2)(r)rN−1 dr

)1/2
dt.

Using the bounds

W 2

(
r

λ

)
≲

(
λ

r

)2(N−2)

and W 8/(N−2) ≲ 1,

we deduce that

A3 ≲λ(N−2)/2

∫ √
λ

0

(∫ 1

√
λ

r3−N dr

)1/2
dt+λ(N−2)/2

∫ 1

√
λ

(∫ 1

t

r3−N dr

)1/2
dt,

which yields

A3 ≲λ(N+2)/4. (A.17)

Finally, we bound A4. We have

A4 ≲
1

λ(N−2)/2

∫ ∞

0

(∫ +∞

max{1,t}
W 2

(
r

λ

)
W 8/(N−2)(r)rN−1 dr

)1/2
dt.

Using the bounds

W 2

(
r

λ

)
≲

(
λ

r

)2(N−2)

and W 8/(N−2) ≲
1

r8
,

we deduce that

A4 ≲λ(N−2)/2. (A.18)
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Combining (A.15)–(A.18), and noting that 1
4 (N+2)⩽ 1

2 (N−2) if N⩾6, we deduce the

bound (A.14) when N⩾7.

Case 2. (N=5) In this case, we have

4

N−2
=

4

3
> 1.

The proof is the same as in the preceding case, except that

min{W 4/3
(λ) W,W 4/3W(λ)}(r)≈

{
W 4/3(r)W(λ)(r), if r⩽

√
λ,

W
4/3
(λ) (r)W (r), if r⩾

√
λ.

By explicit computation, one obtains the bounds

A1 ≲λ2, A2 ≲λ7/4, A3 ≲λ7/4 and A4 ≲λ2,

which yields the bound (A.14). We leave the details to the reader.

A.3. Pointwise bounds

Claim A.4. Assume N⩾5 and J⩾1. For all (y1, ..., yJ , h)∈RJ+1,∣∣∣∣∣N−2

2N

∣∣∣∣ J∑
j=1

yj+h

∣∣∣∣2N/(N−2)

−N−2

2N

J∑
j=1

|yj |2N/(N−2)

−
J∑

j=1

|yj |4/(N−2)yjh−
∑

1⩽j,k⩽J

j ̸=k

|yj |4/(N−2)yjyk

∣∣∣∣∣
≲ |h|2N/(N−2)+

J∑
j=1

|yj |4/(N−2)h2

+
∑

1⩽j<k⩽J

(min{|yj |4/(N−2)y2k, |yk|4/(N−2)y2j }

+min{|yj |(N+2)/(N−2)|yk|, |yk|(N+2)/(N−2)|yj |}),

(A.19)

Proof. We fix (y1, ..., yJ , h)∈RJ+1 and distinguish between two cases.

Case 1. (|h|⩾max1⩽j⩽J |yj |) In this case, the inequality is trivial, since all terms of

the left-hand side are bounded by |h|2N/(N−2) up to a constant.

Case 2. (|h|⩽max1⩽j⩽J |yj |) We assume without loss of generality that

|y1|= max
1⩽j⩽J

|yj |.
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We use the inequality∣∣∣∣N−2

2N
|1+s|2N/(N−2)−N−2

2N
−s

∣∣∣∣≲ s2+|s|2N/(N−2),

with

s=
1

y1

(
h+

J∑
j=2

yj

)
.

Multiplying the resulting inequality by |y1|2N/(N−2), we obtain∣∣∣∣∣N−2

2N

∣∣∣∣h+ J∑
j=1

yj

∣∣∣∣2N/(N−2)

−N−2

2N
|y1|2N/(N−2)−|y1|4/(N−2)y1

(
h+

J∑
j=2

yj

)∣∣∣∣∣
≲ |y1|4/(N−2)

(
h2+

J∑
j=2

y2j

)
+|h|2N/(N−2)+

J∑
j=2

|yj |2N/(N−2).

(A.20)

Since |y1|=max1⩽j⩽J |yj | and 4/(N−2)<2, we have that the right-hand side of (A.20)

is clearly bounded by

|h|2N/(N−2)+

J∑
j=1

|yj |4/(N−2)h2+
∑

1⩽j<k⩽J

min{|yj |4/(N−2)y2k, |yk|4/(N−2)y2j }.

It remains to bound the terms that appear in the left-hand side of (A.19) but not on the

left-hand side of (A.20). Using again that |y1|=max1⩽j⩽J |yj |, we have

J∑
j=2

|yj |2N/(N−2) ≲
∑
j ̸=k

min{|yj |4/(N−2)y2k, |yk|4/(N−2)y2j },

∣∣∣∣ J∑
j=2

|yj |4/(N−2)yjh

∣∣∣∣≲ J∑
j=2

|yj |2N/(N−2)+

J∑
j=2

|yj |4/(N−2)h2

≲
∑
j ̸=k

min{|yj |4/(N−2)y2k, |yk|4/(N−2)y2j }+
J∑

j=2

|yj |4/(N−2)h2,

∣∣∣∣ ∑
2⩽j⩽J

1⩽k⩽J

j ̸=k

|yj |4/(N−2)yjyk

∣∣∣∣≲ ∑
2⩽j⩽J

|y1| |yj |(N+2)/(N−2)

≲
∑
j ̸=k

min{|yj |(N+2)/(N−2) |yk|, |yk|(N+2)/(N−2) |yj |},

which concludes the proof.

Recall the notation F (σ)=|σ|4/(N−2)σ.
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Claim A.5. Assume N⩾7. Let J⩾1. Then, for all (y1, ..., yJ , h)∈RJ+1, if N⩾7,

then ∣∣∣∣F(
h+

J∑
j=1

yj

)
−

J∑
j=1

F (yj)−
N+2

N−2

J∑
j=1

|yj |4/(N−2)h−F (h)

∣∣∣∣
≲

∑
1⩽j<k⩽J

min{|yj |4/(N−2)|yk|, |yk|4/(N−2)|yj |}

+|h|(N+1)/(N−2)
J∑

j=1

|yj |1/(N−2),

(A.21)

and, if N=5, then∣∣∣∣F( J∑
j=1

yj+h

)
−

J∑
j=1

F (yj)−
7

3

J∑
j=1

|yj |4/3h−
7

3

∑
1⩽j,k⩽J

j ̸=k

|yj |4/3yk−F (h)

∣∣∣∣
≲

J∑
j=1

|yj |1/3h2+
∑

1⩽j<k⩽J

min{|yj |4/3 |yk|, |yk|4/3 |yj |}.

(A.22)

Proof. Case 1. (maxj |yj |⩽|h|) We use the fact that

|s|⩽ J =⇒
∣∣∣∣F (1+s)−1−N+2

N−2
s

∣∣∣∣≲ s2, (A.23)

with

s=
1

h

J∑
j=1

yj .

Multiplying the resulting inequality by |h|(N+2)/(N−2), we obtain

∣∣∣∣F(
h+

J∑
j=1

yj

)
−F (h)−N+2

N−2
|h|4/(N−2)

J∑
j=1

yj

∣∣∣∣≲ |h|(N+2)/(N−2)−2
J∑

j=1

y2j .

Using that maxj |yj |⩽|h|, we deduce (A.21) or (A.22).

Case 2. (|h|⩽maxj |yj |) We assume, without loss of generality, that

|y1|= max
1⩽j⩽J

|yj |.

We use (A.23) with

s=
1

y1

(
h+

J∑
j=2

yj

)
.
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Multiplying the resulting inequality by |y1|(N+2)/(N−2), we obtain

∣∣∣∣F(
h+

∑
1⩽j⩽J

yj

)
−F (y1)−

N+2

N−2
|y1|4/(N−2)

(
h+

J∑
j=2

yj

)∣∣∣∣
≲ |y1|(N+2)/(N−2)−2

(
h2+

J∑
j=2

y2j

)
.

Let j⩾2. Since |yj |⩽|y1|, we have

F (yj)≲min{|yj |4/(N−2) |y1|, |y1|4/(N−2) |yj |}.

Furthermore,

|yj |4/(N−2) |h|≲
{

|yj |1/(N−2)|h|(N+1)/(N−2), if |yj |< |h|,
min{|yj |4/(N−2) |y1|, |y1|4/(N−2) |yj |}, if |h|⩽ |yj |,

and also

|y1|(N+2)/(N−2)−2h2+F (h)≲ |y1|1/(N−2) |h|(N+1)/(N−2)

|y1|(N+2)/(N−2)−2y2j ⩽min{|y1|4/(N−2) |yj |, |yj |4/(N−2) |y1|}.

If N⩾7, we have 4/(N−2)<1, and thus

|y1|4/(N−2)|yj |=min{|y1|4/(N−2)|yj |, |yj |4/(N−2)|y1|}.

If N=5, we note that, if 2⩽j, k with j ̸=k,

|yj |4/3 |yk|≲min{|y1|4/3 |yj |, |yj |4/3 |y1|}+min{|y1|4/3 |yk|, |yk|4/3 |y1|}.

Combining the preceding inequalities, we obtain (A.21) or (A.22).

Claim A.6. Let (a, b, c)∈R3, with a ̸=0. We have

|F (a+b)−F (a)−F ′(a)b|≲ 11{|b|⩽|a|}b
2a(6−N)/(N−2)+11{|b|⩾|a|}b

(N+2)/(N−2), (A.24)

and

|F (a+b+c)−F (a+b)−F (a+c)+F (a)|

≲

{
|a|(6−N)/2(N−2) |b|(N+2)/2(N−2) |c|, if N ⩾ 7,

|b| |c|(|a|+|b|+|c|)1/3, if N =5.

(A.25)
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Proof of (A.24). By scaling, we may assume a=1. We are thus reduced to prove

|F (1+b)−F (1)−F ′(1)b|≲ 11|b|⩽1b
2+11|b|⩾1b

(N+2)/(N−2), b∈R, (A.26)

which follows easily from the fact that F (z) is C2 outside z=0 and of order |z|(N+2)/(N−2)

as |z|!∞.

Proof of (A.25) in the case N⩾7. Note that

1+
N+2

2(N−2)
+

6−N

2(N−2)
=

N+2

N−2
.

Thus, both sides of (A.25) are homogeneous of degree (N+2)/(N−2), and we may

assume, without loss of generality, a=1. We are thus reduced to prove (assuming N⩾7)

|G(b, c)|≲ |b|(N+2)/2(N−2) |c|, (A.27)

where

G(b, c) := |F (1+b+c)−F (1+b)−F (1+c)+F (1)|.

We distinguish between two cases.

Case 1. (|c|⩽|b|) There exists b1 and d1 such that

F (1+b+c)−F (1+b)=F ′(b1)c, |b+1−b1|⩽ |c|, (A.28)

F (1+c)−F (1)=F ′(d1)c, |d1−1|⩽ |c|. (A.29)

In particular,

|G(b, c)|≲ (1+|b|+|c|)4/(N−2)|c|.

If |b|⩾ 1
10 , this implies (A.27), since

4

N−2
⩽

N+2

2(N−2)
.

If |b|⩽ 1
10 , we use the fact that F is C2 outside the origin. Therefore, there exists

d2∈[b1, d1] (or [d1, b1]) such that

F ′(b1)−F ′(d1)=F ′′(d2)(d1−b1).

Since 1
2⩽d2⩽2, we have |F ′′(d2)|≲1, and we obtain, by the triangle inequality,

|b1−d1|⩽ |b1−(1+b)|+|d1−1|+|b|⩽ |c|+|b|,
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which yields

|G(b, c)|= |F ′′(d2)(b1−d1)c|⩽ |c|(|c|+|b|),

yielding (A.27), since |c|⩽|b|⩽ 1
10 and

N+2

2(N−2)
< 1.

Case 2. (|c|⩾|b|) The same proof as in the preceding case, inverting b and c, yields

|G(b, c)|≲ (1+|b|+|c|)4/(N−2)|b|,

and, if |c|⩽ 1
10 ,

|G(b, c)|⩽ |b|(|c|+|b|).

Using that
4

N−2
<

N+2

2(N−2)
< 1,

we obtain (A.27).

Proof of (A.25) in the case N=5. By homogeneity, we may assume a=1, and we

are thus reduced to prove, with the same notation G(b, c) as before,

|G(b, c)|≲ |b| |c|(1+|b|+|c|)1/3.

The inequality is symmetric in (b, c) and we may assume |b|⩾|c|. Again, we use that

there exist b1 and d1 such that (A.28) and (A.29) hold. Since F is of class C2, we also

know that there exists d2∈[b1, d1] (or [d1, b1]) such that

F ′(b1)−F ′(d1)=F ′′(d2)(d1−b1).

We have |d1−b1|≲|b|+|c|≲|b| and |F ′′(d2)|≲(1+|b|+|c|)1/3, and thus

|G(b, c)|= |F ′′(d2)(d1−b1)c|≲ |c| |b|(1+|b|+|c|)1/3.

Appendix B. Choice of the scaling parameters

Lemma B.1. Let J⩾1. There exists a small constant εJ>0 and a large constant

CJ>0, with the following property. For all ε∈(0, εJ), for all µ=(µj)j∈(0,∞)J with

µJ<µJ−1<...<µ1 such that γ(µ)<ε, for all (ιj)j∈{±1}J and for all f∈Ḣ1 such that∥∥∥∥f− J∑
j=1

ιjW(µj)

∥∥∥∥
Ḣ1

⩽ ε,
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there exists a unique λ∈(0,∞)J such that

max
1⩽j⩽J

∣∣∣∣λj

µj
−1

∣∣∣∣⩽CJε

and ∫
∇
(
f−

J∑
j=1

ιjW(λj)

)
·∇(ΛW )(λj) =0 for all j ∈ J1, JK.

Furthermore, the map f 7!λ is of class C1.

Remark B.2. Let us mention that∥∥∥∥ J∑
j=1

ιjW(λj)−
J∑

j=1

ιjW(µj)

∥∥∥∥
Ḣ1

⩽CJε

(see the computation in the proof below) and that γ(λ)≈γ(µ).

Sketch of proof. This is standard and follows from the implicit function theorem.

However, we have to check that the uniformity of the constant with respect to µ stated

in the lemma follows from the proof.

We fix µ and f such that

γ(µ)<ε and

∥∥∥∥f− J∑
j=1

ιjW(µj)

∥∥∥∥
Ḣ1

<ε.

We consider

Φ: (0,∞)J −!RJ , Φ=(ϕℓ)1⩽ℓ⩽J ,

defined by

Φℓ(λ)=λℓ−
1∫

|∇ΛW |2
µℓιℓ

∫
∇
(
f−

J∑
j=1

ιjW(λj)

)
·∇(ΛW(λℓ)).

We will prove that Φ is a contraction of the compact set:

Bη =

{
(λj)1⩽j⩽J : max

ℓ

∣∣∣∣1− λℓ

µℓ

∣∣∣∣⩽ η

}
,

where

η=MJε

for a large positive MJ to be specified. Choosing ε small enough, we have that λ∈B(η)

implies that
1

2
⩽

λj

µj
⩽

3

2
for all j.
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If j ̸=ℓ, we have

∂Φℓ

∂λj
(λ)=−ιjιℓ

µℓ

λj

1∫
|∇ΛW |2

∫
∇(ΛW(λj))·∇(ΛW(λℓ)).

Since by Claim A.1, we have∣∣∣∣∫ ∇(ΛW(λj))·∇(ΛW(λℓ))

∣∣∣∣≲max

{(
λℓ

λj

)3/2
,

(
λj

λℓ

)3/2}
,

we deduce that ∣∣∣∣∂Φℓ

∂λj
(λ)

∣∣∣∣≲ µℓ

µj
ε3/2. (B.1)

Moreover,

∂Φℓ

∂λℓ
(λ)= 1−µℓ

λℓ
+

1

λℓ

∫
|∇ΛW |2

ιℓ

∫
∇
(
f−

J∑
j=1

ιjW(λj)

)
·∇(ΛΛW(λℓ)),

and thus∣∣∣∣∂Φℓ

∂λℓ
(λ)

∣∣∣∣≲ ∣∣∣∣1−µℓ

λℓ

∣∣∣∣+∥∥∥∥f− J∑
j=1

ιjW(µj)

∥∥∥∥
Ḣ1

+

∥∥∥∥ J∑
j=1

ιjW(µj)−ιjW(λj)

∥∥∥∥
Ḣ1

≲ η+ε, (B.2)

where we have used∫
|∇(W(λj)−W(µj))|

2 =

∫ ∣∣∣∣(µj

λj

)N/2

∇W

(
µj

λj
x

)
−∇W (x)

∣∣∣∣2 dx
≲ η2+

∫ ∣∣∣∣∇W

(
µj

λj
x

)
−∇W (x)

∣∣∣∣2 dx
≲ η2+

∫ +∞

0

(
r−µj

λj
r

)2
rN−1

(1+rN )2
dr≲ η2,

since

|∇W (r)−∇W (ρ)|≲ |r−ρ|
1+rN

, r≈ ρ.

Furthermore, ∣∣∣∣ 1µℓ
Φℓ(µ)−1

∣∣∣∣≲ ε. (B.3)

Combining (B.1)–(B.3), we see that, if λ∈Bη,∣∣∣∣ 1µℓ
Φℓ(λ)−1

∣∣∣∣≲ ε+(η+ε)η.

This proves that, if η=MJε for some large constant MJ , and ε⩽εJ≪M−1
J , Φ maps

Bη into Bη. By (B.1) and (B.2), Φ is a contraction of Bη. By the Banach fixed point

theorem, there exists a unique λ∈Bη such that Φ(λ)=λ, which exactly means that it

satisfies the desired orthogonality conditions. The fact that f 7!λ is C1 is classical and

we omit the proof.
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