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1. Introduction

Since our main theorem (Theorem 1.1 below) can be stated without the need to recall any

specialized background, we will start by formulating it. After doing so, we will explain

its significance and context, as well as geometric applications that answer longstanding

open questions. We will then describe our main conceptual contribution, called a foliated

corona decomposition, which is a new structural methodology that we introduce in the

proof of this theorem; see Remark 1.2 and mainly §1.2 for an overview.

For a smooth function f :R3
!R define Xf,Yf :R3

!R by setting, for h=(x, y, z)∈
R3,

Xf(h)
def
=
∂f

∂x
(h)+

1

2
y
∂f

∂z
(h) and Yf(h)

def
=
∂f

∂y
(h)− 1

2
x
∂f

∂z
(h). (1.1)
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Also, for t∈(0,∞), define Dt
vf :R3

!R by setting, for h=(x, y, z)∈R3,

Dt
v(h)

def
=
f(x, y, z+t)−f(h)√

t
. (1.2)

Theorem 1.1. Every compactly supported smooth function f :R3
!R satisfies(1)(ˆ ∞

0

(ˆ
R3

|Dt
vf(h)| dh

)4
dt

t

)1/4
≲
ˆ
R3

(|Xf(h)|+|Yf(h)|) dh. (1.3)

Also, one cannot replace the L4(dt/t) norm above by an Lq(dt/t) norm for any 0<q<4.

The second assertion (sharpness) of Theorem 1.1 resolves negatively the conjecture

of [58] that (1.3) holds with the L4(dt/t) norm in the left-hand side replaced by the

L2(dt/t) norm. Notwithstanding the optimality of (1.3), it should be noted that it was

previously unknown whether such a bound holds true merely for some finite exponent,

namely that there exists 0<p<∞ such that, in the setting of Theorem 1.1, we have(ˆ ∞

0

(ˆ
R3

|Dt
vf(h)| dh

)p
dt

t

)1/p
≲
ˆ
R3

(|Xf(h)|+|Yf(h)|) dh. (1.4)

It is simple to justify (see [91, Remark 4]) that if (1.4) holds, then the analogous bound

holds for any larger exponent P>p.

Remark 1.2. To briefly indicate what goes into Theorem 1.1, we first note that

the functional inequality (1.3) is equivalent to a certain isoperimetric-type inequality

(see (1.31)) for sufficiently smooth surfaces in R3. By [91], it turns out that it suffices to

prove this isoperimetric-type inequality for a more restricted class of surfaces (intrinsic

Lipschitz graphs; see §2.2). Such surfaces can still be very complicated, as one can see in

Figure 1. However, notice that the example in Figure 1 has an anisotropic texture, with

features of many different scales that line up along a 1-dimensional foliation.

We prove the desired isoperimetric-type inequality by showing that the texture of

any intrinsic Lipschitz graph can be encoded as a foliated corona decomposition, which

is a multi-scale hierarchical partition of the surface. The pieces of this decomposition are

roughly rectangular regions that mimic the dimensions and orientation of the features

of the surface. Crucially, we can control the number and size of these pieces. The

desired inequality holds locally on each piece up to suitably controlled error, and the full

inequality is obtained by summing the resulting estimates. This process is illustrated in

Figures 2 and 3, and a more detailed overview can be found in §1.2.

(1) We will use throughout the following (standard) asymptotic notation. For a, b∈(0,∞), the
notation a≲b and b≳a mean that a⩽Cb for some universal constant C∈(0,∞). The notation a≍b stands

for (a≲b)∧(b≲a). If we need to allow for dependence on parameters, we indicate this by subscripts. For

example, in the presence of an auxiliary parameter q, the notation a≲q b means that a⩽C(q)b, where
C(q)∈(0,∞) is allowed to depend only on q, and analogously for the notation a≳q b and a≍q b.
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Figure 1. An example of an intrinsic Lipschitz graph.

In contrast to Theorem 1.1, we have the following theorem, the case p=2 of which

is due to [4] and the case p∈(1, 2] of which is due (via a different proof) to [58].

Theorem 1.3. Let f :R3
!R be smooth and compactly supported. Then, for every

p∈(1, 2],(ˆ ∞

0

(ˆ
R3

|Dt
vf(h)|p dh

)2/p
dt

t

)1/2
≲

1√
p−1

(ˆ
R3

(|Xf(h)|p+|Yf(h)|p) dh
)1/p

. (1.5)

See [58] for a variant of Theorem 1.3 when p>2. The pertinent point of comparison

to (1.3) is as p!1+, namely there is a jump discontinuity at the endpoint p=1.

It should be noted that the dependence on p in the right-hand side of (1.5) is not

specified in [58], but one obtains (1.5) in the form stated above by tracking the dependence

on p in the proof of [58]; we explain how to do so in Appendix A below. We conjecture

that the following bound holds, which is better than (1.5) only in terms of the dependence

on p; its geometric ramifications will be derived later (see Remark 1.15), at which point

it will become clear why we need to record an explicit (power-type) dependence as p!1+

in (1.5), rather than using the implicit ≲p notation as done in [58].
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Conjecture 1.4. In the setting of Theorem 1.3, we have(ˆ ∞

0

(ˆ
R3

|Dt
vf(h)|p dh

)2/p
dt

t

)1/2
≲

1
4
√
p−1

(ˆ
R3

(|Xf(h)|p+|Yf(h)|p) dh
)1/p

. (1.6)

Another key point of comparison between Theorem 1.1 and the literature is with its

higher-dimensional counterpart due to [91]. For a smooth function f :R5
!R, denote in

analogy to (1.1) and (1.2) for every h=(x1, y1, x2, y2, z)∈R5 and t∈(0,∞),

X1f(h)
def
=

∂f

∂x1
(h)− 1

2
y1
∂f

∂z
(h), X2f(h)

def
=

∂f

∂x2
(h)− 1

2
y2
∂f

∂z
(h),

Y1f(h)
def
=

∂f

∂y1
(h)+

1

2
x1
∂f

∂z
(h), Y2f(h)

def
=

∂f

∂y2
(h)+

1

2
x2
∂f

∂z
(h),

and

Dt
v(h)

def
=
f(x1, y1, x2, y2, z+t)−f(h)√

t
.

We then have the following theorem (it holds with R5 replaced mutatis mutandis by R2k+1

for every k⩾2; we are focusing only on R5, because the crucial qualitative difference that

we establish here is between dimension 3 and all the larger odd dimensions).

Theorem 1.5. Let f :R5
!R is smooth and compactly supported. Then, for every

p∈[1, 2], (ˆ ∞

0

(ˆ
R5

|Dt
vf(h)|p dh

)2/p
dt

t

)1/2
≲

(ˆ
R5

(|X1f(h)|p+|Y1f(h)|p+|X2f(h)|p+|Y2f(h)|p) dh
)1/p

.

(1.7)

The case p=2 of Theorem 1.5 is from [4], and in the range p∈(1, 2] the bound (1.7)

but with ≲ replaced by ≲p is from [58]. The case p=1 of Theorem 1.5 is from [91].

Inequality (1.7) as stated above, i.e., with the right-hand side multiplied by a universal

constant rather than a constant that depends on p as in [58], follows by interpolating

between the cases p=1 and p=2 of [91] and [4], respectively. Indeed, (1.7) asserts the

boundedness of a linear operator, the L2(Lp) norms in the left-hand side of (1.7) are an

interpolation family by classical interpolation theory [11], and the Sobolev W 1,p norms

in the right-hand side of (1.7) are an interpolation family by [5, Theorem 8.8].

1.1. Geometric implications

Let H be the 3-dimensional Heisenberg group with real coefficients. As a set, H is

identified with R3, and the group structure on H is given by

gh
def
=
(
x+χ, y+υ, z+ζ+ 1

2 (xυ−yχ)
)

for all g=(x, y, z), h=(χ, υ, ζ)∈R3. (1.8)
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The identity element is 0=(0, 0, 0) and the inverse of g=(x, y, z) is g−1=(−x,−y,−z).
The center of H is {0}×{0}×R and if we let HZ be the discrete subgroup of H that is

generated by (1, 0, 0) and (0, 1, 0), then we have

HZ =
{(
x, y, z+ 1

2xy
)
:x, y, z ∈Z

}
⊆Z×Z× 1

2Z.

Let dW :HZ×HZ!N∪{0} be the left-invariant word metric on HZ that is induced by

the symmetric set of generators {(−1, 0, 0), (1, 0, 0), (0,−1, 0), (0, 1, 0)}. It is well known
(and elementary to verify) that, for every g=(x, y, z), h=(χ, υ, ζ)∈HZ, we have

dW (g, h)≍ |x−χ|+|y−υ|+
√

|2z−2ζ−xυ+yχ|. (1.9)

In fact, an exact formula for dW (g, h), which directly implies (1.9), is derived in [13]. For

every n∈N, denote the word-ball of radius n centered at the identity element by

Bn
def
= {g ∈HZ : dW (g,0)⩽n}. (1.10)

1.1.1. Embeddings

Recall that a metric space (M,dM ) is said to admit a bi-Lipschitz embedding into a

Banach space (X, ∥ · ∥X) if there exist D∈[1,∞) and ϕ:M!X such that

dM (x, y)⩽ ∥ϕ(x)−ϕ(y)∥X ⩽DdM (x, y) for all x, y ∈M. (1.11)

The infimum over those D∈[1,∞) for which this holds is called the X-distortion of M

and is denoted by cX(M). If no such D exists, then one writes cX(M)=∞.

Theorem 1.6 below is a sharp asymptotic evaluation of cℓ1(Bn). It answers a question
posed in [63], [20]–[23], [81], [96], [58]; these references ask for the asymptotic evalua-

tion of cℓ1(Bn), but most of them also conjecture that cℓ1(Bn)≍
√
log n, so Theorem 1.6

constitutes both a resolution of an open problem, and an unexpected answer. The fact

that limn!∞ cℓ1(Bn)=∞ is due to [20], the previously best known upper bound [3] was

cℓ1(Bn)≲
√
log n and the previously best-known lower bound [23] was cℓ1(Bn)⩾(log n)δ

for some positive but very small universal constant δ; thus both the upper and the lower

bounds of Theorem 1.6 are new.

Theorem 1.6. cℓ1(Bn)≍ 4
√
log n for every integer n⩾2.

In contrast, the word-ball of radius n⩾2 in the 5-dimensional Heisenberg group has

ℓ1-distortion of order
√
log n; this was proved in [91] using Theorem 1.5.

The statement of Theorem 1.6 has two parts. While the lower bound

cℓ1(Bn)≳
4
√

log n
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is framed above as a “negative result” (impossibility of embedding), it encapsulates a

“positive result,” namely the aforementioned new structural information on surfaces in H,

to which most of this article is devoted. The upper bound

cℓ1(Bn)≲
4
√
log n

is a “positive result,” namely a new geometric realization of Bn, but we will soon see

that it has ramifications for counterexamples to natural geometric questions.

The estimate (1.3) of Theorem 1.1 implies the lower bound cℓ1(Bn)≳ 4
√
log n. In

fact, such vertical-versus-horizontal Poincaré inequalities were originally envisaged as

obstructions to embeddings of Bn into various spaces; see [4], [86], [58], [90], and most

pertinently §3 of [91], where we treated such matters in greater generality than what is

needed here; in particular, for any p⩾1, if every compactly supported smooth function

f :R3
!R satisfies the inequality(ˆ ∞

0

(ˆ
R3

|Dt
vf(h)| dh

)p
dt

t

)1/p
≲
ˆ
R3

(|Xf(h)|+|Yf(h)|) dh, (1.12)

then by [91, § 3] and the reasoning in [91, § 1.3] we have cℓ1(Bn)≳(log n)1/p.

Thus, cℓ1(Bn)≳ 4
√
log n, since Theorem 1.1 asserts that (1.12) holds for p=4. This

also demonstrates that the matching upper bound cℓ1(Bn)≲ 4
√
log n of Theorem 1.6 im-

plies the second assertion of Theorem 1.1, namely the optimality of the L4(dt/t) norm

in the left-hand side of (1.3). Here we prove the following more refined embedding

statement which we formulate as a separate theorem because it has further noteworthy

applications.

Theorem 1.7. For every ϑ⩾ 1
4 and every integer n⩾2 there exists ϕ=ϕn,ϑ:HZ!ℓ1

with respect to which every two points g=(x, y, z), h=(χ, υ, ζ)∈HZ with dW (g, h)⩽2n

satisfy

∥ϕ(g)−ϕ(h)∥ℓ1 ≍ |x−χ|+|y−υ|+
√
|2z−2ζ−xυ+yχ|

(log n)ϑ
. (1.13)

By (1.9) and the case ϑ= 1
4 of Theorem 1.7, the following weakening of (1.13) holds.

dW (g, h)
4
√
log n

≲ ∥ϕ(g)−ϕ(h)∥ℓ1 ≲ dW (g, h) for all g, h∈Bn.

So, the upper bound cℓ1(Bn)≲ 4
√
log n of Theorem 1.6 follows from Theorem 1.7. However,

Theorem 1.7 is of further use thanks to the following embedding result of [57]. At

present, the fact that both our embedding and that of [57] yield the same expression (up

to universal constant factors) for the metric in the image seems to be a fortunate and

consequential coincidence; it would be valuable, if possible, to explain conceptually why

those formulas coincided (e.g. is this inevitable due to underlying symmetries?).
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Theorem 1.8. For any p>2, any ϑ⩾1/p and any integer n⩾2 there is

ψ=ψn,p,ϑ:HZ −! ℓp

such that every g=(x, y, z), h=(χ, υ, ζ)∈HZ with dW (g, h)⩽2n satisfy

∥ψ(g)−ψ(h)∥ℓp ≍ |x−χ|+|y−υ|+
√
|2z−2ζ−xυ+yχ|

(log n)ϑ
. (1.14)

Theorem 1.8 is not formulated explicitly in [57], but it is a direct consequence of

[57, Lemma 3.1] combined with the finite-determinacy theorem of [93], which together

imply that, for every ε∈(0, 12 ], there exists an embedding σ=σε,p:H!ℓp for which every

g=(x, y, z), h=(χ, υ, ζ)∈HZ satisfy

∥σ(g)−σ(h)∥ℓp ≍ |x−χ|1−ε+|y−υ|1−ε+ε1/p|2z−2ζ−xυ+yχ|(1−ε)/2. (1.15)

(Without reference to [93], Lemma 3.1 in [57] asserts the existence of such an embedding

into Lp rather than into ℓp.) To derive Theorem 1.8 from (1.15), let π:H!R be the map

that is given by setting π(x, y, z)=(x, y) for (x, y, z)∈H and choose

ε=
1

log n
and ψ=

σ

(log n)ϑ−1/p
⊕π:HZ −! ℓp⊕R2 ∼= ℓp. (1.16)

1.1.2. Aspects of the Ribe program

Inspired by a fundamental rigidity theorem of [102] and first put forth in [16], the Ribe

program is a web of conjectures and analogies whose goal is to transfer linear phenomena

in the geometry of Banach spaces to questions about metric spaces, where Lipschitz

mappings take the role of bounded linear operators; see e.g. the surveys [51], [82], [7],

[94], [84]. We will next explain how the above results answer natural questions in this

area.

Theorem 1.9 below follows from Theorems 1.7 and 1.8, and from [4], [58]. It an-

swers a longstanding question in metric embedding theory; even though (to the best

of our knowledge) this question never appeared in published(2) texts, it was a folklore

open problem. To briefly explain the context, the classical work [50] (together with a

differentiation argument of [68]) implies that, for 1⩽p<r<q<∞, if a Banach space X

admits a bi-Lipschitz embedding into both Lp and Lq, then X also admits a bi-Lipschitz

(2) We have seen it appear in writing only in grant proposals, and it was posed verbally among

experts. In particular, we are indebted to Gideon Schechtman for valuable discussions on this matter
over the years.
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embedding into Lr. The case r=2 of this statement is that if X embeds into Lp for two

finite values of p that lie on both sides of 2, then X must embed into (hence, by [31],

be linearly isomorphic to) a Hilbert space; a different proof of the latter statement, as

a special case of a much more general phenomenon, follows from [54]. In light of these

facts about the geometry of Banach spaces, one is naturally led to ask if a metric space

M that embeds bi-Lipschitzly into Lp for two finite values of p that lie on both sides of

2 must admit a bi-Lipschitz embedding into a Hilbert space.

Theorem 1.9. For any 2<p⩽4 there is a metric space M that admits a bi-Lipschitz

embedding into ℓ1 and into ℓr for all r⩾p, yet M does not admit a bi-Lipschitz embedding

into Lq for any 1<q<p. More generally, M does not admit a bi-Lipschitz embedding

into a Banach space whose modulus of uniform convexity has power type q, for 2⩽q<p.

For the statement of Theorem 1.9, recall that a Banach space (X, ∥ · ∥) has modulus

of uniform convexity of power type q if there is C>0 such that the sharpened triangle

inequality ∥x+y∥⩽2−C∥x−y∥q holds for any unit vectors x, y∈X. By [24], [42], for

1<q<∞ any Lq(µ) space has modulus of uniform convexity of power type max{q, 2}.

Proof of Theorem 1.9 assuming Theorems 1.7 and 1.8. For every n∈N, we define

Mn=ϕn,ϑ(Bn)⊆ℓ1, where ϕn,ϑ is as in Theorem 1.7 applied with ϑ=1/p⩾ 1
4 .

By considering the union of sufficiently widely-spaced translations in ℓ1 of the finite

sets {Mn}∞n=1, we see that there is M⊆ℓ1 such that supn∈N cM (Mn)<∞.

For every r⩾p, consider ψn,r,ϑ(Bn)⊆ℓr, where ψn,r,ϑ is as in Theorem 1.8. The-

orems 1.7 and 1.8 show that ψn,r,ϑ(Bn) is bi-Lipschitz equivalent with O(1) distortion

to Mn. Hence, by considering a suitable union of translations in ℓr of the finite sets

{ψn,r,ϑ(Bn)}∞n=1, we see that cℓr (M)<∞. Let X be a Banach space whose modulus of

uniform convexity has power type q, for 2⩽q<p. By [58], we have

(log n)1/q ≲X cX(Bn)≲ (log n)ϑcX(Mn)= (log n)1/pcX(Mn),

where the penultimate step holds because, due to (1.13), Mn and Bn are bi-Lipschitz

equivalent with distortion O((log n)ϑ). Therefore, since q<p,

cX(Mn)≳X (log n)1/q−1/p−−−−!
n!∞

∞.

Hence, cX(M)=∞, as required. For future reference we record in passing that we ob-

tained the following bound when X=Lq and 1<q<p:

cLq (Mn)≳q (log n)
1/max{q,2}−1/p. (1.17)

Note that the bound in [4], which is asymptotically weaker than that of [58], suffices

for the qualitative conclusion cX(M)=∞ of Theorem 1.9. The above estimates seem to
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be the best that one could achieve using available methods; it would be very interesting

to determine the optimal behavior, e.g. if an n-point metric space W embeds with O(1)

distortion into ℓ1 and also into ℓp for some p>2, how large can cℓ2(W ) be?

Remark 1.10. With more care, it is possible to ensure that the metric space M of

Theorem 1.9 is a left-invariant metric δ=δp on HZ; see Theorem 3.2. Concretely, for

p=4, the metric δ4 can be taken to satisfy the following bounds for any (a, b, c)∈HZ with

|c|⩾3:

δ4(0, (a, b, c))≍ |a|+|b|+
√
|c|

4
√
log |c|·(log log |c|)2

.

By the reasoning in [87, §9], since HZ is amenable, it follows that (HZ, δ) admits a bi-

Lipschitz embedding into L1 and Lr, for all r⩾p, which is also equivariant (with respect

to an action of HZ on, respectively, L1 and Lp by affine isometries); we did not investigate

if this holds for equivariant embeddings into the sequence spaces ℓ1 and ℓr.

The natural question how the embeddability of a group into Lp depends on p was

also studied in the literature; see [18], [25], and especially the recent solution of this

question in [69], where it is proved that the phenomenon of Theorem 1.9 does not hold

for equivariant coarse embeddings (namely, for such embeddings the corresponding set of

p is always an interval). Note that for coarse embeddings that need not be equivariant,

the statement of [69] was previously known as a direct consequence of [74, Remark 5.10]

(from here, using [87], one gets the full equivariant statement of [69] for amenable groups).

Theorem 3.2 shows that the situation is markedly different if one considers bi-Lipschitz

embeddings rather than coarse embeddings.

The following question arises naturally from Theorem 1.9 and seems quite difficult.

Question 1.11. For a metric space M , how complicated can the following set be?

{1⩽ p<∞ : cLp(M)<∞}.

Theorem 1.9 leaves the possibility that there is better behavior in the reflexive range,

i.e., that if a metric space M embeds bi-Lipschitzly into ℓp and ℓq for 1<q<2<p<∞,

then M embeds bi-Lipschitzly into a Hilbert space. If true, this would be an excellent

theorem, but due to Theorem 1.9 we speculate that the answer is negative. A substantial

new idea seems to be needed here. Less ambitiously, does the above assumption (even

allowing q=1) imply that M embeds into a Hilbert space with finite average distortion

(see [85] for the relevant definition)? Does this imply that every n-point subset of M

embeds into a Hilbert space with bi-Lipschitz distortion o(log n), i.e., asymptotically

better than the distortion that is guaranteed by the general embedding theorem of [15]?
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The above reasoning also leads to Theorem 1.12 below, which answers another nat-

ural question arising in the Ribe program, on the factorization of Lipschitz functions.

We first briefly make preparatory observations that will be also useful elsewhere.

Recall that for K∈N a metric space X is said to be K -doubling if, for every r>0, any

ball B⊆X of radius r can be covered by K balls of radius 1
2r. A metric space X is said

to be doubling if it is K -doubling for some K∈N. The metric space M of Theorem 1.9

can be taken to be doubling. Indeed, fix p>2 and n∈N. As in the proof of Theorem 1.9,

write ϑ=1/min{p, 4}. It was shown in [57] that ψn,p,ϑ(HZ) is a O(1)-doubling subset of

ℓp. Let S⊆ℓp be the disjoint union of translates in ℓp of the finite sets {ψn,p,ϑ(Bn)}∞n=1

that are sufficiently widely-spaced so as to ensure that S is a doubling subset of ℓp,

and supn∈N cS(Mn)<∞. As in the proof of Theorem 1.9, using Theorem 1.7 we get an

embedding φ:S!ℓ1 satisfying

∥φ(x)−φ(y)∥ℓ1 ≍∥x−y∥ℓp

for all x, y∈S. Thus, φ(S)=M is a doubling subset of ℓ1.

Since S is doubling, by [62] we can extend φ to a Lipschitz function f : ℓp!ℓ1. If

there were Lipschitz mappings g: ℓp!ℓ2 and h: g(ℓp)!ℓ1 such that f=h�g, then it would

follow that, for all x, y∈S,

∥x−y∥ℓp ≍∥φ(x)−φ(y)∥ℓ1 = ∥h(g(x))−h(g(y))∥ℓ1 ≲ ∥g(x)−g(y)∥ℓ2 ≲ ∥x−y∥ℓp .

Therefore, g�φ−1 would be a bi-Lipschitz embedding of M into ℓ2, which we proved

above was impossible. We thus arrive at the following statement.

Theorem 1.12. For any 2<p<∞ there is a Lipschitz mapping f : ℓp!ℓ1 that cannot

be factored through a subset of a Hilbert space using Lipschitz mappings. Namely, there

do not exist Lipschitz mappings g: ℓp!ℓ2 and h: g(ℓp)!ℓ1 such that f=h�g. More

generally, f cannot be factored using Lipschitz mappings through a subset of a Banach

space whose modulus of uniform convexity has power type q for 2⩽q<min{4, p}.

By [66, Theorem 5.2], for p⩾2 any linear operator from ℓp to ℓ1 factors through ℓ2

(the factorization is via linear operators, though by [46] this is equivalent to factorization

using Lipschitz functions as above). Theorem 1.12 demonstrates that there is no analogue

of this factorization phenomenon for Lipschitz mappings.

Such investigations arose in the Ribe program in the seminal work [45], which had

a major influence on the subsequent fruitful efforts by many mathematicians in search

of metric analogues of the extension and factorization paradigm of [72]. This search is

itself intimately intertwined with the search for metric theories of type and cotype.
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We refer to the survey [73] for an exposition of the powerful and deep theory of

type and cotype of Banach spaces; it suffices to say here that one can define linear

invariants of Banach spaces that are called type 2 and cotype 2, such that Lp has type 2 if

2⩽p<∞ and cotype 2 if 1⩽p⩽2, and such that the following extension and factorization

phenomenon [72] holds.

Suppose that Y is a Banach space of type 2 and that Z is a Banach space of cotype 2.

Let X be a linear subspace of Y , and let τ :X!Z be a bounded linear operator. Then,

there exist a bounded linear operator T :Y!Z that extends τ , a Hilbert space H and

bounded linear operators A:Y!H and B:A(Y )!Z with T=BA.

Paper [45] raised the question of when the analogous statement holds in the metric

setting. Namely, now Y and Z are metric spaces, X is an arbitrary subset of Y , f :X!Z

is a Lipschitz mapping, and we ask for the same extension and factorization through a

Hilbert spaceH, i.e., to establish the existence of Lipschitz mappings F :Y!Z, α:Y!H,

and β:α(Y )!Z, such that the following diagram commutes:

Y
α //

F

  

α(Y ) �
� ⊆

//

β

��

H

X
?�

⊆

OO

f
// Z.

(1.18)

An implicit but central part of this endeavor encompasses the important issue of how to

define useful notions of type 2 and cotype 2 for metric spaces so that, at the very least,

ℓp has type 2 for 2⩽p<∞ and cotype 2 for 1⩽p⩽2. Clearly (1.18) has two components.

The first is if f admits the Lipschitz extension F . The second is if F can be factored

through a subset of a Hilbert space. While these questions come hand-in-hand in the

linear theory of [72] (see also [98]), they are different issues in the metric setting.

The main focus of [45] was the Lipschitz extension problem, so it highlighted the first

component above. At the time, the metric version of the extension problem was a bold

and speculative question, but [6] introduced metric notions of type 2 and cotype 2 and

obtained a powerful extension result for maps from spaces of Markov type 2 to spaces of

Markov cotype 2. Combined with [88], this provides a quite satisfactory understanding

of the extension component of (1.18) when the target space is ℓp, 1<p<2. However,

this understanding is currently confined to the reflexive range, and the question remains

a major open problem when the target space is ℓ1 (see [52], [77] for a partial negative

answer, and [67] for an intriguing algorithmic reformulation).

In contrast to the achievement of [6], Theorem 1.12 demonstrates that there is no way

to define notions of type 2 and cotype 2 for metric spaces so that any map from a space

of type 2 to a space of cotype 2 factors through Hilbert space and such that ℓp has type 2
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when 2<p<∞ and cotype 2 when p=1. Though this resolves the factorization question

when the target is ℓ1, it remains a fascinating open problem to see if a factorization

theory analogous to [6] can be developed when the target is ℓq for 1<q<2.

It is instructive to examine the dual interpretation of Theorem 1.12. Just as the dual

formulation of the linear factorization and extension problems was key to [72], duality

also plays an important role in the non-linear theory. The duality lemma that was found

in [6] for Lipschitz extension(3) does not shed light on Lipschitz factorization, but the

factorization issue was broached in [32], [19]. One can deduce from [19] the following

factorization criterion. Given Φ>0, metric spaces (X, dX) and (Z, dZ), and f :X!Z,

there exist a Hilbert space H and a factorization f=β�α for some Lipschitz mappings

α:X −!H and β:α(X)−!Z

with ∥α∥Lip ∥β∥Lip⩽Φ if and only if, for all n∈N and x1, ..., xn∈X, any two symmet-

ric stochastic matrices A=(aij),B=(bij)∈Mn(R) such that A−B is positive semidefinite

satisfy the following quadratic inequality:

n∑
i=1

n∑
j=1

aijdZ(f(xi), f(xj))
2 ⩽Φ2

n∑
i=1

n∑
j=1

bijdX(xi, xj)
2. (1.19)

Theorem 1.12 yields the first example of a Lipschitz mapping f : ℓp!ℓ1 for 2<p<∞ that

fails to satisfy (1.19) for any Φ>0, despite the fact that if f were a linear operator, then

by [72] it would automatically satisfy (1.19) with Φ≲p∥f∥Lip.

Remark 1.13. Another counterexample to the non-linear version of [72] arises from

an embedding of the Laakso graphs into a non-classical Banach space. Let {Λn}∞n=1 be

the Laakso graphs [55], [56], indexed so that |Λn|=n; these are series-parallel (hence

planar) graphs that are O(1)-doubling when equipped with their shortest-path metric.

On one hand, the Laakso graphs do not admit a bi-Lipschitz embedding into a

Hilbert space. In fact, by [55], [59], we have cℓ2(Λn)≳
√
log n (this is sharp by the general

embedding theorem of [101]). Moreover, by [75], for every uniformly convex Banach

space X we have limn!∞ cX(Λn)=∞.

On the other hand, by [41], we have supn∈N cℓ1(Λn)<∞, and by [47], we have

supn∈N cY (Λn)<∞ when Y is a Banach space that is not reflexive. By considering

(3) Quoting what [6] says about this crucial duality step: “This lemma is a variant of one used by

Maurey. A related lemma was found earlier by Johnson, Lindenstrauss and Schechtman: their result
actually characterises extensions which factor through subsets of Hilbert space, a problem much closer to

Maurey’s argument. Their lemma provided much of the stimulus for the present work.” Unfortunately,

it seems that the work of Johnson, Lindenstrauss and Schechtman that is mentioned in [6] was never
published.



68 a. naor and r. young

translates of the images of the embeddings in ℓ1 that are sufficiently widely spaced, we

obtain a doubling subset Λ⊆ℓ1 such that cY (Λ)<∞ for any non-reflexive Banach space

Y and cX(Λ)=∞ for any uniformly convex Banach space X.

By [44], there exists a Banach space J that has type 2, yet J is not reflexive; a different
construction of such a Banach space was found in [100]. So, Λ embeds bi-Lipschitzly into

both the cotype-2 space ℓ1 and the type-2 space J, yet not into a Hilbert space. This

is impossible in the linear setting; by [54] a Banach space of type 2 and cotype 2 is

isomorphic to a Hilbert space (this is a far reaching generalization of the aforementioned

consequence of [50] that motivates Theorem 1.9). This reasoning also produces a stronger

asymptotic estimate than (1.17), since cℓ2(Λn)≳
√
log n, but it cannot shed light on the

ℓp setting of (1.17), because it relies precisely on the non-reflexivity of J (through the

use of [47]) to deduce that supn∈N cJ(Λn)<∞.

The Laakso graphs also lead to a counterexample to the metric version of [72]. Let

φ: Λ!J be a bilipschitz embedding. Since Λ is a doubling subset of ℓ1, one can use [62]

to construct a Lipschitz map f : ℓ1!J that extends φ. As above, f cannot factor through

a Hilbert space (or even through any uniformly convex Banach space X) by Lipschitz

maps, because such a factorization would produce a bilipschitz embedding of Λ into a

Hilbert space (respinto X).

This discussion shows that if one is allowed to replace ℓp in Theorems 1.9 and 1.12

by non-classical (indeed, “exotic” and hard to come by) Banach spaces such as J, then it

is possible to demonstrate the failure of the metric space version of [72] and its important

precursor [54] using well-known examples.

Part of the impetus for the search for definitions of metric space notions of type 2

and cotype 2 was the hope of obtaining a metric version of the theorem of [54], but it

was well known to experts that the metric definitions of type 2 and cotype 2 found over

the past decades are not suitable for this purpose (see e.g. the discussion in [30]). The

above discussion demonstrates conclusively that it is impossible to define metric space

notions of type 2 and cotype 2 that are bi-Lipschitz invariant, pass to subsets, coincide

for Banach spaces with type 2 and cotype 2, and for which [54] holds for doubling metric

spaces, i.e., any doubling space that has both type 2 and cotype 2 admits a bi-Lipschitz

embedding into a Hilbert space (the corresponding statement with Λ replaced by a metric

space that is not doubling follows by using [16] instead of the Laakso graphs in the above

reasoning; in fact, by [9], the infinite binary tree embeds bilipschitzly into both ℓ1 and J,
but not into a Hilbert space). Theorem 1.9 shows that this is so, even if one restricts

attention to subsets of ℓp for p>2.
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1.1.3. Dimension reduction

By a highly influential lemma of [45], any finite subset S of a Hilbert space embeds with bi-

Lipschitz distortion O(1) into a k-dimensional Hilbert space for k≲log |S|; see [84] for an
indication of the significance of this statement. The question whether this phenomenon

holds with Hilbert space replaced by ℓ1 was a prominent open problem until it was

resolved negatively in [17], where it was shown that, for arbitrarily large n∈N, there is

an n-point subset Dn of ℓ1 such that, if Dn embeds with bi-Lipschitz distortion O(1) into

ℓk1 , then necessarily k⩾nc for some universal constant c>0. In [60] it was shown that Dn

can be taken to be O(1)-doubling, and in [89] it was shown that ℓk1 can be replaced by

an arbitrary k-dimensional subspace of the Schatten–von Neumann trace class S1; both

of these enhancements hold without changing the conclusion (other than perhaps values

of universal constants).

The examples {Dn}∞n=1 of [17] are the diamond graphs [92], while their aforemen-

tioned doubling counterparts in [60] are the Laakso graphs {Λn}∞n=1 that we discussed

in Remark 1.13. By [75] and [47], we have

sup
n∈N

cX(Dn)= sup
n∈N

cX(Λn)=∞

for every uniformly convex Banach spaceX. In fact, by [47] the converse of this statement

holds true (though we do not need it below), namely X admits an equivalent uniformly

convex norm if and only if supn∈N cX(Dn)=∞ or supn∈N cX(Λn)=∞. Theorem 1.14

below obtains new examples that demonstrate the failure of dimension reduction in ℓ1

à la [45], which are qualitatively different than the previously known examples, since

our examples do admit a bi-Lipschitz embedding into a uniformly convex Banach space

(specifically, into ℓp for any p>2). At present, this comes with a worse lower bound

on the target dimension, but see Remark 1.15 below which explains how Conjecture 1.4

would remedy this (for the very same example that we consider in Theorem 1.14).

Theorem 1.14. There is a universal constant c>0 with the following property. For

all n∈N and 2<p⩽4 there exists a O(1)-doubling subset Hn=Hn(p) of ℓ1 with |Hn|⩽n
such that

cℓq (Hn)≲ 1 for all q⩾ p,

and for every D⩾1, if X is a finite-dimensional subspace of the Schatten–von Neumann

trace class S1 for which cX(Hn)⩽D, then necessarily

dim(X)⩾ exp
( c

D2
(log n)1−2/p

)
. (1.20)
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In the statement of Theorem 1.14, recall that for p⩾1 the Schatten–von Neumann

trace class Sp is the Banach space of all the compact operators T : ℓ2!ℓ2 that satisfy

∥T∥Sp
def
=(Trace[(T ∗T )p/2])1/p<∞.

Note that ℓp is the subspace of Sp consisting of the diagonal operators. Thus, the dimen-

sion reduction lower bound (1.20) holds in particular for any subspace X of ℓ1.

The proof of Theorem 1.14 is short (modulo previously stated results and the avail-

able literature), so we present the quick derivation now instead of postponing it to a

later section; it mimics the reasoning of [61] while combining it with [58], Theorems 1.7

and 1.8, as well as structural information on subspaces of S1 from [89].

Proof of Theorem 1.14. By (1.9), we have |Bm|≍m4 for all m∈N. So, fix m∈N with

m≍ 4
√
n such that n≲|Bm|⩽n. Using the mapping ϕm,1/p:HZ!ℓ1 of Theorem 1.7, define

Hn
def
= ϕm,1/p(Bm).

By combining Theorems 1.7 and 1.8, we indeed have cℓq (Hn)≲1 for all q⩾p.

Let X be a finite-dimensional subspace of S1. Fix 1<r⩽2 whose value will be

specified later so as to optimize the ensuing reasoning. By [89, Theorem 12], we have(4)

cSr (X)⩽dim(X)1−1/r.

Hence, if cX(Hn)⩽D, then, since cHn(Bm)≲(log n)1/p by Theorem 1.7, we have

cSr (Bm)≲ (log n)1/pcSr (Hn)⩽ (log n)1/pDcSr (X)⩽ (log n)1/pD dim(X)1−1/r.

At the same time, by [58], we have(5)

cSr (Bm)≳
√
(r−1) log n,

so we conclude that

inf
1<r⩽2

dim(X)1−1/r

√
r−1

≳
(log n)1/2−1/p

D
.

This gives the desired bound (1.20) by choosing r−1≍1/ log(dim(X)).

(4) If one only wishes to rule out embeddings into low-dimensional subspaces of ℓ1 rather than of
S1, then it suffices to use here [65, Theorem 1.2], which yields an embedding into ℓr rather than Sr.

(5) As in the discussion before Conjecture 1.4, the dependence on r in this estimate is not stated

in [58], while it is crucial for us here; a justification why the reasoning in [58] implies this appears in
Appendix A.
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Remark 1.15. By substituting (1.6) into the reasoning of [58], a positive resolution

of Conjecture 1.4 would imply that, for every r∈(1, 2] and n∈N,

cℓr (Bn)≳
4
√
r−1·

√
log n. (1.21)

An incorporation of this improved distortion lower bound into the above proof of Theo-

rem 1.14 (while using [65] in place of [89], since we are in the simpler ℓp setting) would

imply that, for any finite-dimensional subspace X of ℓ1, if cX(Hn(p))⩽D, then the fol-

lowing improvement over (1.20) holds true:

dim(X)⩾ exp
( c

D4
(log n)2−4/p

)
. (1.22)

Notably, for p=4 this would be an improvement from

dim(X)⩾ exp
( c

D2

√
log n

)
to

dim(X)⩾nc/D
4

, (1.23)

namely a power-type dimension reduction lower bound as in [17]. Understanding what is

the correct behavior as p!2+ remains an intriguing open question; some deterioration of

the lower bound as in (1.20) or (1.22) must occur because by [45] logarithmic dimension

reduction is possible for finite subsets of a Hilbert space.

Another question that this discussion obviously raises is if (1.21) could be enhanced

to

cSr (Bn)≳
4
√
r−1·

√
log n. (1.24)

If so, then (1.23) would hold when X is a subspace of S1 rather than ℓ1. More substan-

tially, this would resolve a difficult open question (see the discussion following Question 13

in [91]) by showing that HZ does not admit a bi-Lipschitz embedding into S1. In fact,

for the latter conclusion it would suffice to establish the weaker property

lim
n!∞

cS1+1/ logn
(Bn)=∞. (1.25)

Indeed, by [89] we have cS1(Bn)≳cSr (Bn) when r=1+1/ log n. Due to its significant con-

sequences, we expect that proving (1.25), and all the more so its stronger version (1.24),

would require a major and conceptually new idea.

We end this discussion on dimension reduction by noting that [104] shows that

one could embed Bn with optimal distortion (up to universal constant factors) into a

Euclidean space of dimension O(1). Theorem 1.14 shows that this fails badly if one aims

for optimal ℓ1-distortion embedding of Bn into a bounded-dimensional subspace of ℓ1.
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1.1.4. Permanence of compression rates of groups

Suppose that (M,dM ) is a metric and (X, ∥ · ∥X) is a Banach space. The compression

rate of a Lipschitz mapping f :M!X is the non-decreasing function ωf : [0,∞)![0,∞)

that is defined [39] by

ωf (s)
def
= inf

x,y∈M
dM (x,y)⩾s

∥f(x)−f(y)∥X for all s⩾ 0. (1.26)

Equivalently, ωf is the largest non-decreasing function from [0,∞) to [0,∞) such that

∥f(x)−f(y)∥X ⩾ωf (dM (x, y)) for all x, y ∈M.

There is a great deal of interest in determining the largest possible compression rate

of 1-Lipschitz mappings from a finitely generated group G (equipped with a word metric

that is induced by some finite generating set) to certain Banach spaces, notable and

useful examples of which are Hilbert space and L1. The literature on this topic is too

extensive to discuss here, and we only mention that a substantial part of it is devoted

to understanding the extent to which compression rates are preserved under various

group operations (e.g. various semidirect products). Theorem 1.16 below provides a new

example of the lack of such permanence which does not seem to be accessible using previ-

ously available methods. It leverages the fact that we establish here a marked difference

between the L1 embeddability of Heisenberg groups of dimension 3 and dimension 5.

Theorem 1.16. There exists a finitely group G that has two finitely generated nor-

mal subgroups H,K◁G such that the following properties hold true.

(1) Any h∈H and k∈K commute.

(2) H∩K is the center of G.

(3) H and K are isomorphic.

(4) H and K are undistorted in G; in fact, they admit generating sets SH and SK

such that SH∪SK generates G and the word metric on G that is induced by SH∪SK
restricts to the word metrics on H and K that are induced by SH and SK , respectively.

(5) The L1 compression of G is asymptotically smaller than that of H (hence also

of K∼=H). Concretely, there exists a Lipschitz mapping f :H!ℓ1 that satisfies

ωf (s)≳
s

4
√
log s·(log log s)2

for all s⩾ 3, (1.27)

yet for any Lipschitz mapping F :G!L1 there are arbitrarily large s⩾4 for which

ωF (s)⩽
s√

(log s) log log s
. (1.28)
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Proof. Let GR be the 5-dimensional Heisenberg group, i.e., R5 with the group oper-

ation

(x1, y1, x2, y2, z)(x
′
1, y

′
1, x

′
2, y

′
2, z

′)

=
(
x1+x

′
1, y1+y

′
1, x2+x

′
2, y2+y

′
2, z+z

′+ 1
2 (x1y

′
1+x2y

′
2−y1x′1−y2x′2)

)
for (x1, y1, x2, y2, z), (x

′
1, y

′
1, x

′
2, y

′
2, z

′)∈R5. Let G be the 5-dimensional integer Heisen-

berg group, which is the subgroup

G=
{(
x1, y1, x2, y2, z+

1
2 (x1y1+x2y2)

)
:x1, x2, y1, y2, z ∈Z

}
.

The subgroups H and K are natural copies of HZ in G, namely

H = {(x1, y1, x2, y2, z)∈G :x2 = y2 =0},

K = {(x1, y1, x2, y2, z)∈G :x1 = y1 =0}.

One directly checks the first four assertions of Theorem 1.16. The bound (1.27) follows

by considering the mapping f :HZ!ℓ1(ℓ1)∼=ℓ1 that is given by

f
def
=

∞⊕
n=1

1

n2
ϕ22n ,1/4,

where the mappings that are being concatenated are those of Theorem 1.7. The final

assertion (1.28) of Theorem 1.16 follows from [91, Theorem 9].

Remark 1.17. The term log log s in (1.27) and (1.28) can be improved slightly;

for (1.27) this follows by examining the above proof, and for (1.28) this is explained by [91,

Theorem 9]. However, some unbounded lower-order correction is necessary in (1.27) for

the specific groups that we used in the proof of Theorem 1.16; see Remark 3.3.

Obviously, Theorem 1.16 raises the question if a similar phenomenon could occur

for embeddings into a Hilbert space rather than into L1. Also, in Theorem 1.16 the com-

pression rate of the subgroups H and K grows roughly (suppressing lower-order factors)

like s/ 4
√
log s as s!∞, while the compression rate of G grows slower than s/

√
log s.

What are the possible asymptotic profiles of the compression rates that exhibit such

phenomena?

1.2. Decomposing surfaces into approximately ruled pieces

In the previous sections, we discussed consequences of Theorem 1.1 (and the refined

version of its second part in Theorem 1.7). In this section, we will give an overview
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of the concepts involved in the proof of Theorem 1.1, especially our main contribution,

which is a new way to describe the structure of surfaces in H.

The statement of Theorem 1.1 is in terms of smooth functions f :H!R, but the main

bound (1.3) has an equivalent formulation in terms of surfaces in H; see (1.32) below. We

will prove it by showing that surfaces in H admit a multi-scale hierarchical decomposition

into pieces that are close to ruled surfaces (unions of horizontal lines) and that most of

these pieces (in a quantitative sense) are long and narrow, giving the decomposition

the appearance of a Venetian blind with many narrow slats; see Figures 2 and 3 for

examples. For reasons that will be clarified soon, we call the above structure a foliated

corona decomposition. This decomposition is conceptually central to this work, and the

most involved part of this paper is to formulate this decomposition, prove its existence,

and demonstrate its utility for the aforementioned applications (more are forthcoming).

The defining feature of this decomposition is that its pieces, which we call pseudo-

quads, have widely varying aspect ratios. Each pseudoquad is roughly rectangular, and

we define the aspect ratio of a pseudoquad to be its width divided by its height; long,

narrow rectangles have large aspect ratios, while tall, skinny rectangles have small aspect

ratios. The fact that the pieces of the decomposition (the slats of the Venetian blind) can

have unbounded aspect ratios allows the decomposition to have additional symmetries

and ultimately leads to the exponent 4 in Theorem 1.1.

Specifically, in order to work with long, narrow pieces, we must prove results on the

geometry ofH that are invariant not only under the usual scaling automorphisms, but also

under automorphisms that stretch and shear H. The resulting automorphism-invariant

bounds allow us to produce a decomposition that is likewise invariant under rescaling,

stretching, and shearing. Furthermore, the overlap of the pieces of our decomposition

is controlled by a coercive quantity that scales like the fourth power of the aspect ratio

under automorphisms. This leads to a new weighted Carleson packing condition in which

overlaps are normalized by the fourth power of the aspect ratio; this condition leads

directly to the exponent 4 in the bound (1.3) of Theorem 1.1.

Proving the optimality of Theorem 1.1 entails finding a surface for which (1.32) is

sharp. Part of the construction of such a surface can be seen in Figure 3. The surface

in the figure can be viewed as a surface with a foliated corona decomposition for which

the weighted Carleson packing condition is sharp. For this reason, it is pedagogically

beneficial to describe that construction after describing foliated corona decompositions.

In truth, the general decomposition methodology and the construction that demonstrates

its optimality are intertwined: limitations of such a construction indicate what decom-

position to look for. We therefore suggest to also consider the alternative route of first

examining the construction of the specific (sharp) example prior to considering the task
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of decomposing general surfaces; the proofs in the rest of this article follow the latter

(“reverse”) route as this leads to a more gradual introduction of notation and concepts.

The ensuing considerations belong firmly to the setting of the continuous Heisenberg

group and its Carnot–Carathéodory geometry. They therefore assume some familiarity

with notions from that setting; the pertinent background appears in §2 below.

1.2.1. Fractal Venetian blinds abound

In what follows, for any s>0 the Hausdorff measure Hs on H will be with respect to

the Carnot–Carathéodory metric d on H. We denote the standard generators of H by

X=(1, 0, 0), Y =(0, 1, 0), and Z=(0, 0, 1).

For Ω⊆H and a∈R, consider the symmetric difference

DaΩ
def
= Ω△ΩZ2−2a

=
(
Ω\ΩZ2−2a)

∪
(
ΩZ2−2a

\Ω
)

(1.29)

If Ω, U⊆H are measurable, then, following [58], [91], we define v̄U (Ω):R!R by

v̄U (Ω)(a)
def
= 2aH4(U∩DaΩ)=2a

ˆ
U

|1Ω(h)−1Ω(hZ
−2−2a

)| dH4(h) for all a∈R.

(1.30)

Thus, v̄U (Ω)(a) is a (normalized) measurement of the amount that Ω changes within U

when translated up and down by the specified (Carnot–Carathéodory) distance 2−a.

By [91, Lemma 38], in order to prove the first part of Theorem 1.1, namely inequal-

ity (1.3) for any compactly supported smooth function f :H!R, it suffices to prove that

every measurable subset Ω⊆H satisfies the following isoperimetric-type inequality:(6)

∥v̄H(Ω)∥L4(R) ≲H3(∂Ω). (1.31)

This amounts in essence to an application of the coarea formula (e.g. [1]).

A central step of [91] is a further reduction of (1.31) to the special case that Ω

is (a piece of) an intrinsic Lipschitz epigraph. An intrinsic Lipschitz epigraph Γ+ is a

region of H that is bounded by an intrinsic Lipschitz graph Γ. The notion of an intrinsic

(6) The exponent 4 is not important here, i.e., [91] shows that, for any q⩾1, if

∥v̄H(Ω)∥Lq(R) ≲H3(∂Ω)

holds for every measurable subset Ω⊆H, then(ˆ ∞

0

(ˆ
R3

|Dt
vf(h)| dh

)q dt
t

)1/q
≲
ˆ
R3

(|Xf(h)|+|Yf(h)|) dh

holds for every compactly supported smooth function f :R3
!R.
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Lipschitz graph was introduced in [36] and all of the relevant background is explained in

§2.2 below. The intrinsic Lipschitz condition is parameterized by an intrinsic Lipschitz

constant λ∈(0, 1). By combining [91, Proposition 55, Theorem 57 and Lemma 58] (see

the deduction on [91, p. 232]) it follows that, to prove (1.31), it suffices to show that for

every 0<λ<1 the vertical perimeter of any intrinsic λ-Lipschitz epigraph Γ+⊆H satisfies

the growth bound

∥v̄Br(0)(Γ
+)∥L4(R) ≲λ r

3 for all r > 0, (1.32)

where Br(0) is the (Carnot–Carathéodory) ball of radius r centered at 0=(0, 0, 0).(7)

The structural information that underlies the reduction of (1.31) to (1.32) is that,

for any 0<λ<1, any (sufficiently nice; see [91] for precise assumptions) surface in H has

a multi-scale hierarchical decomposition into pieces that are close to intrinsic λ-Lipschitz

graphs, and moreover that decomposition has controlled overlap in the sense that it

satisfies a O(1)-Carleson packing condition. As such, this decomposition is an intrinsic

Heisenberg analog of the corona decompositions that were introduced and developed for

subsets of Euclidean space in [26], and have since led to a variety of powerful applications

in harmonic analysis (see also the monograph [27]).

The corona decomposition of [91] is in some respects a Heisenberg variant of a

“vanilla” corona decomposition. Like corona decompositions in Rn, it is a hierarchi-

cal partition of a surface into pieces of bounded aspect ratio, and the Carleson packing

condition governing overlaps of pieces depends only on the diameter of the pieces. Nev-

ertheless, there are key differences, including the fact that the proof in [91] relies on a

new “stopping rule” (based on the quantitative non-monotonicity of [23]) that yields, in

fact, a different proof of the existence of corona decompositions even in Euclidean space

(though, for less general sets than those that [26] treats). In addition, while “vanilla”

Euclidean corona decompositions cover a surface in Rn by pieces that are approximately

graphs of Lipschitz functions, the approximating graphs in [91] are intrinsic Lipschitz,

like the surface depicted in Figure 1. While Lipschitz graphs in Euclidean space vary

slowly in all directions, intrinsic Lipschitz graphs vary slowly in horizontal directions but

can vary quickly in vertical directions and can have Hausdorff dimension 2.5 with respect

to the Euclidean metric [53]. This can make these graphs difficult to analyze, and even

after the decomposition step of [91], the challenge of establishing estimates such as (1.32)

remains.

In [91], we addressed this challenge for the 5-dimensional Heisenberg group H5,

but our techniques do not shed light on the 3-dimensional setting of Theorem 1.1. An

(7) Also this deduction in [91] does not rely on the specific value of the exponent 4. Namely, for any
q⩾1, if for every 0<λ<1, every intrinsic λ-Lipschitz epigraph Γ+⊆H satisfies ∥v̄Br(0)(Γ

+)∥Lq(R)≲λr
3

for every r>0, then ∥v̄H(Ω)∥Lq(R)≲H3(∂Ω) holds for every measurable subset Ω⊆H.
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intrinsic Lipschitz graph in H5 is the intrinsic graph of a function ψ that is defined on a

4-dimensional vertical hyperplane V0. An inspection of the intrinsic Lipschitz condition

shows that the restriction of ψ to any coset of H that is contained in V0 is Lipschitz with

respect to the Carnot–Carathéodory metric on H. In [91], we applied a representation-

theoretic functional inequality of [4] to each of these restrictions, yielding a bound on the

vertical variation of ψ. The desired control on the vertical perimeter of intrinsic Lipschitz

graphs in H5 followed by integrating this bound over the cosets of H in V0.

In the 3-dimensional setting of the present work, the intrinsic graph Γ in (1.32)

corresponds to an intrinsic Lipschitz function ψ:V0!R, where V0 is a 2-dimensional

vertical plane in H. For concreteness, assume in what follows that V0={(x, 0, z):x, z∈R}
is the xz -plane. The reasoning of [91] is irrelevant to proving (1.32): one cannot restrict

ψ to cosets of a lower-dimensional Heisenberg group, as there is no such group!

Our strategy here is therefore entirely different from that of [91]. We will prove (1.32)

by finding a new structural description of intrinsic Lipschitz graphs in H. Specifically,

we will prove that they admit a hierarchical family of partitions into pieces that are

approximately ruled surfaces and bound the total error of these approximations.

We call this description of Γ a foliated corona decomposition. It is a sequence of

nested partitions of Γ into approximately rectangular regions, called pseudoquads, of

varying heights and widths. On each pseudoquad, Γ is close to a vertical plane, and

these vertical planes can be glued together to form a collection of ruled surfaces such

that at most locations and scales, Γ is approximated by one of the ruled surfaces; see

Remark 7.6. Furthermore, the decomposition satisfies a new weighted variant of the

classical Carleson packing condition. Namely, we bound the weighted sum of the measures

of the pseudoquads in the decomposition, where the measure of each pseudoquad is

normalized by the fourth power of its aspect ratio. We will see that the occurrence of

the fourth power here is dictated by the requirement that this decomposition should be

invariant under certain automorphisms of H (scaling, stretch, and shear automorphisms).

Theorem 1.18. Any intrinsic Lipschitz graph in H has a foliated corona decompo-

sition.

The above description of foliated corona decompositions and the statement of Theo-

rem 1.18 clearly lack rigorous definitions, but they convey the essence of what is achieved

here. The necessary technical matters are treated in §5 below, where a precise formu-

lation of Theorem 1.18 appears as Theorem 5.2. The justification that Theorem 1.18

can be used to achieve our goal (1.32) is carried out in §6 below; the groundwork of

constructing a foliated corona decomposition makes this deduction quite mechanical.

We will next cover a few technical details necessary to describe foliated corona
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decompositions and the subdivision mechanism that produces them. Recall that V0⊆H
is the xz -plane. Fix 0<λ<1 and let Γ be an intrinsic λ-Lipschitz graph that is the

intrinsic graph of ψ:V0!R. That is, Γ=Ψ(V0), where Ψ(v)=vY ψ(v) for all v∈V0. The

function ψ satisfies the intrinsic Lipschitz condition (Definition 2.2); the non-linear nature

of this condition is the source of subtleties that ensue (and the reason why basic questions

on the rectifiability properties of intrinsic Lipschitz graphs remain open; see e.g. [29]).

For any p∈Γ, there is a horizontal curve γ contained in Γ that passes through p, so

Γ is the union of all such curves. It is often convenient to work in V0 instead of Γ. To

this end, let Π:H!V0 be the projection to V0, so Π(Ψ(v))=v for v∈V0. The projected

curve Π�γ is a curve in V0 which we call a characteristic curve; see §2.3 for a detailed

discussion. Parameterize γ so that Π(γ(t))=(t, 0, g(t)) for some continuous function g.

This function is a solution of the differential equation g′(t)=−ψ(t, 0, g(t)), and conversely,

each solution gives a characteristic curve. If Γ is a vertical plane, then ψ(x, 0, z)=ax+b

for some a, b∈R, in which case the characteristic curves are parallel parabolas.

Since horizontal curves pass through every point of Γ, there is a characteristic curve

through every point of V0, so one can reconstruct Γ from its set of characteristic curves.

Note that the characteristic curve through p is not necessarily unique: when ψ is not

smooth, these curves can split and rejoin [12]. When ψ is smooth, the characteristic

curves foliate V0, so there is a coordinate system on V0 such that the foliation forms one

set of coordinate lines. However, it is difficult to use this coordinate system to study the

geometry of Γ because the distance between two characteristic curves can vary wildly.

Foliated corona decompositions provide a way to overcome this difficulty.

A pseudoquad for Γ is a region in V0 that is bounded by characteristic curves above

and below, and by vertical line segments on either side. We call a pseudoquad Q recti-

linear if its top and bottom boundaries approximate two parallel parabolas; if the top

and bottom boundaries of Q are exactly two parallel parabolas, we call Q a parabolic

rectangle. Parabolic rectangles are the projections to V0 of rectangles in H bounded by

two horizontal line segments and two vertical line segments. The width δx(Q) and height

δz(Q) of such a pseudoquad are defined to be, respectively, the width and height of its

approximating parabolic rectangle; see §4. The aspect ratio of Q is

α(Q)=
δx(Q)√
δz(Q)

.

Let Q0⊆V0 be a rectilinear pseudoquad. A foliated corona decomposition for Γ with

root at Q0 is a sequence of nested partitions of Q0 into rectilinear pseudoquads. We con-

struct such a decomposition using the following subdivision algorithm which, importantly,

outputs pseudoquads that can be divided into two sets VV and VH, called, respectively,
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the vertically cut pseudoquads and horizontally cut pseudoquads. The algorithm repeat-

edly cuts pseudoquads into halves. Let Q be a pseudoquad in the decomposition. If Ψ(Q)

is a region in Γ that is sufficiently close to a vertical plane VQ and if the characteristic

curves through Q are close to characteristic curves for VQ, then cut Q in half along one

of the characteristic curves of Γ. In this case, say that Q is horizontally cut and add

it to VH. Otherwise, cut Q in half along a vertical line through its center, say that Q

is vertically cut, and add it to VV. By applying this procedure iteratively, we obtain a

sequence of nested partitions of Q0; see Figure 2.

A crucial part of the algorithm is the mechanism determining whether to cut the

pseudoquad horizontally or vertically. We stated qualitatively how this step depends

on the geometry of Ψ(Q), but we implement it quantitatively by introducing a coercive

quantity called R-extended non-monotonicity. This is a family of measures ΩPΓ+,R on the

vertical plane V0, parameterized by R>0; see §8. These are inspired by the quantitative

non-monotonicity of [23], but there are key differences. For instance, while the non-

monotonicity of Γ on a subset U⊆H measures how lines intersect Γ inside U , the R-

extended non-monotonicity of Γ on a subsetW⊆V0 measures how lines intersect Γ inside

an R-neighborhood of Ψ(W ). We refer to §8 for the details, in particular to Lemma 9.2,

which shows that, for any measurable U⊆V0,∑
i∈Z

ΩPΓ+,2−i(U)≲λ |U |, (1.33)

where |U | is the area of U and λ is the intrinsic Lipschitz constant of ψ.

Analogously to [23], extended non-monotonicity is coercive in the following sense.

Let U=[0, 1]×{0}×[0, 1]⊆V0 and for r>0, let rU be the square of side r concentric

with U . There is a universal constant r>1 such that if δ is sufficiently small, R is

sufficiently large, ψ(0) is bounded, and ΩΓ+,R(rU)<δ, then Ψ(U) is close to a vertical

plane and the characteristic curves that pass through U are close to characteristic curves

of that vertical plane (i.e., parabolas). The proof of this geometric statement (whose

precise formulation appears as Proposition 7.2) is the most technically involved part of

this work; it is outlined in §10 and carried out in §11 and §12.
By translation, rescaling, and applying a shear automorphism, a similar coercive

property applies to any pseudoquad of aspect ratio 1, but for the subdivision algorithm,

we need a coercive property for pseudoquads of arbitrary aspect ratio. If Q is a pseu-

doquad of aspect ratio α(Q), the stretch automorphism s(x, y, z)=(α(Q)−1x, α(Q)y, z)

sends Q to a pseudoquad of aspect ratio 1. The extended non-monotonicity of s(Q)

scales like α(Q)4, so if the extended non-monotonicity of Γ+ on Q is at most δ|Q|/α(Q)4,

then Ψ(Q) is close to a vertical plane and the characteristic curves that pass through Q

are close to characteristic curves of that vertical plane.
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Figure 2. Stages in the construction of a foliated corona decomposition for a bump function
as in the top row of Figure 3 below. The aspect ratio of the regions in the decomposition
varies widely. On the sides, where the surface is close to a vertical plane, the aspect ratio is

large and the regions are short and wide; near the top and bottom, where it is further from
a plane, the regions are tall and narrow.
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Therefore, in the subdivision algorithm above, there is δ>0 such that we cut Q hor-

izontally if and only if the extended non-monotonicity of Γ+ on Q is at most δ|Q|/α(Q)4.

This criterion, combined with (1.33), leads to a crucial bound on the total pseudoquads

that have been vertically cut by the subdivision algorithm. Specifically, if Q is a pseu-

doquad of the decomposition and DV(Q) is the set of vertically cut pseudoquads Q′ in

the decomposition that are contained in Q, then

∑
Q′∈DV(Q)

|Q′|
α(Q′)4

≲λ |Q|. (1.34)

The condition (1.34) is the aforementioned weighted Carleson packing condition, and the

L4 norm that appears in Theorem 1.1 arises directly from the exponent 4 in (1.34).

Thus, the L4 norm in Theorem 1.1 is ultimately dictated by having to prove a coer-

cive property for intrinsic Lipschitz graphs that is invariant under stretch automorphisms.

This stretch-invariance has multiple effects. On one hand, stretch-invariance means that

it suffices to prove the coercive property for pseudoquads of aspect ratio 1; indeed, it is

enough to consider pseudoquads that approximate the unit square. On the other hand,

it induces a substantial complication in the proofs: since the intrinsic Lipschitz constant

is not invariant under stretch automorphisms, the coercivity must be independent of the

intrinsic Lipschitz constant.

1.2.2. A maximally bumpy surface

The optimality part of Theorem 1.1 corresponds to constructing (in §3) an intrinsic

Lipschitz graph for which the L4(R) norm in (1.32) cannot be replaced by the Lq(R)
norm for any 0<q<4. Theorem 1.7 is deduced in §3.1 by analyzing this construction;

the level sets of the resulting embedding into L1 are a superposition of certain random

rotations, scalings and translations of this surface.

We will show that, for any sufficiently small ε>0, there are intrinsic Lipschitz sur-

faces in H of bounded (Heisenberg) perimeter that are ε-far from planes at ε−4 different

scales, many more than the ε−2 different scales that are possible (by [91]) for such sur-

faces in the 5-dimensional Heisenberg group H5 (or, for that matter, in Rn, by the Jones

travelling salesman theorem [48] and the higher-dimensional analogues thereof [26]).

We construct these surfaces by adding bumps to a vertical plane. While surfaces

that demonstrate that the bound of [91] for H5 is optimal can be constructed by adding

round bumps with equal width and height, it is more natural in H to add oblong bumps

with width (horizontal size) w, depth d (size perpendicular to the surface), and height h

(vertical size). The automorphisms of the Heisenberg group preserve the ratio dw/h, so
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we can construct a family of bump functions by applying automorphisms to a prototype

bump with d=w=h=1. The resulting bumps have h=dw, and we define the aspect ratio

α of such a bump to be

α=
w√
h
=

w√
dw

=

√
w

d
.

A horizontal curve connecting one side of the bump to its other side has slope roughly

d/w=α−2, so adding a layer of bumps with aspect ratio α⩾1 to a surface multiplies its

perimeter by roughly 1+α−4. Thus, we can start with a unit square, then add ε−4 layers

of bumps of width ε−1ri, depth εri, and height r2i , for r1≫...≫rε−4 . These bumps all

have aspect ratio ε−1, so the resulting surface Σ has bounded perimeter, and for any

x∈Σ, the intersections Bri(x)∩Σ are each εri-far away from any plane. So, Σ is ε-far

from planes at ε−4 different scales. The implementation of this strategy in §3 is in essence

an example of a foliated corona decomposition. At each stage, we use the characteristic

curves of the surface that was obtained in the previous stage to guide us where to glue

the next layer of bumps. Figure 3 shows a sketch of the construction.

It is highly informative to examine why this construction does not work in H5.

Bumps on a surface in H5 have five dimensions, which we denote w1, w2, d1, d2, and

h, so that h is vertical, the other four dimensions are horizontal, and d2 is normal to

the surface. The automorphisms of H5 preserve the ratios d1w1/(d2w2), d1w1/h, and

d2w2/h. If β is a bump with d1w1=d2w2=h and d2⩽w2, then the slopes of β in the

three horizontal directions are roughly d2/w1, d2/w2, and d2/d1. So, adding β to a

vertical rectangle with dimensions w1×w2×d1×h increases the volume of the rectangle

by a factor of roughly

ν(w1, w2, d1, d2, h)
def
= 1+max

{
d22
w2

1

,
d22
w2

2

,
d22
d21

}
,

and the resulting bump is roughly (d2/
√
h)-far from a 4-dimensional hyperplane at scale√

h. If d2/
√
h=ε, then d1w1=h=ε

−2d22, and

ν(w1, w2, d1, d2, h)⩾ 1+
d22

max{d21, w2
1}

⩾ 1+
d22
d1w1

=1+ε2.

Hence, this construction results, at best, in a surface that is ε-far from planes at ε−2

different scales. One may also consider bumps where d1w1, d2w2, and h are not propor-

tional, such as bumps with d1=w1=w2=d
−1
2 =r≫1=h. This is more subtle than it might

initially seem. Indeed, because the d1- and w1-directions do not commute, there are no

r×r×r×r−1×1 boxes in H5 that stay close to horizontal. Consequently, a bump of

these dimensions behaves similarly to a collection of smaller bumps with d1w1=d2w2=h,

which are governed by the previous reasoning.
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Figure 3. The first three steps of the construction of a maximally rough surface in H. The

left and right columns show the same surface from two different angles. The center column
shows a projection of the surface to the plane, with characteristic curves marked. Since the

second derivatives of these curves are small, the Heisenberg area of the surface is bounded,

but the surface can be made ε-far from a plane at ε−4 different scales—much more than
what is possible in H5.
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1.3. Roadmap

In §2, we present notation for working with the Heisenberg group and some definitions

and results related to intrinsic graphs and characteristic curves. In §3, we construct an

intrinsic graph with large vertical perimeter and use it to construct the embeddings used

in Theorem 1.7 and its consequences.

The rest of the paper is devoted to defining and constructing foliated corona de-

compositions and using them to prove equation (1.32) bounding the vertical perimeter of

an intrinsic Lipschitz graph. In §4, we define a rectilinear foliated patchwork, which de-

composes an intrinsic Lipschitz graph into rectilinear pseudoquads, and in §5, we define

the weighted Carleson packing condition required for such a patchwork to be a foliated

corona decomposition. Then, in §6, we show that an intrinsic Lipschitz graph that admits

a foliated corona decomposition satisfies equation (1.32).

It remains to show that every intrinsic Lipschitz graph admits a foliated corona

decomposition. We produce foliated corona decompositions by the subdivision algorithm

described in §7. The fact that the patchworks produced by this algorithm satisfy the

weighted Carleson packing condition relies on careful analysis of a coercive quantity,

the extended parametric non-monotonicity, defined in §8. When this coercive quantity is

small, the graph satisfies strong geometric bounds, detailed in Proposition 7.2. Assuming

Proposition 7.2, we prove the weighted Carleson condition in §9. In §10, we outline the

proof of Proposition 7.2, and in §11 and §12 we prove it.

2. Preliminaries

Most of this section presents initial facts about the Heisenberg group that will be used

throughout what follows. However, we will start by briefly setting notation for measure

theoretical boundaries and interiors that are best described in greater generality (though

they will be applied below only to either the Heisenberg group or the real line).

Let (M, dM, µ) be a non-degenerate metric measure space, i.e., (M, dM) is a metric

space and µ is a Borel measure on M such that µ(BM(x, r))>0 for all x∈M and r>0,

where BM(x, r)={y∈M:dM(x, y)⩽r} is the closed dM -ball of radius r centered at x.

Given a subset S⊆M, we define the measure-theoretic support suppµ(S) of S to be

the usual measure-theoretic support of the indicator function 1S :M!{0, 1}, namely

suppµ(S)
def
=
⋂
r>0

{x∈M :µ(BM(x, r)∩S)> 0}. (2.1)

The measure-theoretic boundary of S is defined as

∂µS
def
= suppµ(S)∩suppµ(M\S)=

⋂
r>0

{
x∈M : 0<

µ(BM(x, r)∩S)
µ(BM(x, r))

< 1

}
. (2.2)
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The measure-theoretic interior of S is defined as

intµ(S)
def
= M\suppµ(M\S)=

⋃
r>0

{x∈M :µ(BM(x, r)\S)= 0}. (2.3)

These definitions are non-standard; other works define the measure-theoretic boundary

as the set of points where the density of S is not 0 or 1. The advantage of our definition

is that one may check that intµ(S) is open in M and its (topological) boundary ∂ intµ(S)

is contained in ∂µS. The sets intµ(S), intµ(M\S), and ∂µS are disjoint and their union

is M, i.e.,

M= intµ(S)⊔intµ(M\S)⊔∂µS. (2.4)

2.1. The Heisenberg group

Here we summarize basic notation and terminology related to the Heisenberg group.

Throughout what follows, ∥ · ∥:R3
!R will denote the Euclidean norm on R3, namely

∥(a, b, c)∥=
√
a2+b2+c2 for all a, b, c∈R. Let

X
def
=(1, 0, 0), Y

def
=(0, 1, 0), Z

def
=(0, 0, 1)

be the standard basis of R3, and let x, y, z:R3
!R be the coordinate functions. Namely,

for u=(a, b, c)∈R3, we set x(u)=a, y(u)=b, and z(u)=c. With this notation, the Heisen-

berg group operation (1.8) can be written as

uv=u+v+ 1
2 (x(u)y(v)−y(u)x(v))Z for all u, v ∈H=R3. (2.5)

The linear span of a set of vectors S⊆R3 will be denoted ⟨S⟩. The plane H def
= ⟨X,Y ⟩

is called the space of horizontal vectors. Let π:R3
!H be the orthogonal projection. A

horizontal line in H is a coset of the form w⟨h⟩⊆H for some w∈H and h∈H.
The union of the horizontal lines passing through a point u∈H is the plane uH,

which we denote Hu and call the horizontal plane centered at u. Every plane P⊆R3

either contains a coset of ⟨Z⟩ (a vertical line), in which case we call P a vertical plane,

or can be written P=Hu for some unique u∈H.

If I⊆R is an interval and γ: I!H is a curve such that x�γ, y�γ, z�γ: I!R are

Lipschitz, then γ′(t) is defined for almost all t∈I. One then says that γ is a horizontal

curve if γ is tangent to Hγ(t) at γ(t) for almost all t∈I, i.e., for almost all t∈I we have

d

ds
(γ(t)−1γ(s))

∣∣∣∣
s=t

∈H.
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Note that horizontality is left-invariant; if γ is a horizontal curve and g∈H, then g ·γ is

also a horizontal curve. If γ(t)=(γx(t), γy(t), γz(t)), then this requirement is equivalent

to the differential equation

2γ′z(t)= γx(t)γ
′
y(t)−γy(t)γ′x(t).

Define

ℓ(γ)
def
=

ˆ
I

∥π(γ′(t))∥ dt.

The sub-Riemannian or Carnot–Carathéodory metric d:H×H![0,∞) is defined by let-

ting d(v, w) be the infimum of ℓ(γ) over all horizontal curves γ connecting v∈H to w∈H.

This metric is left-invariant, i.e., d(ga, gb)=d(a, b) for all a, b, g∈H.

If γ is a horizontal curve connecting v to w, then π�γ is a curve in R2 of the same

length connecting π(v) to π(w), so d(v, w)⩾∥π(v)−π(w)∥. Consequently, any horizontal

line in H is a geodesic. Also, d satisfies (e.g. [10], [40], [80]) the ball-box inequality

d(0, h)⩽ |x|+|y|+4
√

|z|⩽ 2d(0, h)+4· d(0, h)√
2π

⩽ 4d(0, h) for all h=(x, y, z)∈H.

(2.6)

For h∈H and r⩾0 we let Br(h)={g∈H:d(g, h)⩽r}=hBr(0) denote the closed ball

of radius r centered at h with respect to the sub-Riemannian metric d on H. Throughout

what follows, we will not use this notation for balls with respect to any other metric.

For σ>0 denote by Hσ the σ -dimensional Hausdorff measure that d induces on H.

Thus H4 is the Lebesgue measure on R3, which is also the Haar measure on H. Given a

measurable subset E⊆H, the associated perimeter measure that is induced by d will be

denoted by PerE( ·); we refer to [35] for background on this fundamental notion, noting

only that there exists η>0 such that if E⊆H has a piecewise smooth boundary, then

PerE(U)= ηH3(U∩∂E)

for every open subset U⊆H.

It is also beneficial to describe the group operation on H in terms of a symplectic

form. Let ωR2 :R2×R2
!R be the standard symplectic form, i.e.,

ωR2((a, b), (α, β))
def
= aβ−bα=det

(
a b

α β

)
for all (a, b), (α, β)∈R2.

Under this notation, (2.5) can be written as follows:

uv=u+v+ 1
2ωR2(π(u),π(v))Z for all u, v ∈H. (2.7)
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This lets us define automorphisms of H. Let A:R2
!R2 be an invertible linear map

with determinant J∈R\{0}, so that ωR2(A(v), A(w))=JωR2(v, w) for any v, w∈R2. It

follows from (2.7) that the map Ã:H!H that is defined by

Ã(x, y, z)
def
=(A(x, y), Jz) for all (x, y, z)∈H (2.8)

is an automorphism of H which, since Ã(H)=H, sends horizontal curves to horizontal

curves and is thus Lipschitz with respect to the sub-Riemannian metric on H. If A is

an orthogonal matrix, then Ã is an isometry. As a notable special case, for a, b>0, we

define

sa,b(x, y, z)
def
=(ax, by, abz) for all (x, y, z)∈H, (2.9)

which we call a stretch map. When a=b=t, st,t is the usual scaling automorphism of H,

which scales the sub-Riemannian metric on H by a factor of t. For simplicity, in what

follows we will sometimes write st,t=st.

2.2. Intrinsic graphs and intrinsic Lipschitz graphs

Throughout what follows, we denote the xz -plane by V0, namely

V0
def
= {(x, y, z)∈H : y=0}=R×{0}×R⊆H.

Note that the restriction of H3 to V0 is proportional to the Lebesgue measure on V0.

Fix U⊆V0. The intrinsic graph of a function ψ:U!R is defined in [36] to be

Γψ
def
= {vY ψ(v) : v ∈U}=

{
(x(v), ψ(v), z(v)+ 1

2x(v)ψ(v)) : v ∈U
}
⊆H, (2.10)

where in (2.10), as well as throughout what follows, it is convenient to use the exponential

notation

ut= tu=(tx(u), ty(u), tz(u))

for u∈H and t∈R. Observe that any coset of ⟨Y ⟩ that passes through U intersects Γψ in

exactly one point. We will also use the following notation for the intrinsic epigraph of ψ:

Γ+

ψ
def
= {vY t : (v, t)∈U×(ψ(v),∞)}.

Suppose that U⊆V0 is an open subset of V0 and that g:U!R is smooth. For every

ψ:U!R define a function ∂ψg:U!R by

∂ψg
def
=
∂g

∂x
−ψ∂g

∂z
. (2.11)
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If ψ is smooth, then we define the horizontal derivative of ψ to be the function

∂ψψ=
∂ψ

∂x
−ψ∂ψ

∂z
. (2.12)

Let v∈U and let p
def
= vY ψ(v)∈Γψ. One can interpret ∂ψψ by considering the hori-

zontal plane Hp. This plane locally intersects Γψ in a curve, and the tangent vector of

this curve at p is given by X+∂ψψ(v)Y . The horizontal derivative also determines the

slope of the intrinsic tangent plane to Γψ, where the slope of a vertical plane is the slope

of its projection to H. As r!0, rescalings of the intersections Br(p)∩Γψ converge to a

vertical tangent plane with slope ∂ψψ(v).

The following proposition is part of [2, Theorem 1.2]. It expresses the area H3(Γψ)

of Γψ, namely the 3-dimensional Hausdorff measure (with respect to the sub-Riemannian

metric) of Γψ in terms of ∂ψψ.

Proposition 2.1. ([2]) There exists a constant c>0 such that if U⊆V0 is an open

set and ψ:U!R is smooth, then

H3(Γψ)≍S3(Γψ)= c

ˆ
U

√
1+(∂ψψ)

2 dw≍H3(U)+∥∂ψψ∥L1(U), (2.13)

where S3 is the 3-dimensional spherical Hausdorff measure on H.

Recent work [49] has shown that the spherical Hausdorff measure and the Hausdorff

measure on Γψ are equal up to a multiplicative constant, so the first equivalence in (2.13)

can be replaced by an equality up to a constant factor.

For λ∈(0, 1), define the double cone

Coneλ
def
= {h∈H : |y(h)|>λd(0, h)}.

This is a cone centered on the horizontal line ⟨Y ⟩ which is scale-invariant, i.e.,

st,t(Coneλ)=Coneλ for all t> 0.

The intersection H∩Coneλ is a double cone in H with angle depending on λ. Specifically,

H∩Coneλ= {(x, y, 0)∈H : |y|>λ
√
x2+y2}

=

{
(x, y, 0)∈H : |y|> λ√

1−λ2
|x|
}
.

(2.14)

Definition 2.2. Let U⊆V0 and let Γ⊆H be an intrinsic graph over U . For any

λ∈(0, 1), we say that Γ is an intrinsic λ-Lipschitz graph if (hConeλ(V0))∩Γ=∅ for

every h∈Γ. Equivalently, for every p, q∈Γ,

|y(q)−y(p)|⩽λd(p, q).

We say that Γ is an intrinsic Lipschitz graph if it is intrinsic λ-Lipschitz for some λ∈(0, 1).
If Γ=Γψ for some ψ:U!R, then we say that ψ is an intrinsic Lipschitz function.
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Definition 2.2 gives the same class of intrinsic Lipschitz graphs as the definition

introduced in [36], but it gives different classes of intrinsic λ-Lipschitz graphs; see §3.2
of [103] for a proof that the definitions are equivalent.

The following simple bound will be convenient later.

Lemma 2.3. Let 0⩽λ⩽1 and let Γ=Γψ be an intrinsic λ-Lipschitz graph of a func-

tion ψ:U⊆V0!R. Let v, w∈U and write p=vY ψ(v)∈Γ and q=wY ψ(w)∈Γ. Then,

|y(p)−y(q)|= |ψ(v)−ψ(w)|⩽ 2

1−λ
d(p, q⟨Y ⟩).

Proof. Denote m=d(p, w⟨Y ⟩). Let c∈w⟨Y ⟩ be a point such that d(p, c)=m. By the

intrinsic Lipschitz condition,

|y(c)−y(q)|⩽m+|y(p)−y(q)|⩽m+λd(p, q)⩽m+λ(m+|y(c)−y(q)|).

This simplifies to give

|y(c)−y(q)|⩽ 1+λ

1−λ
m.

Hence,

|y(p)−y(q)|⩽ |y(p)−y(c)|+|y(c)−y(q)|⩽ 2m

1−λ
.

Intrinsic Lipschitz graphs satisfy the following version of Rademacher’s differentia-

tion theorem due to [38, Theorem 4.29].

Theorem 2.4. ([38]) Let 0<λ<1, let U⊆V0 be an open set, and let f :U!R be

a function such that Γψ⊆H is an intrinsic λ-Lipschitz graph. Then, for almost every

p∈U , Γψ has an intrinsic tangent plane at pY ψ(p) whose slope satisfies

|∂ψψ(p)|⩽
λ√

1−λ2
. (2.15)

We note that [38, Theorem 4.29] is concerned with the (almost everywhere) existen-

tial statement of horizontal derivatives. The upper bound in (2.15) follows from (2.14)

and the fact that the intrinsic tangent plane at pY ψ(p) is disjoint from pConeλ (see also

Lemma 2.7). This bound on the horizontal derivatives of an intrinsic Lipschitz graph

leads to a bound on the perimeter measure. The following result follows from [37, The-

orem 4.1], which proves a similar bound on the Hausdorff measure of Γ, and the results

of [35], which imply that the Hausdorff measure of Γ and the perimeter measure of Γ+

differ by at most a multiplicative constant. Let Π:H!V0 be the natural (non-linear)

projection to V0 along cosets of ⟨Y ⟩, i.e., Π(v)=vY −y(v) for every v∈H. Equivalently,

Π(x, y, z)
def
=
(
x, 0, z− 1

2xy
)

for all (x, y, z)∈H. (2.16)
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Lemma 2.5. ([37]) Fix λ∈(0, 1). Let ψ:V0!R be λ-intrinsic Lipschitz. The perime-

ter measure PerΓ+
ψ
satisfies the following equivalence for measurable subsets A⊆Γψ:

PerΓ+
ψ
(A)≍λ |Π(A)|,

where here, and henceforth, | · | denotes the Haar measure on V0, normalized to coincide

with the usual 2-dimensional area measure in R3.

2.3. Characteristic curves

Let U⊆V0 be an open set and let ψ:U!R be a continuous function. The differential

operator ∂ψ given in (2.11) defines a vector field on V0 that is continuous and has x-

coordinate 1, so by the Peano existence theorem, there is at least one flow line of ∂ψ

through every point of U , defined on an interval. These flow lines are the graphs of

functions g: I!R satisfying

g′(t)+ψ(t, 0, g(t))= 0 for all t∈ I. (2.17)

We call these flow lines characteristic curves of Γψ.

The solution to (2.17) guaranteed by the Peano existence theorem is only local,

but when ψ is intrinsic Lipschitz, we can define g on all of R. Indeed, by the Peano

existence theorem, if Sr=[−1, 1]×{0}×[−r, r] and supq∈Sr |ψ(q)|⩽r, then there exists a

g: (−1, 1)![−r, r] that solves (2.17) with initial condition g(0)=0. Let (x, 0, z)∈Sr. By

Lemma 2.3 with v=0, w=(x, 0, z), there is some C=Cψ>0 such that

|ψ(x, 0, z)|⩽ |ψ(0)|+ 2

1−λ
d(Y ψ(0), (x, 0, z))⩽C+C|x|+C

√
|z|⩽ 2C+C

√
r.

If r is sufficiently large, then supq∈Sr |ψ(q)|⩽r, so (2.17) can be solved on (−1, 1). More

generally, for any x0 and z0, there is a g: (x0−1, x0+1)!R that solves (2.17) with initial

condition g(x0)=z0. By patching together such solutions, we obtain a global solution to

(2.17).

In this section, we will show that the characteristic curves of Γψ are the projections

of horizontal curves in Γψ, and use them to describe Γψ. In the next section, we will

describe how characteristic curves transform under automorphisms of H; later, we will

use these curves to describe how horizontal lines intersect an intrinsic Lipschitz graph.

Lemma 2.6. Let Γ=Γψ. The characteristic curves of Γ are exactly the projections

(under Π) of horizontal curves ϕ: I!Γ such that x(ϕ(t))=t for every t∈I.
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Because characteristic curves can branch and rejoin (see [12] for such examples),

there are intrinsic Lipschitz graphs with horizontal curves whose x-coordinate is not

monotone. Thus the condition x(ϕ(t))=t of Lemma 2.6 cannot be dropped.

Proof. First, we claim that if ϕ is a horizontal curve in Γ with x(ϕ(t))=t, then Π�ϕ

is a characteristic curve of Γ. Write Γ=Γψ and let ϕ: I!Γ be a horizontal curve of the

form ϕ(t)=XtY f(t)Zg(t). Then f and g are Lipschitz, Π(ϕ(t))=(t, 0, g(t)), and, since

ϕ(t)∈Γ, we have f(t)=ψ(t, 0, g(t)). Since ϕ is horizontal,

d

du
ϕ(t)−1ϕ(t+u)

∣∣∣∣
u=0

∈H

for almost every t∈I. Observe that

ϕ(t)−1ϕ(t+u)= (XtY f(t)Zg(t))−1(Xt+uY f(t+u)Zg(t+u))

=XuY f(t+u)−f(t)Zg(t+u)−g(t)+uf(t).

Since f and g are Lipschitz, the following identity holds almost everywhere:

d

du
ϕ(t)−1ϕ(t+u)

∣∣∣∣
u=0

=X+f ′(t)Y +(g′(t)+f(t))Z. (2.18)

That is, g satisfies (2.17).

Conversely, suppose that g is a solution of (2.17) and let f(t)=ψ(t, 0, g(t)). By [12,

Theorems 1.1 and 1.2], f is Lipschitz. Therefore, ϕ(t)=XtY f(t)Zg(t) is a Lipschitz curve

in Γ such that Π(ϕ(t))=(t, 0, g(t)) and such that ϕ satisfies (2.18) almost everywhere. In

combination with (2.17), this implies that ϕ is horizontal.

If ψ is smooth, the characteristic curves of Γψ foliate U . If ψ is merely intrinsic

Lipschitz, characteristic curves can branch and rejoin, but if two characteristic curves

pass through the same point, then they are tangent at that point; see [12, Figure 1] for

an example of this phenomenon.

Characteristic curves satisfy bounds based on the intrinsic Lipschitz constant of Γ.

Lemma 2.7. Fix λ∈(0, 1) and denote

L
def
=

λ√
1−λ2

.

Let Γ=Γψ be an intrinsic λ-Lipschitz graph over an open set and let γ: I!V0 be a

characteristic curve for Γ parameterized so that x(γ(t))=t for all t∈I. Then,

|ψ(γ(s))−ψ(γ(t))|⩽L|s−t| for all s, t∈ I. (2.19)

Also, if we denote g(t)=z(γ(t)), then

|g(t)−g(s)−g′(s)·(t−s)|⩽ 1
2L(t−s)

2 for all s, t∈ I. (2.20)
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Proof. Since γ is characteristic, the curve ϕ(t)=γ(t)·Y ψ(γ(t)) is horizontal. The

intrinsic Lipschitz condition implies that

|y(ϕ(t+δ))−y(ϕ(t))|
d(ϕ(t), ϕ(t+δ))

⩽λ for all δ ∈R\{0}. (2.21)

By Pansu’s theorem [95], for almost every t∈I, there is a vector ht∈H such that

lim
δ!0

d(ϕ(t)hδt , ϕ(t+δ))

δ
=0.

Indeed, ht=(1,m, 0), where m=(ψ�γ)′(t). Then

lim inf
δ!0

|y(ϕ(t+δ))−y(ϕ(t))|
d(ϕ(t), ϕ(t+δ))

⩾ lim inf
δ!0

|δm|−d(ϕ(t)hδt , ϕ(t+δ))
δ∥ht∥+d(ϕ(t)hδt , ϕ(t+δ))

=
|m|√
1+m2

.

By (2.21), it follows that |m|/
√
1+m2⩽λ, so, for almost every t∈I,

|(ψ�γ)′(t)|= |m|⩽L. (2.22)

This implies (2.19). By (2.17), g′(t)=−ψ(γ(t)), so it follows from (2.22) that |g′′(t)|⩽L
for almost every t∈I. The remaining bound (2.20) is therefore justified as follows:

|g(t)−(g(s)+g′(s)·(t−s))|=
∣∣∣∣ ˆ t

s

(t−u)g′′(u) du
∣∣∣∣⩽L

∣∣∣∣ˆ t

s

(t−u) du
∣∣∣∣=L

(t−s)2

2
.

Since there is a characteristic curve through every point p∈U and the derivative of

such a curve at p is −ψ(p), an intrinsic graph Γ can be reconstructed from its charac-

teristic curves. Indeed, one way to construct intrinsic Lipschitz graphs is to construct a

foliation of V0 by C1 curves {z=gα(x)}, α∈A such that Lip(g′α)≲1 for every α∈A. Each
such curve lifts to a horizontal curve, and one can show that the union of these lifts is

an intrinsic Lipschitz graph. (This is how the graphs in Figure 3 were constructed.)

For illustration, we consider planes in H. A vertical plane V that is not orthogonal

to V0 is an intrinsic graph over V0. The horizontal curves in V are parallel lines; let L

be one such line. The image Π(L) is a parabola in V0, and the characteristic curves of

V are the parabolas parallel to Π(L). The second derivative of these parabolas depends

on the angle between V and V0.

Let v∈H. The horizontal plane Hv centered at v is not an intrinsic graph, but the

horizontal line v⟨Y ⟩ divides Hv into two intrinsic graphs. The horizontal lines in Hv

all pass through v, and their projections to V0 are parabolas through Π(v). Since they

all intersect at v, their projections are all tangent at Π(v). These parabolas foliate the

complement in V0 of the vertical line through Π(v). They have unboundedly large second

derivatives, so the two halves of Hv are locally intrinsic Lipschitz graphs, but not globally.
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2.4. Automorphisms and characteristic curves

Recall that any invertible linear map A:R2
!R2 induces an automorphism Ã of H as

in (2.8). We are particularly interested in the case that Y is an eigenvector of A. In this

case, Ã(⟨Y ⟩)=⟨Y ⟩, so Ã sends cosets of ⟨Y ⟩ to cosets of ⟨Y ⟩. A set Γ is an intrinsic graph

if and only if it intersects each coset of ⟨Y ⟩ at most once, so Ã sends intrinsic graphs to

intrinsic graphs.

One family of maps with this property are the stretch maps

sa,b(x, y, z)= (ax, by, abz)

defined in (2.9). To construct a second family of maps with the above property, let b∈R
and consider the linear map Ab(x, y)=(x, y+bx), which is a shear of the plane R2. The

induced map Ãb is an automorphism of H given by the formula

Ãb(x, y, z)= (x, y+bx, z) for all (x, y, z)∈H,

and we call such maps shear maps. (Note that these are different from the shear maps

considered in [106].)

Let Π:H!V0 be as in (2.16), i.e., the projection to V0 along cosets of ⟨Y ⟩. The

maps above preserve cosets of ⟨Y ⟩, so composed with Π they induce maps from V0 to V0.

Lemma 2.8. Fix h=(x0, y0, z0)∈H and v=(x, 0, z)∈V0. For any a, b, t∈R we have

Π(sa,b(vY
t))= sa,b(v)= (ax, 0, abz),

Π(Ãb(vY
t))=

(
x, 0, z− 1

2bx
2
)
,

Π(hvY t)=
(
x+x0, 0, z+z0−xy0− 1

2x0y0
)
.

Proof. Π(gY t)=Π(g) for all g∈H and t∈R. Since sa,b and Ãb are homomorphisms,

Π(sa,b(vY
t))=Π(sa,b(v)Y

bt)= sa,b(v)= (ax, 0, abz),

Π(Ãb(vY
t))=Π(Ãb(v)Y

t)= (x, bx, z)Y −bx=
(
x, 0, z− 1

2bx
2
)
.

Finally,

Π(hvY t)=Π(hv)=
(
x0+x, y0, z0+z− 1

2xy0
)
Y −y0

=
(
x0+x, 0, z0+z− 1

2xy0−
1
2 (x0+x)y0

)
.

We next describe how these maps affect characteristic curves and intrinsic graphs.
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Lemma 2.9. Let U⊆V0 and ψ:U!R be a continuous function. Write Γ=Γψ. Let

C={(x, 0, z)∈V0 :z=g(x)} be a characteristic curve of Γ. Let q:H!H be a stretch map,

shear map, or left translation, and let q̂:V0!V0, q̂(v)=Π(q(v)), be the map that q in-

duces on V0. Then, q(Γ) is the intrinsic graph of a function ψ̂: q̂(U)!R, and q̂(C) is a

characteristic curve of q(Γ). Also, the following statements hold.

• If a, b∈R\{0} and q=sa,b, then ψ̂(q̂(v))=bψ(v) for all v∈U .

• If b∈R and q=Ãb, then ψ̂(q̂(v))=ψ(v)+bx(v) for all v∈U .

• If h∈H and q(p)=hp for all p∈H, then ψ̂(q̂(v))=ψ(v)+y(h) for all v∈U .

Proof. Any coset of ⟨Y ⟩ intersects q(Γ) at most once, so q(Γ) is an intrinsic graph

with domain Π(q(Γ))=q̂(Γ).

Let γ⊆Γ be the horizontal curve such that Π(γ)=C. Then, q(γ) is a horizontal

curve in q(Γ). For all g∈H and t∈R, we have Π(gY t)=Π(g). Consequently, we have

Π(q(γ))=Π(q(C))=q̂(C), and q̂(C) is characteristic for q(Γ).

For any v∈U , we have q(vY ψ(v))∈q(Γ), and since q(Γ) is an intrinsic graph, we must

have q(vY ψ(v))=q̂(v)Y ψ̂(q̂(v)). The claimed expressions for ψ̂ follow directly.

Observe that if q:H!H preserves cosets of ⟨Y ⟩, then

q(Π(p))∈ q(p⟨Y ⟩)= q(p)⟨Y ⟩, (2.23)

so Π�q=Π�q�Π. In particular, if q1 and q2 are stretch maps, shear maps, or left trans-

lations, then

q̂1�q̂2 =Π�q1�Π�q2 =Π�q1�q2 = q̂1�q2.

Consequently, if a, b, c∈R and q(v)=Y bZ−cÃ2a(v) for all v∈H, then

q̂(x, 0, z)= (x, 0, z−ax2−bx−c).

That is, for any quadratic function f , there is a map q:H!H so that the characteristic

curves of q(Γ) are the characteristic curves of Γ translated by f .

Finally, stretch maps and shear maps send intrinsic Lipschitz graphs to intrinsic

Lipschitz graphs (with a possible change in the Lipschitz constant).

Lemma 2.10. Let Γ be an intrinsic Lipschitz graph, and let a, b∈R\{0}. Then,

sa,b(Γ) and Ãb(Γ) are intrinsic Lipschitz graphs, with an intrinsic Lipschitz constant

depending on a and b, and the intrinsic Lipschitz constant of Γ.

Proof. Let q=sa,b or q=Ãb. As Γ is an intrinsic Lipschitz graph, there is a scale-

invariant double cone C⊆H containing a neighborhood of Y such that pC∩Γ=∅ for all
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p∈Γ. The image q(C) is a scale-invariant double cone containing a neighborhood of Y .

Since ⋂
λ∈(0,1)

Coneλ= ⟨Y ⟩\{0},

there is a 0<λ<1 such that Coneλ⊆q(C). For all p∈Γ,

q(p) Coneλ ∩q(Γ)⊆ q(p)q(C)∩q(Γ)= q(pC∩Γ)=∅,

so q(Γ) is intrinsic λ-Lipschitz.

2.5. Measures on lines and the kinematic formula

Let L be the space of horizontal lines in H. For U⊆H, denote the set of horizontal lines

that intersect U by

L(U)
def
= {L∈L :L∩U ̸=∅}.

Let N be the unique (up to constants) measure on L that is invariant under the action

of the isometry group of H. Scalings of horizontal lines are horizontal lines, so scaling

automorphisms of H act on L, and L(st,t(M))=t3L(M) for all t>0. Henceforth N will

be normalized so that N (L(Br(x)))=r3 for every r>0 and x∈H.

The Heisenberg group satisfies the following kinematic formula, which we record

here for ease of later use (see [79] or [23, equation (6.1)]). There exists a constant c>0

such that, for any finite-perimeter set E⊆H and any open subset U⊆H,

PerE(U)= c

ˆ
L
PerE∩L(U∩L) dN (L). (2.24)

Consider also the set L# def
= {(L, p):L∈L and p∈L} of pointed horizontal lines. As-

sociate with each measurable subset K⊆L# the following two quantities:ˆ
L
H1({p∈L : (L, p)∈K}) dN (L) (2.25)

and ˆ 2π

0

ˆ
H
1K(p⟨cos(θ)X+sin(θ)Y ⟩, p) dH4(p) dθ. (2.26)

Both of the expressions in (2.25) and (2.26) define measures on L# that are invariant

under the isometry group of H, which acts transitively on L#. Therefore, they are

proportional, and there is a constant C>0 such that, for every measurable K⊆L#,ˆ
L
H1(KL) dN (L)=C

ˆ 2π

0

ˆ
H
1K(Lp,θ, p) dH4(p) dθ, (2.27)

where we use the following notation for every L∈L, p∈H, and θ∈[0, 2π]:

KL
def
= {p∈L : (L, p)∈K}⊆L and Lp,θ

def
= p⟨cos(θ)X+sin(θ)Y ⟩ ∈L. (2.28)
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2.6. Vertical perimeter and parametric vertical perimeter

Given a measurable subset E⊆V0, a measurable function ψ:V0!R, and (a scale) a∈R,
we define the (normalized) parametric vertical perimeter at scale a of ψ on E by

v̄PE,ψ(a)
def
=

1

2−a

ˆ
E

|ψ(v)−ψ(vZ−2−2a

)| dH3(v). (2.29)

This notion relates to the usual vertical perimeter (1.30) of the epigraph of ψ as follows.

Lemma 2.11. (Parametric vertical perimeter versus vertical perimeter of epigraph)

For any measurable subset E⊆V0, any measurable function ψ:V0!R, and any a∈R,

v̄PE,ψ(a)= v̄Π−1(E)(Γ
+

ψ)(a).

Proof. Recalling (1.29), for Ω⊆H and a∈R we denote DaΩ=Ω△ΩZ2−2a

. Then,

DaΓ
+

ψ = {vY t : v ∈V0 and ψ(v)<t⩽ψ(vZ−2−2a

)}

∪{vY t : v ∈V0 and ψ(vZ−2−2a

)<t⩽ψ(v)},

since, by definition,

Γ+

ψZ
2−2a

= {vY t : v ∈V0 and ψ(vZ−2−2a

)<t}.

Therefore,

v̄Π−1(E)(Γ
+

ψ)(a)=
H4(Π−1(E)∩DaΓ+

ψ)

2−a

=
1

2−a

ˆ
E

|ψ(v)−ψ(vZ−2−2a

)| dH3(v)= v̄PE,ψ(a),

where the second equality uses the fact that the map

(x, y, z) 7−! (x, 0, z)·Y y =
(
x, y, z+ 1

2xy
)

has constant Jacobian 1.

An advantage of the parametric vertical perimeter is that it increases or decreases

by a constant factor under a stretch map or a shear map, as computed in the following.

Lemma 2.12. Let ψ:V0!R and E⊆V0 be measurable. Let q:H!H, q̂:V0!V0, and

ψ̂:V0!R be as in Lemma 2.9, i.e., q is a stretch map or a shear map, q̂ is the map

induced on V0, and ψ̂ is the function such that q(Γψ)=Γψ̂. Then, for all t∈R, we have

• If a, b∈R\{0} and q=sa,b, then

v̄P
q̂(E),ψ̂

(t)= |ab|3/2 ·v̄PE,ψ(t+log2
√
|ab| ).

• If b∈R\{0} and q=Ãb, then

v̄P
q̂(E),ψ̂

(t)= v̄PE,ψ(t).
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Proof. If q=sa,b for some a, b∈R\{0}, then

q̂(x, 0, z)= (ax, 0, abz) and ψ̂(q̂(v))= bψ(v)

for every v=(x, 0, z)∈V0. So,

v̄P
q̂(E),ψ̂

(t)= 2t
ˆ
q̂(E)

|ψ̂(v)−ψ̂(vZ−2−2t

)| dH3(v)

= 2t|b|
ˆ
q̂(E)

|ψ(q̂−1(v))−ψ(q̂−1(v)Z−(ab)−12−2t

)| dH3(v)

= 2ta2b2
ˆ
E

|ψ(v)−ψ(vZ−(ab)−12−2t

)| dH3(v)

= |ab|3/2 ·v̄PE,ψ(t+log2
√
|ab| ).

Next, if q=Ãb for some b∈R\{0}, then ψ̂(q̂(v))=ψ(v)+bx(v) for all v=(x, 0, z)∈E,

and by Lemma 2.8 we have

q̂(v)=Π(q(x, 0, z))=
(
x, 0, z− 1

2bx
2
)
.

So,

ψ̂(vZ−2t)=ψ(q̂−1(vZ−2−2t

))+bx(q̂−1(vZ−2−2t

))=ψ(q̂−1(v)Z−2−2t

)+bx(v),

and hence

v̄P
q̂(E),ψ̂

(t)= 2t
ˆ
q̂(E)

|ψ(q̂−1(v))−ψ(q̂−1(v)Z−2−2t

)| dH3(v)

= 2t
ˆ
E

|ψ(v)−ψ(vZ−2−2t

)| dH3(v)= v̄PE,ψ(t).

We end this section by recording a straightforward a-priori upper bound on v̄PE,ψ(a).

Lemma 2.13. Suppose that E⊆V0 is measurable and ψ:V0!R is smooth. Then,

v̄PE,ψ(a)⩽min

{
2a+1∥ψ∥L∞(V0), 2

−a
∥∥∥∥∂ψ∂z

∥∥∥∥
L∞(V0)

}
H3(E) for all a∈R.

Proof. For all v=(x, 0, z)∈E, we (trivially) have

|ψ(v)−ψ(vZ−2−2a

)|= |ψ(x, 0, z)−ψ(x, 0, z−2−2a)|⩽ 2∥ψ∥L∞(V0),

|ψ(v)−ψ(vZ−2−2a

)|= |ψ(x, 0, z)−ψ(x, 0, z−2−2a)|⩽ 2−2a

∥∥∥∥∂ψ∂z
∥∥∥∥
L∞(V0)

.

Recalling the definition (2.29), we obtain the desired inequality by integrating over E.
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3. Constructing surfaces and embeddings

In this section, we will prove Proposition 3.4, following the reasoning sketched in §1.2.2,
to construct surfaces that are α-far from planes at α−4 different scales. We use these

surfaces to prove the following theorem.

Theorem 3.1. For any k>1, there is a left-invariant metric ∆=∆k:H×H![0,∞)

on H and a measure space (S, µ) such that (H,∆) embeds isometrically in L1(µ) and

such that for any h=(a, b, c)∈H we have

|a|+|b|≲∆(0, h)≲ |a|+|b|+
min{

√
|c|, k}

4
√
log k

. (3.1)

If moreover 1⩽|c|⩽k2, then, in fact

∆(0, h)≍ |a|+|b|+
√
|c|

4
√
log k

. (3.2)

We will prove Theorem 3.1 in §3.1 after deriving two of its applications, and stating

Proposition 3.4. The first application of Theorem 3.1 is the proof of Theorem 1.7.

Proof of Theorem 1.7 assuming Theorem 3.1. Letting ∆ and (S, µ) be as in The-

orem 3.1, fix ξ:H!L1(µ) such that ∥ξ(g)−ξ(h)∥L1(µ)=∆(g, h) for all g, h∈H. Also,

using [3], fix m∈N and φ:H!Rm such that ∥φ(g)−φ(h)∥ℓm1 ≍
√
d(g, h) for all g, h∈H.

Suppose that ϑ⩾ 1
4 . Consider the function τ :H!L1(µ)⊕R2⊕Rm∼=L1(ν) (for a suit-

able measure ν) that is given by

τ
def
=

ξ

(log k)ϑ−1/4
⊕π⊕ φ

(log k)ϑ
. (3.3)

Since ∆ is left-invariant, every g=(x, y, z), h=(χ, υ, ζ)∈H with 1⩽d(g, h)⩽k satisfy

∥τ(g)−τ(h)∥L1(ν) ≍ |x−χ|+|y−υ|+
√
|2z−2ζ−xυ+yχ|

(log k)ϑ
, (3.4)

using (2.6) and Theorem 3.1. While (3.4) would hold even without the third component

of τ in (3.3), thanks to that component τ(HZ) is a locally-finite subset of L1(ν). Every

finite subset of L1(ν) embeds with distortion O(1) in ℓ1 (by approximating by simple

functions), so by [93], it follows that τ(HZ) admits a bi-Lipschitz embedding into ℓ1 of

distortion O(1). As the word metric dW on HZ is bounded above and below by universal

constant multiples of d, this gives Theorem 1.7 provided k is a large enough universal

constant multiple of n.
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A second application of Theorem 3.1 is to construct a left-invariant metric on HZ

with the properties of Theorem 1.9, at the cost of losing an iterated logarithm in the

associated distortion bounds that we derived in the proof of Theorem 1.9. While the

power of the iterated logarithm can be improved by taking more care in the ensuing

reasoning, some unbounded lower-order loss must be incurred here; see Remark 3.3.

Theorem 3.2. For any 2<p⩽4 there is a left-invariant metric δ=δp on HZ that

admits a bi-Lipschitz embedding into both ℓ1 and ℓq for all q⩾p, yet not into any Banach

space whose modulus of uniform convexity has power-type r for 2⩽r<p (in particular,

(HZ, δ) does not admit a bi-Lipschitz embedding into a Hilbert space or ℓs for 1<s<p).

Moreover, if we denote ϑ=1/p, then for every h=(a, b, c)∈HZ with |c|⩾3 we have

δ(0, h)≍ |a|+|b|+
√
|c|

(log |c|)ϑ(log log |c|)2
. (3.5)

Proof. Define a left-invariant metric δ:HZ×HZ![0,∞) as a superposition of the

metrics {∆k}k>0 of Theorem 3.1, by setting for every h=(a, b, c)∈HZ,

δ(0, h)
def
=

∞∑
n=1

1

n2e(4ϑ−1)n
∆ee4n (0, h). (3.6)

We will first verify (3.5), which in particular implies that the sum defining δ converges,

and hence by Theorem 3.1 we would know that δ is indeed a left-invariant metric on HZ,

and that (HZ, δ) admits an isometric embedding into ℓ1(L1(µ)). By [93], it follows from

this that (HZ, δ) also admits a bi-Lipschitz embedding into the sequence space ℓ1.

Fix h=(a, b, c)∈HZ with |c|⩾ee4 , and choose m=m(c)∈N such that

ee
4m

⩽
√

|c|<ee
4(m+1)

. (3.7)

Then,

δ(0, h)
(3.1)

≲ |a|+|b|+
∞∑
n=1

min{
√

|c|, ee4n}
n2e4ϑn

≲ |a|+|b|+
m∑
n=1

ee
4n

n2e4ϑn
+

∞∑
n=m+1

√
|c|

n2e4ϑn

≍ |a|+|b|+ ee
4m

m2e4ϑm
+

√
|c|

m2e4ϑm

(3.7)

≲ |a|+|b|+
√
|c|

(log |c|)ϑ(log log |c|)2
.

Conversely, since the sum in (3.6) is at least its summands for n=1 and n=m+1,

δ(0, h)≳ |a|+|b|+
√
|c|

(m+1)2e4ϑ(m+1)

(3.7)

≳ |a|+|b|+
√
|c|

(log |c|)ϑ(log log |c|)2
.
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This is (3.5) if |c|⩾ee4 , but then (3.5) follows formally in the remaining range 3⩽|c|<ee4

(simply use the triangle inequality to reduce the upper bound to the case of large enough

|c| that we just proved, and take only the n=1 summand in (3.6) for the lower bound).

By contrasting (3.5) with (1.9), we see that, for every integer n⩾3,

c(Bn,δ)(Bn, dW )≲ (log n)ϑ(log log n)2. (3.8)

At the same time, if 2⩽r<p andX is a Banach space whose modulus of uniform convexity

has power-type r, then by [58] we have

cX(Bn, dW )≳X (log n)1/r. (3.9)

By combining (3.8) and (3.9), we deduce that

cX(Bn, δ)≳X
(log n)1/r−ϑ

(log log n)2
=

(log n)1/r−1/p

(log log n)2
−−−−!
n!∞

∞.

Consequently, (HZ, δ) does not admit a bi-Lipschitz embedding into X.

It remains to show that (HZ, δ) admits a bi-Lipschitz embedding into ℓq for any q⩾p.

As before, finite subsets of Lq embed with distortion O(1) in ℓp (by approximating by

simple functions). Thus, due to [93], since (HZ, δ) is locally finite, it suffices to show that

(HZ, δ) admits a bi-Lipschitz embedding into Lq. By [57, Lemma 3.1], for any 0<ε< 1
2 ,

there exists a left-invariant metric ρε on HZ such that (HZ, ρε) embeds isometrically into

Lq, and

ρε(0, h)≍ |a|1−ε+|b|1−ε+ε1/q|c|(1−ε)/2 for all h=(a, b, c)∈HZ. (3.10)

Define a left-invariant metric ρ:HZ×HZ![0,∞) by setting, for every h=(a, b, c)∈HZ,

ρ(0, h)
def
=

(
|a|q+|b|q+

∞∑
n=1

1

n2qen(qϑ−1)
ρ2e−n(0, h)

q

)1/q
.

By design, (HZ, ρ) embeds isometrically into ℓq(Lq). So, the proof of Theorem 3.2 will

be complete if we show that δ(0, h)≍ρ(0, h) for all h=(a, b, c)∈HZ with, say, |c|⩾300.

To see this, by combining (3.5) and (3.10) it suffices to show that

( ∞∑
n=1

1

n2qenqϑ|c|qe−n
)1/q

≍ 1

(log |c|)ϑ(log log |c|)2
. (3.11)
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Fix s=s(c)∈N such that 2es⩽log |c|<2es+1 (this is possible because |c|⩾300). Then,( ∞∑
n=1

1

n2qenqϑ|c|qe−n
)1/q

≲

( s−1∑
k=0

1

(s−k)2qe(s−k)qϑ|c|qe−(s−k)

)1/q
+

( ∞∑
n=s+1

1

n2qenqϑ

)1/q

≍ 1

esϑ

( s−1∑
k=0

eqkϑ

(s−k)2q(|c|e−s)qek
)1/q

+
1

s2esϑ
≍ 1

s2esϑ
≍ 1

(log |c|)ϑ(log log |c|)2
,

where the final step holds by our choice of s, and the penultimate step holds as |c|e−s⩾2e

by our choice of s, and therefore the sum in question is dominated by its k=0 summand.

This proves half of the equivalence (3.11), and the remaining direction of (3.11) follows

by bounding from below the sum in the left-hand side of (3.11) by its n=s summand.

Remark 3.3. It is evident from the above proof of Theorem 3.2 that the power 2

of log log |c| in (3.5) can be improved to any fixed power that is strictly larger than 1.

However, the lower-order term cannot be removed altogether. Specifically, suppose that

d is a left-invariant metric on HZ such that every h=(a, b, c)∈HZ with |c|⩾3 satisfies

d(0, h)≍ |a|+|b|+
√
|c|

4
√
log |c|

. (3.12)

We claim that neither ℓ1 nor ℓ4 contains a bi-Lipschitz copy of (HZ, d). In fact, we

will next show that for every integer n⩾3 the word-ball Bn⊆HZ satisfies the distortion

bounds
4
√
log log n≲ cℓ1(Bn, d)≲ log log n (3.13)

and

cℓ4(Bn, d)≍
4
√
log log n. (3.14)

We conjecture that the first inequality in (3.13) is sharp.

To prove (3.13), by substituting Theorem 1.1 into [91, Lemma 33], and then sub-

stituting the resulting inequality into [91, Lemma 30], we get that there is a universal

constant κ⩾5 such that, for every integer n⩾3, every function f :HZ!ℓ1 satisfies( n2∑
c=1

1

c3

( ∑
h∈Bn

∥f(hZc)−f(h)∥ℓ1
)4)1/4

≲
∑
h∈Bκn

(∥f(hX)−f(h)∥ℓ1+∥f(hY )−f(h)∥ℓ1).

(3.15)

Suppose that D⩾1 is such that

d(g, h)⩽ ∥f(g)−f(h)∥ℓ1 ⩽Dd(g, h) for all g, h∈B2κn.
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Then, by (3.12) and (3.15), we have

D≳

( n2∑
c=3

1

c3

( √
c

4
√
log c

)4)1/4
=

( n2∑
c=3

1

c log c

)1/4
≍ 4
√
log log n. (3.16)

This proves the first inequality in (3.13). For the second inequality in (3.13) consider the

sum

d1,n=

5⌈log logn⌉∑
j=0

∆22
j

of metrics from Theorem 3.1. Then, by Theorem 3.1, the metric space (HZ, d1,n) embeds

isometrically into ℓ1 and d≲d1,n≲(log log n)d on Bn×Bn.
The proof of (3.14) is analogous. For the lower bound on cℓ4(Bn, d), use (the case

q=4 of) [58, Theorem 1.1] to get the following estimate for any function f :HZ!ℓ4:

n2∑
c=1

1

c3

( ∑
h∈Bn

∥f(hZc)−f(h)∥ℓ4
)4

≲
∑

h∈B21n

(∥f(hX)−f(h)∥2ℓ4+∥f(hY )−f(h)∥4ℓ4).

With this inequality at hand, the desired lower bound follows as in (3.16). For the upper

bound on cℓ4(Bn, d), use the following metric on HZ which embeds isometrically into ℓ4:

d4,n=

( 5⌈log logn⌉∑
j=0

∆4
22
j

)1/4
.

The above reasoning also shows mutatis mutandis that an unbounded lower-order

factor loss is needed in the compression bound (1.27) of Theorem 1.16. Specifically,

there is no mapping f :HZ!ℓ1 that is Lipschitz with respect to the word metric on

HZ and whose compression rate (recall (1.26)) satisfies ωf (s)≳s/ 4
√
log s when s⩾2. It

would be worthwhile to obtain a characterization of the possible compression rates of

embeddings of HZ into ℓ1 in the spirit of [91, Theorem 9], but this would require more

work. Specifically, one would need to replace the use in [91] of [105, Corollary 5] by a

better embedding of HZ into ℓ1; we expect that the existence of such an embedding could

be deduced using the ideas of the present section, but we did not attempt to carry this

out.

The main ingredient in the proof of Theorem 3.1 is the following proposition, which

is proved in §3.2. It constructs a function ψ:V0!R whose intrinsic graph has small

horizontal perimeter but large vertical perimeter due to bumps at many different scales.

Here and throughout the rest of this section, we denote the unit square in V0 by U , i.e.,

U
def
= [0, 1]×{0}×[0, 1]⊆V0.
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Proposition 3.4. There are universal constants ρ,R, r∈R with R>r and ρ>22(R−r)

such that, for any α∈N, there is a smooth function ψ:V0!R that has the following prop-

erties.

(1) ψ is periodic with respect to the integer lattice Z×{0}×Z of V0.

(2) ∥∂ψψ∥L2(U)≲1.

(3) ∥ψ∥L∞(V0)⩽1/α2.

(4) v̄PU,ψ(a)≳1/α for any integer 0⩽n<α4 and any a∈I+log2(αρ
n), where I=[r,R].

Hence,

∥v̄PU,ψ∥L1([log2(αρ
n)+r,log2(αρ

n)+R]) ≳
1

α
,

(5) For any q>0, we have

∥v̄PU,ψ∥Lq(R) ≳α4/q−1. (3.17)

(6) v̄PU,ψ(a)≲min{1/α, 2a/α2} for any a∈R.

By Proposition 2.1, the second assertion of Proposition 3.4 implies that H3(∂E)≲1,

where E is the epigraph of the restriction of ψ to the unit square U⊆V0. In combination

with Proposition 3.4 (5), since α can be arbitrarily large, this shows that the L4(R) norm
in (1.31) cannot be replaced by Lq(R) for any q∈(0, 4); as explained in the introduc-

tion, this also implies the optimality of Theorem 1.1. Furthermore, since the Lq-variant

of (1.31) is a consequence of the Lq-variant of (1.32), Proposition 3.4 also implies that,

for any q∈(0, 4), there is λ∈(0, 1) such that, for any c>0, there is an intrinsic λ-Lipschitz

graph Γ satisfying

∥v̄B1(0)(Γ
+)∥Lq(R) ⩾ c.

We expect that the construction in §3.2 can be modified to produce an intrinsic Lipschitz

graph directly (for instance, by stopping the construction early in regions where ∂ψψ gets

too large), but this is not needed here, so we leave the details to future work.

Proposition 3.4 (5) follows directly from Proposition 3.4 (4). Indeed, since ρ>22(R−r),

the intervals {[log2(αρn)+r, log2(αρn)+R]}n∈Z are disjoint. Consequently,

∥v̄PU,ψ∥
q
Lq(R) ⩾

α4−1∑
n=0

∥v̄PU,ψ∥
q
Lq([log2(αρ

n)+r,log2(αρ
n)+R])

⩾
α4−1∑
n=0

1

(R−r)q−1
∥v̄PU,ψ∥

q
L1([log2(αρ

n)+r,log2(αρ
n)+R]) ≳α4−q,

(3.18)

where the penultimate step is an application of Jensen’s inequality and the final step

holds because R−r>0 is a constant and, by Proposition 3.4 (4), each of the summands

is at least a universal constant multiple of α−q.
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3.1. Obtaining an embedding from an intrinsic graph

Here we show how Theorem 3.1 follows from Proposition 3.4. Let ρ, r,R>0 be the

universal constants of Proposition 3.4. Without loss of generality, we may take k>8. Let

α∈N be the unique integer satisfying

4

√
logρ

(
1
8k
)
⩽α< 1+ 4

√
logρ

(
1
8k
)
. (3.19)

Let ψ=ψα be the function produced by Proposition 3.4. Write Γ=Γψ and Γ+=Γ+

ψ.

Denote by A⊆V0∩HZ the discrete subgroup that is generated by X and Z, so that as a

subset of R3 we have A=Z×{0}×Z. For every p∈H define, for all h1, h2∈H,

λp(h1, h2)
def
= |1p−1Γ+(h1)−1p−1Γ+(h2)|=

{
1, if |{ph1, ph2}∩Γ+|=1,

0, otherwise.

By the A-periodicity of ψ, we have aΓ=Γ and λap(h1, h2)=λp(h1, h2) for all a∈A and

p, h1, h2∈H. We can therefore define λp also when p is an equivalence class in the quotient

A\H. Consider the following fundamental domain for A:

P
def
= {XaZcY b : a, c∈ [0, 1) and b∈R}=

{(
a, b, c+ 1

2ab
)
: (a, b, c)∈ [0, 1)×R×[0, 1)

}
.

We may define l:H×H![0,∞) by

l(h1, h2)
def
=

ˆ
AnH

λp(h1, h2) dH4(p)=

ˆ
P

λp(h1, h2) dH4(p).

Since H is a unimodular group (namely, one directly checks that the Lebesgue measure

H4 is a bi-invariant Haar measure on H), and λp(gh1, gh2)=λpg(h1, h2), we have

l(gh1, gh2)= l(h1, h2) for all g, h1, h2 ∈H,

i.e., l is a left-invariant semi-metric on H.

Lemma 3.5. For every a∈R we have l(0, Z2−2a

)=2−a ·v̄PU,ψ(a).

Proof. For v∈V0 and b∈R, we have vY b∈Γ+ if and only if b>ψ(v). So, for any c>0,

λvY b(0, Z
c)=λ0(vY

b, vZcY b)=

{
1, if ψ(v)<b⩽ψ(vZc) or ψ(vZc)<b⩽ψ(v).

0, otherwise.

Consequently, ˆ
R
λvY b(0, Z

c) db= |ψ(vZc)−ψ(v)|.

Therefore, fixing a∈R and denoting c=2−2a, we see that

l(0, Z2−2a

)=

ˆ
P

λp(0, Z
c) dp=

ˆ
R

ˆ
U

λvY b(0, Z
c) dv db

=

ˆ
U

|ψ(vZc)−ψ(v)| dv=2−a ·v̄PU,ψ(a).



foliated corona decompositions 105

For every θ∈[0, 2π) let Rθ:H!H be the rotation around the z -axis by angle θ.

Define the following left-invariant semi-metric on H, which is also (by design) invariant

under the family of {Rθ :θ∈[0, 2π)} automorphisms of H:

M(h1, h2)
def
=

ˆ 2π

0

l(Rθ(h1), Rθ(h2)) dθ for all h1, h2 ∈H.

Lemma 3.6. For every w∈H we have M(0, w)≲∥w∥.

Proof. By the rotation-invariance of M , it suffices to show that M(0, Xt)≲|t| for
all t. In fact, by the left-invariance of M and the triangle inequality, it suffices to prove

that M(Xt, X−t)≲t for 0<t< 1
4 .

Let L0=⟨X⟩⊆H be the x-axis. Recall that Lp,θ=pRθ(L0) for p∈H and θ∈[0, 2π).
The map (p, θ) 7!(Lp,θ, p) is a bijection between H×[0, π) and the set of pointed lines

L#={(L, p):L∈L and p∈L}.
By the above definitions, we have

M(X−t, Xt)=

ˆ 2π

0

ˆ
P

λp(Rθ(X
−t), Rθ(X

t)) dH4(p) dθ.

Let K⊆P×[0, 2π) be the set of pairs (p, θ) such that Lp,θ intersects Γ transversally,

i.e., Lp,θ crosses the tangent plane of Γ at every intersection. Since Γ is smooth, the

complement of K has measure zero.

Let U ′=B8(0)∩V0. Let (p, θ)∈K be such that λp(Rθ(X
−t), Rθ(X

t)) ̸=0. Then, the

line segment from pRθ(X
−t) to pRθ(X

t) crosses Γ at some point g∈Γ; we claim that

Π(g)∈U ′.

By Proposition 3.4 (3), we have ∥ψ∥L∞(V0)⩽1, so |y(g)|⩽1 and |y(p)|⩽|y(g)|+t⩽2.

Since p∈P , there are a, b, c∈R such that p=XaZcY b, and these satisfy |a|⩽1, |c|⩽1, and

|b|=|y(p)|⩽2. By (2.6),

d(0, g)⩽ |a|+4
√

|c|+|b|⩽ 7

and

d(0,Π(g))⩽ d(0, g)+|y(g)|⩽ 8,

so Π(g)∈U ′.

Let Γ(U ′)=Γ∩Π−1(U ′)=Γψ|U ′ and, for L∈L, let

IL= {p∈L : d(p, L∩Γ(U ′))⩽ t}.

We have seen above that, if (p, θ)∈K and λp(Rθ(X
−t), Rθ(X

t)) ̸=0, then there is some

g∈Lp,θ∩Γ(U ′) such that d(p, g)⩽t. That is, p∈ILp,θ . Furthermore, if L intersects Γ

transversally, then

H1(IL)⩽ 2t|L∩Γ(U ′)|=2tPerΓ+∩L(Π
−1(U ′)).
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Hence,

M(X−t, Xt)=

ˆ 2π

0

ˆ
P

λp(Rθ(X
−t), Rθ(X

t)) dH4(p) dθ
(2.27)

≲
ˆ
L
H1(IL) dN (L)

≲ t

ˆ
L
PerΓ+∩L(Π

−1(U ′)) dN (L)
(2.24)
≍ tPerΓ+(Π−1(U ′))≲ t,

where PerΓ+(Π−1(U ′))≲1, by Proposition 2.1 and Proposition 3.4 (2).

Next, define a left-invariant semi-metric Λ on H by

Λ(h1, h2)
def
=

ˆ R+log2 ρ

r−log2 ρ

2aM(s2−a(h1), s2−a(h2)) da for all h1, h2 ∈H.

Lemma 3.7. For all c>0 we have

Λ(0, Zc)=Λ(0, Z−c)≲min

{√
c

α
,
1

α2

}
.

Also, for all
1

α2ρ2α4 ⩽ c⩽
1

α2
,

we have

Λ(0, Zc)=Λ(0, Z−c)≳

√
c

α
.

Proof. Write c=2−2t for some t∈R. Since Λ is a left-invariant metric,

Λ(0, Zc)=Λ(0, Z−c).

By Lemma 3.5, we have the following identity:

Λ(0, Zc)= 2π

ˆ R+log2 ρ

r−log2 ρ

2al(0, Z2−2(t+a)

) da=2π2−t
ˆ R+log2 ρ

r−log2 ρ

v̄PU,ψ(t+a) da. (3.20)

So,

Λ(0, Zc)≲min

{√
c

α
,
1

α2

}
for c∈(0,∞), by (3.20) and the final assertion of Proposition 3.4.

If
1

α2ρ2α4 ⩽ c⩽
1

α2
,

then t∈[log2(αρn), log2(αρn+1)] for some integer 0⩽n<α4. Hence,

[t−log2 ρ+r, t+log2 ρ+R]⊇ [log2(αρ
n)+r, log2(αρ

n)+R],

so (3.20) implies that

Λ(0, Zc)⩾ 2π2−t∥v̄PU,ψ∥L1([log2(αρ
n)+r,log2(αρ

n)+R]) ≳

√
c

α
,

where the final step is the third assertion of Proposition 3.4 (and the definition of t).
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Lemma 3.8. Λ(h1, h2)≲d(h1, h2) for all h1, h2∈H.

Proof. By Lemma 3.6, we have M(0, Xt)≲|t| for any t∈R, so

Λ(0, Xt)=

ˆ R+log2 ρ

r−log2 ρ

2aM(0, X2−at) da≲ t(R−r+2 log2 ρ)≲ |t|.

Therefore, also Λ(0, Y t)=Λ(0, Xt)≲|t|, by the rotation-invariance of Λ. Since Λ is left-

invariant, it suffices to show that Λ(0, h)≲d(0, h) for all h∈H. Any h∈H can be written

as h=XaY b[Xc, Y c] for a, b, c∈R satisfying |a|, |b|, |c|≲d(0, h), so

Λ(0, h)⩽Λ(0, Xa)+Λ(0, Y b)+2Λ(0, Xc)+2Λ(0, Y c)≲ d(0, h).

Proof of Theorem 3.1. Define a semi-metric ∆ on H by setting, for every h1, h2∈H,

∆(h1, h2)
def
= kαΛ(s1/kα(h1), s1/kα(h2))+

√
(x(h1)−x(h2))2+(y(h1)−y(h2))2. (3.21)

Observe that (H,∆) embeds isometrically into L1, because Λ is an integral of so-called cut

semi-metrics (see e.g. [28, 4.1] for the definition). Such semi-metrics embed isometrically

into R, so an integral of cut semi-metrics embeds isometrically in L1. By construction,

Λ is both left-invariant and invariant under the rotations {Rθ :θ∈[0, 2π]}.
Suppose that v=(a, b, c)∈H and let w=(a, b, 0) be such that w∈H and v=wZc. By

Lemma 3.6 and the second part of Lemma 3.7, we have

|a|+|b|≲∆(0, v)⩽∆(0, w)+∆(0, Zc)≲ |a|+|b|+
min{

√
|c|, k}

α
.

Recalling that α≍ 4
√
log k is given in (3.19), this establishes (3.1).

To prove Theorem 3.1, it therefore remains to establish (3.2), i.e.,

1⩽ |c|⩽ k2 implies ∆(0, v)≳ |a|+|b|+
√
|c|
α

. (3.22)

By Lemma 3.8, there is L>0 such that ∆(h1, h2)⩽Ld(h1, h2) for any h1, h2∈H. By the

first part of Lemma 3.7, there is C>0 such that ∆(0, Zc)⩾C
√
c/α for all 1⩽c⩽k2. On

one hand, if ∥w∥⩾C
√
|c|/2Lα, then ∆(0, v)⩾∥w∥≍|a|+|b|+

√
|c|/α. On the other hand,

if ∥w∥<C
√
|c|/2Lα, then

∆(0, v)⩾∆(0, Zc)−∆(0, w)⩾
C
√
c

α
−L∥w∥⩾

C
√
|c|

2α
≳ |a|+|b|+

√
|c|
α

.

In either case, (3.22) holds.
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3.2. Constructing a bumpy intrinsic graph

In this section, we prove Proposition 3.4. We start with a brief overview of our strategy.

As sketched in §1.2.2, we will prove Proposition 3.4 by constructing a smooth function

ψ:V0!R whose intrinsic graph is roughly α−1-far from a vertical plane at α4 different

scales. Specifically, for a suitable choice of universal constant ρ>1, we will construct ψ

as a sum ψ=
∑α4−1
i=0 βi. Each of the summands βi:V0!R will itself be a sum of smooth

bump functions of amplitude ∥βi∥L∞(V0)≍α−2ρ−i that are supported on regions whose

width (x-coordinate) is ρ−i and whose height (z -coordinate) is roughly α−2ρ−2i; their

aspect ratio is therefore roughly

ρ−i√
α−2ρ−2i

≍α.

These regions cover V0 and have disjoint interiors. We will see that the bumpiness of βi

at scale α−2ρ−2i implies the desired lower bounds on v̄PU,ψ(t) when t is near log2(αρ
i).

In order to ensure that ∥∂ψψ∥L2(U) is bounded, we construct βi iteratively. For

i∈N, we set ψi=
∑i−1
j=0 βj and align the long axis of the bump functions making up βi

with the characteristic curves of Γψi . This ensures that the characteristic curves of Γψ

cross the bumps from left to right. Since ∂ψf measures the change in f :V0!R along

the characteristic curves of Γψ and each bump has amplitude roughly α−2ρ−i and width

ρ−i, we have |∂ψβi|≲α−2ρ−i/ρ−i≍α−2.

This iterative procedure is one of the motivations for the definition of a foliated

corona decomposition. A foliated corona decomposition of an arbitrary intrinsic graph Γ

can be viewed as a sequence of partitions of V0 into regions as above, where the pieces of

the partition are aligned with the characteristic curves of Γ. One can use these partitions

to reconstruct Γ as a sum of perturbations, just as we constructed ψ as a sum of bump

functions. Theorem 1.18 then states that any intrinsic Lipschitz graph can be constructed

by such a process.

This construction also demonstrates the importance of the aspect ratio. If the

construction is modified so that the bump functions making up βi are supported on

regions of aspect ratio αi, then ∥∂ψβi∥L2(U)≍α−2
i . If the scales of the bump functions

are sufficiently separated, then {∂ψβi}i⩾0 are roughly orthogonal in L2(U) and

∥∂ψψ∥2L2(U) ≍
∑
i⩾0

∥∂ψβi∥2L2(U) ≍
∑
i⩾0

α−4
i .

For ψ to be intrinsic λ-Lipschitz, we must have ∥∂ψψ∥2L2(U)≲λ1, which necessitates that∑
i

α−4
i⩾0 ≲λ 1.
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This motivates the α(Q)−4 factor in the weighted Carleson condition (1.34).

We next set some notation in preparation for the proof of Proposition 3.4. If the

function ψ:V0!R is smooth, then the vector field

Mψ
def
=

∂

∂x
−ψ ∂

∂z

corresponding to ∂ψ is smooth (recall the definitions in §2.2). The flow lines of Mψ are

the characteristic curves of Γψ, which foliate V0 (recall the terminology in §2.3). For

s∈R, let Φ(ψ)s:V0!V0 be the flow of Mψ, so that Φ(ψ)0=idV0
and such that for any

v∈V0, the curve s 7!Φ(ψ)s(v) is a characteristic curve of Γψ.

Denote ψ0≡0 and let Γ0=Γψ0
=V0. This function and graph are periodic with

respect to Z×{0}×Z and ψ0 is zero on ∂U . Suppose that i⩾0 and that ψi:V0!R is

smooth, periodic with respect to Z×{0}×Z, and zero on ∂U . We construct ψi+1:V0!R
as follows. Let

Gi
def
= {(mρ−i, 0, nα−2ρ−2i) :m,n∈Z}⊆V0. (3.23)

Label the points inGi arbitrarily as vi,1, vi,2, ..., and note that the points U∩{vi,1, vi,2, ... }
form a ρi×α2ρ2i grid in U . For each j∈N and s, t∈R, define

Ri,j(s, t)
def
= Φ(ψi)s(vi,jZ

t)∈V0. (3.24)

EachRi,j is a diffeomorphism from R2 to V0. For any s0, t0∈R, the imageRi,j(s0×R)
is a vertical line and Ri,j(R×t0) is a characteristic curve of Γψi . Using the terminology

of foliated patchworks that we will introduce in §4, the map Ri,j sends rectangles in V0

to pseudoquads of Γψi (regions in V0 that are bounded by characteristic curves of Γψi
above and below, and by vertical line segments on either side). Denote

Qi,j
def
= Ri,j([0, ρ

−i]×[0, α−2ρ−2i])⊆V0. (3.25)

Thus, Qi,j is a pseudoquad whose lower-left corner is vi,j . The sets Qi,1, Qi,2, ... cover V0

and have disjoint interiors. They are obtained by cutting V0 into vertical strips of width

ρ−i, then cutting each vertical strip along characteristic curves separated by α−2ρ−2i.

Since ψi is zero on ∂U , the top and bottom edges of U are characteristic curves of

Γψi . The bottom boundary of each Qi,0 and the top boundary of Qi,α2ρ2i−1 thus lie in

∂U , and the Qi,j ’s partition U (up to overlap on boundaries). In particular, the resulting

partition of V0 is periodic with respect to Z×{0}×Z.
Note, however, that the Qi,j ’s from one step in this construction generally do not

partition the Qi,j ’s from another step. One can modify the construction so that the

partitions in each step are nested, as in Figure 2, but it requires some additional care.
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Let β:V0!R be a smooth function supported on the unit square U such that β is

not identically zero and its partial derivatives of order at most 2 are all in the interval

[−1, 1]. Fix also α, ρ∈N with ρ>1. Define βi,j :V0!R by setting it to be zero on V0\Qi,j
and, for all Ri,j(s, t)∈Qi,j ,

βi,j(Ri,j(s, t))
def
= α−2ρ−iβ(ρis, 0, α2ρ2it). (3.26)

Thus, βi,j is a bump function supported on Qi,j . Write

βi
def
=

∞∑
j=1

βi,j , (3.27)

and

ψi+1
def
= ψi+βi. (3.28)

Since Qi,1, Qi,2, ... have disjoint interiors,

∥ψi+1∥L∞(V0) ⩽ ∥ψi∥L∞(V0)+α
−2ρ−i,

so by induction we have

∥ψi∥L∞(V0) ⩽
α−2

ρ−1
⩽α−2. (3.29)

Since the Qi,j ’s form a periodic partition of V0, ψi+1 is periodic. Since ∂U is contained

in the boundaries of the Qi,j , we have ψi+1|∂U=ψi|∂U=0.

Thus, by induction, for any integer i⩾0, ψi satisfies the first and third assertions (pe-

riodicity and L∞ boundedness) of Proposition 3.4. We will show that if ρ is large enough

(depending only on β), then ψ=ψα4 satisfies the remaining assertions of Proposition 3.4,

namely, the stated upper bounds on ∂ψψ and lower bounds on v̄PU,ψ(a).

3.2.1. The horizontal perimeter of Γψi

In this section, we prove the second assertion of Proposition 3.4 by bounding ∥∂ψiψi∥L2(U).

This bound, combined with Proposition 2.1, gives an upper bound on H3(Γψi|U ).

Write for simplicity ∂i
def
= ∂ψi and let Di

def
= ∂i+1ψi+1−∂iψi. For f, g∈L2(U) we write

⟨f, g⟩U
def
=

ˆ
U

fg dH3.

Lemma 3.9. For every ρ⩾5 and α⩾1,

∥Di∥L∞(V0) ≲α−2 for all i∈N,

and

|⟨Dm, Dn⟩U |≲α−4ρm−n for all m,n∈N.
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Note that Lemma 3.9 implies that, for every i∈N,

∥∂ψiψi∥L2(U) ≲

√
i

α2
. (3.30)

Thus, ∥∂ψiψi∥L2(U)≲1 for i≲α4, i.e., the second assertion of Proposition 3.4 holds true.

To deduce (3.30) from Lemma 3.9, write

∂ψiψi=

i−1∑
n=0

Dn, (3.31)

and expand the squares to get

∥∂ψiψi∥2L2(U) =

i−1∑
n=0

∥Dn∥2L2(U)+2

i−1∑
m=0

i−1∑
n=m+1

⟨Dm, Dn⟩

≲
i−1∑
n=0

α−4+

i−1∑
m=0

∞∑
k=1

α−4ρ−k ≍ iα−4,

where the penultimate step is Lemma 3.9 and the final step holds because ρ⩾2.

Fix an integer i⩾0 and note that

Di= ∂i+1ψi+1−∂iψi=(∂i+1−∂i)ψi+1+∂iβi=−βi
∂ψi+1

∂z
+∂iβi. (3.32)

We will prove Lemma 3.9 by bounding the terms in the right-hand side of (3.32) sepa-

rately. To this end, it will be convenient to define as follows a system of flow coordinates

on Qi,j .

Fix i∈N∪{0} and j∈N. Write for simplicity (x0, 0, z0)=vi,j , Q=Qi,j , and R=Ri,j .

Denote R−1=(s, t):Q!R2 and let (x, 0, z):Q!R2 be the standard coordinate system.

Then, s and t are functions of x and z and, conversely, x and z are functions of s and t.

Recalling the differential equation (2.17) for characteristic curves, we have

x=x0+s and z= z0+t−
ˆ s

0

ψi(R(σ, t)) dσ.

Consequently, 
∂x

∂s

∂x

∂t

∂z

∂s

∂z

∂t

=

(
1 0

−ψi 1−
ˆ s

0

∂ψi
∂t

(R(σ, t)) dσ

)
, (3.33)

where, for every f :R2
!R, the partial derivatives ∂f/∂s and ∂f/∂t denote ∂s[f �R] and

∂t[f �R], respectively. In particular, it follows that

∂s

∂z
=0 and

∂z

∂t
· ∂t
∂z

=1.
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Also,
∂

∂s
=

∂

∂x
−ψi

∂

∂z
= ∂i, (3.34)

so ∂/∂s does not depend on j.

Observe that, by the definition of βi, for all s, t∈[0, ρ−i]×[0, α−2ρ−2i], we have

βi(Ri,j(s, t))=α−2ρ−iβ(ρis, 0, α2ρ2it).

It follows that, for any m,n∈N∪{0}, we have∥∥∥∥ ∂m∂sm ∂n

∂tn
βi

∥∥∥∥
L∞(Qi,j)

=α−2ρ−iρmi(α2ρ2i)n
∥∥∥∥ ∂m∂xm ∂n

∂zn
β

∥∥∥∥
L∞(U)

. (3.35)

This is especially useful when m+n⩽2, since in this case∥∥∥∥ ∂m∂xm ∂n

∂zn
β

∥∥∥∥
L∞(U)

⩽ 1.

Thus, ∥∥∥∥∂βi∂t
∥∥∥∥
L∞(Qi,j)

⩽ ρi and

∥∥∥∥∂2βi∂t2

∥∥∥∥
L∞(Qi,j)

⩽α2ρ3i. (3.36)

Furthermore, since {Qi,j}∞j=1 cover V0,

∥∂iβi∥L∞(V0) =max
j∈N

∥∂iβi∥L∞(Qi,j)
(3.34)
= max

j∈N

∥∥∥∥∂βi∂s
∥∥∥∥
L∞(Qi,j)

(3.35)

⩽ α−2. (3.37)

The following lemma obtains bounds on vertical derivatives that will be used later.

Lemma 3.10. If ρ⩾8, then for all i∈N∪{0} we have∥∥∥∥∂ψi∂z

∥∥∥∥
L∞(V0)

⩽ 2ρi−1 (3.38)

and ∥∥∥∥∂2ψi∂z2

∥∥∥∥
L∞(V0)

⩽ 2α2ρ3i−3. (3.39)

Furthermore, if (s, t) are the above flow coordinates on Qi,j for some j∈N, then the

following bound holds pointwise on Qi,j :

3

4
<e−2ρ−1

⩽
∂t

∂z
=

(
∂z

∂t

)−1

⩽ e2ρ
−1

<
4

3
. (3.40)
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Proof. Denote, for every integer i⩾0,

mi
def
=

∥∥∥∥∂ψi∂z

∥∥∥∥
L∞(V0)

and µi
def
=

∥∥∥∥∂2ψi∂z2

∥∥∥∥
L∞(V0)

. (3.41)

Thus, m0=µ0=0. Fix j∈N and let (s, t) be the flow coordinates on Qi,j . We will first

use the above identities to deduce bounds on vertical derivatives of t in terms of mi, µi,

and then bootstrap these bounds to deduce the desired bounds on mi, µi themselves.

By (3.33), the following identity holds pointwise on Qi,j :

∂

∂s

∂z

∂t
=−∂ψi

∂t
=−∂ψi

∂z

∂z

∂t
− ∂ψi
∂x

∂x

∂t
=−∂ψi

∂z

∂z

∂t
.

Consequently,
∂

∂s

(
log

∂z

∂t

)
=−∂ψi

∂z
.

Since ∂z
∂t=1 when s=0, we integrate to get the identity

∂z

∂t
=exp(−

ˆ s

0

∂ψi
∂z

(Ri,j(σ, t)) dσ). (3.42)

By differentiating (3.42), we also get

∂2z

∂t2
=−∂z

∂t

ˆ s

0

∂2ψi
∂z2

(Ri,j(σ, t))
∂z

∂t
(Ri,j(σ, t)) dσ. (3.43)

For points in Qi,j , we have |s|⩽ρ−i, so it follows from (3.42) that∣∣∣∣log ∂z∂t
∣∣∣∣⩽ ρ−imi,

i.e.,

e−ρ
−imi ⩽

∂z

∂t
⩽ eρ

−imi . (3.44)

By substituting (3.44) into (3.43), we deduce that∣∣∣∣∂2z∂t2
∣∣∣∣⩽ ρ−ie2ρ

−imiµi. (3.45)

Since
∂z

∂t
· ∂t
∂z

=1,

it follows from (3.44) that

e−ρ
−imi ⩽

∂t

∂z
⩽ eρ

−imi , (3.46)
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and also ∣∣∣∣ ∂2t∂z2

∣∣∣∣= ∣∣∣∣−(∂z∂t
)−3

∂2z

∂t2

∣∣∣∣
(3.44)

(3.45)

⩽ ρ−ie5ρ
−imiµi. (3.47)

The bounds (3.46) and (3.47) on the vertical derivatives of the flow coordinate t are

in terms of the bounds mi and µi on the vertical derivatives of ψi, but they imply as

follows unconditional bounds on mi and µi (hence also, by (3.46) and (3.47) once more,

unconditional bounds on the vertical derivatives of t). Firstly, observe that∥∥∥∥∂βi∂z

∥∥∥∥
L∞(Qi,j)

⩽

∥∥∥∥∂βi∂t
∥∥∥∥
L∞(Qi,j)

∥∥∥∥ ∂t∂z
∥∥∥∥
L∞(Qi,j)

(3.36)

(3.46)

⩽ ρieρ
−imi

and ∥∥∥∥∂2βi∂z2

∥∥∥∥
L∞(Qi,j)

=

∥∥∥∥ ∂∂z ∂t∂z ∂βi∂t
∥∥∥∥
L∞(Qi,j)

=

∥∥∥∥ ∂2t∂z2
∂βi
∂t

+

(
∂t

∂z

)2
∂2βi
∂t2

∥∥∥∥
L∞(Qi,j)

(3.36)

(3.46)

(3.47)

⩽ ρ−ie5ρ
−imiµiρ

i+e2ρ
−imiα2ρ3i= e5ρ

−imiµi+e
2ρ−imiα2ρ3i.

Since {Qi,j}∞j=1 cover V0, it follows that∥∥∥∥∂βi∂z

∥∥∥∥
L∞(V0)

⩽ ρieρ
−imi and

∥∥∥∥∂2βi∂z2

∥∥∥∥
L∞(V0)

⩽ e5ρ
−imiµi+e

2ρ−imiα2ρ3i.

Since, by (3.28), we have

∂ψi+1

∂z
=
∂ψi
∂z

+
∂βi
∂z

and
∂2ψi+1

∂z2
=
∂2ψi
∂z2

+
∂2βi
∂z2

,

we deduce that

mi+1 ⩽mi+ρ
ieρ

−imi and µi+1 ⩽µi+e
5ρ−imiµi+e

2ρ−imiα2ρ3i. (3.48)

By induction, we suppose that (3.38) and (3.39) hold for some integer i⩾0, that is,

mi⩽ 2ρi−1 and µi⩽ 2α2ρ3i−3. (3.49)

Since ρ⩾8, it follows that

mi+1

(3.48)

(3.49)

⩽

(
2

ρ
+e2ρ

−1

)
ρi⩽

(
1

4
+ 4
√
e

)
ρi⩽ 2ρi.

Thus (3.38) holds for all integers i⩾0. Likewise,

µi+1

(3.48)

(3.49)

⩽

(
2

ρ3
+
2e10ρ

−1

ρ3
+e4ρ

−1

)
α2ρ3i⩽

(
2

83
+
2e5/4

83
+
√
e

)
α2ρ3i⩽ 2α2ρ3i,

so (3.39) also holds for all integers i⩾0. The remaining assertion (3.40) follows by

substituting the above bound on mi into (3.46).
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Next, we will use the bounds of Lemma 3.10 to bound {Di}∞i=0 and their derivatives.

Lemma 3.11. Suppose that ρ⩾8. For every integer i⩾0 we have

∥Di∥L∞(V0) ⩽ 3α−2, (3.50)∥∥∥∥∂Di

∂z

∥∥∥∥
L∞(V0)

⩽ 6ρ2i, (3.51)

∥∂iDi∥L∞(V0) =5α−2ρi. (3.52)

Proof. Fix j∈N. Let (s, t) be the flow coordinates on Qi,j . By (3.32) and (3.34), we

have

Di=−βi
∂ψi+1

∂z
+
∂βi
∂s

. (3.53)

Therefore, by Lemma 3.10 and (3.35), we have

∥Di∥L∞(Qi,j) ⩽α−2ρ−i ·2ρi+α−2 =3α−2.

This proves (3.50), because {Qi,j}∞j=1 cover V0.

Next, we consider ∂Di/∂z. By differentiating (3.53), we see that

∂Di

∂z
=− ∂t

∂z
· ∂βi
∂t

· ∂ψi+1

∂z
−βi

∂2ψi+1

∂z2
+
∂t

∂z
· ∂

2βi
∂s∂t

.

Hence, by Lemma 3.10 and (3.35), we see that∥∥∥∥∂Di

∂z

∥∥∥∥
L∞(Qi,j)

⩽
4

3
·ρi ·2ρi+α−2ρ−i ·2α2ρ3i+

4

3
·ρ2i=6ρ2i.

As before, this proves (3.51), because {Qi,j}∞j=1 cover V0.

Finally, we consider ∂iDi. Note first that, for any m∈N,∥∥∥∥∂(∂mψm)

∂z

∥∥∥∥
∞

(3.31)

⩽
m−1∑
n=0

∥∥∥∥∂Dn

∂z

∥∥∥∥
∞

(3.51)

⩽ 6
ρ2m−1

ρ2−1
⩽ 7ρ2m−2, (3.54)

where we used the assumption ρ⩾8. Recalling (3.32) and (3.34), we have

∂iDi=
∂

∂s

(
−βi

∂ψi+1

∂z
+
∂βi
∂s

)
=−∂βi

∂s
· ∂ψi+1

∂z
−βi

∂

∂s

(
∂ψi+1

∂z

)
+
∂2βi
∂s2

.

Using Lemma 3.10 and (3.35), it follows that

∥∂iDi∥L∞(Qi,j) ⩽ 3α−2ρi+α−2ρ−i
∥∥∥∥ ∂∂s ∂ψi+1

∂z

∥∥∥∥
L∞(Qi,j)

. (3.55)
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To bound the last term in (3.55), we first calculate the Lie bracket[
∂

∂z
,
∂

∂s

]
=

[
∂

∂z
,
∂

∂x
−ψi

∂

∂z

]
=−∂ψi

∂z
· ∂
∂z
.

This implies that

∂

∂s

∂ψi+1

∂z
=

∂

∂z

(
∂ψi+1

∂s

)
+
∂ψi
∂z

· ∂ψi+1

∂z

=
∂

∂z

(
∂iψi+

∂βi
∂s

)
+
∂ψi
∂z

· ∂ψi+1

∂z
=
∂(∂iψi)

∂z
+
∂t

∂z
· ∂

2βi
∂s∂t

+
∂ψi
∂z

· ∂ψi+1

∂z
.

Therefore, by Lemma 3.10, (3.35), (3.51), and (3.54), we conclude that, since ρ⩾8,∥∥∥∥ ∂∂s ∂ψi+1

∂z

∥∥∥∥
L∞(Qi,j)

⩽ 7ρ2i−2+
4

3
·ρ2i+2ρi−1 ·2ρi⩽ 2ρ2i.

Due to (3.55), this implies the final desired bound (3.52) of Lemma 3.11.

The first assertion (3.50) of Lemma 3.11 gives the first assertion of Lemma 3.9. To

prove the second assertion of Lemma 3.9, we first bound the variation of Dm on each of

the pseudoquads {Qn,j}∞j=1 when n⩾m.

Lemma 3.12. Fix two integers n⩾m⩾0. For any j∈N and any w,w′∈Qn,j , we

have

|Dm(w)−Dm(w′)|≲α−2ρm−n.

Proof. Let R=Rn,j and let (s, t), (s′, t′)∈[0, ρ−n]×[0, α−2ρ−2n] be such that

R(s, t)=w and R(s′, t′)=w′.

With respect to flow coordinates on Qn,j , we have

∂Dm

∂s
= ∂nDm= ∂mDm+(ψm−ψn)

∂Dm

∂z
.

Since ∥ψm−ψn∥L∞(V0)⩽α
−2ρ−m+α−2ρ−n⩽2α−2ρ−m, using Lemma 3.11 we get that∥∥∥∥∂Dm

∂s

∥∥∥∥
L∞(Qn,j)

⩽ 5α−2ρm+2α−2ρ−m ·6ρ2m=17α−2ρm.

Hence, using Lemmas 3.10 and 3.11, we conclude that

|Dm(w)−Dm(w′)|⩽
∥∥∥∥∂Dm

∂s

∥∥∥∥
L∞(Qn,j)

|s−s′|+
∥∥∥∥∂Dm

∂z

∥∥∥∥
L∞(Qn,j)

∥∥∥∥∂z∂t
∥∥∥∥
L∞(Qn,j)

|t−t′|

⩽ 17α−2ρm−n+6ρ2m · 4
3
·α−2ρ−2n≲α−2ρm−n.
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Prior to proving Proposition 3.4, we record a quick consequence of Green’s theorem.

Lemma 3.13. Let M⊆V0 be a region bounded by a simple piecewise-smooth closed

curve and let f :V0!R be a smooth function. Then,

ˆ
M

∂ff dw=

ˆ
∂M

(
f2

2
, f

)
· dr.

In particular, if g:V0!R is another smooth function such that f=g on ∂M , then

ˆ
M

∂ff dw=

ˆ
M

∂gg dw.

Proof. Since

∇×
(
f2

2
, f

)
=
∂f

∂x
−f ∂f

∂z
= ∂ff,

the lemma follows from Green’s theorem.

Proof of Lemma 3.9. The first assertion of Lemma 3.9 was proved in Lemma 3.11,

so here we treat its second assertion, namely that {Dn}∞n=0 are almost-orthogonal.

Fix m,n∈N∪{0} with n⩾m and j∈N. As ψn+1−ψn=βn=0 on ∂Qn,j , Lemma 3.13

implies that
´
Qn,j

Dn(w) dw=0. So, fixing an arbitrary basepoint w0∈Q, we have

∣∣∣∣ˆ
Qn,j

Dm(w)Dn(w) dw

∣∣∣∣= ∣∣∣∣ˆ
Qn,j

(Dm(w)−Dm(w0))Dn(w) dw

∣∣∣∣≲α−4ρm−nH3(Qn,j),

where in the final step we used (3.50) and Lemma 3.12. Hence, |⟨Dm, Dn⟩U | is at most

∑
j∈N

Qn,j⊆U

∣∣∣∣ˆ
Qn,j

Dm(w)Dn(w) dw

∣∣∣∣⩽ ∑
j∈N

Qn,j⊆U

H3(Qn,j)α
−4ρm−n≍α−4ρm−n.

3.2.2. The vertical perimeter of Γψi

Here we will complete the proof of Proposition 3.4.

Define ϕ:V0!R to be the A-periodic extension of β|U , i.e.,

ϕ(x, 0, z)
def
= β({x}, 0, {z})

for (x, 0, z)∈V0, where {a}=a−⌊a⌋ is the fractional part of a∈R. Because the function

v̄PU,ϕ:R−! [0,∞)
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is continuous and not identically zero, there exist η,R, r∈R with r<R such that

v̄PU,ϕ(a)⩾ η > 0 for all a∈ I def
= [r,R]. (3.56)

We will show that if ρ∈N is large enough (depending only on the initial choice of bump

function β), then the conclusion of Proposition 3.4 holds for the above interval I. To

this end, we will first establish the following pointwise bound on the vertical perimeter

of each of the perturbations {βi}∞i=0 in terms of the vertical perimeter of ϕ.

Lemma 3.14. Suppose that ρ>5. For every i∈N∪{0} and a∈R we have

v̄PU,βi(a)⩾
1

2α
v̄PU,ϕ(a−log2(αρ

i))− 3ρi−1

2a
.

In particular, if ρ⩾12/2rη and a∈I+log2(αρ
i), then

v̄PU,βi(a)⩾
η

2α
− 3ρi−1

2r+log2(αρ
i)
⩾

η

4α
.

Proof of Proposition 3.4 assuming Lemma 3.14. Fix an integer ρ⩾max{12/2rη, 8}
that will be specified later and let ψ=ψα4 . The first three assertions of Proposition 3.4

were established in the construction of ψ and in the discussion after Lemma 3.9. We will

establish the last three by showing that

v̄PU,ψ(a)≲min

{
1

α
,
2a

α2

}
for all a∈R, (3.57)

and

v̄PU,ψ(a)≳
1

α
for all a∈

α4−1⋃
n=0

(I+log2(αρ
n)). (3.58)

For every i∈N∪{0}, by the definition of βi and by (3.36) and (3.40), we have

∥βi∥L∞(V0) ⩽α−2ρ−i and

∥∥∥∥∂βi∂z

∥∥∥∥
L∞(V0)

⩽ 2ρi.

Due to Lemma 2.13, for every a∈R we have

v̄PU,βi(a)⩽min{2a+1α−2ρ−i, 2−a+1ρi}=2α−12−|a−log2(αρ
i)|. (3.59)

Consequently,

v̄PU,ψα4
(a)= v̄P

U,
∑α4

i=0 βi
(a)⩽

α4∑
i=0

v̄PU,βi(a)
(3.59)

⩽
∞∑
i=0

2α−12−|a−log2(αρ
i)| ≲α−1.
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This proves (3.57), because by Lemma 2.13 we also have

v̄PU,ψα4
(a)≲ 2a∥ψα4∥L∞(V0)

(3.29)

⩽ 2aα−2.

It remains to prove (3.58), as we saw in (3.18) that this implies the remaining

assertions of Proposition 3.4. Fix n∈{0, ..., α4−1} and a∈I+log2(αρ
n), so that

v̄PU,βn(a)>
η

4α

by Lemma 3.14. Let s=max{|r|, |R|}, so that |a−log2(αρ
n)|⩽s. It follows from (3.59)

that

v̄PU,βi(a)⩽ 2α−12−| log2(αρ
n)−log2(αρ

i)|+|a−log2(αρ
n)| ⩽ 2α−1ρ−|n−i|2s (3.60)

for any i∈N∪{0}. Hence, by combining Lemma 3.14 and (3.60), we conclude that

v̄PU,ψα4
(a)= v̄P

U,
∑α4

i=0 βi
(a)⩾ v̄PU,βn(a)−

n−1∑
i=0

v̄PU,βi(a)−
α4∑

i=n+1

v̄PU,βi(a)

⩾
η

4α
−2

∞∑
k=1

2α−1ρ−k2s⩾
η

4α
− 5

αρ
2s.

Choosing

ρ
def
=

⌈
max

{
8,

12

2rη
,
40·2s

η

}⌉
,

this completes the proof of Proposition 3.4.

Proof of Lemma 3.14. We will start by introducing some (convenient, though ad

hoc) notation and making some preliminary observations. For i∈N∪{0} define a (dis-

continuous in the first variable) map Si:R2
!R2 as follows. If s∈R, then let m∈Z be

the unique integer such that s∈[mρ−i, (m+1)ρ−i), and set, for every t∈R,

Si(s, t)
def
= Φ(ψi)s−mρ−i(mρ

−i, 0, t),

where we recall the notation Φ( ·) · ( ·) for characteristic curves that we set at the start of
§3.2. Note that, by design, x(Si(s, t))=s. Observe also that the lines R×{0}×{0} and

R×{0}×{1} are characteristic curves for Γψi , since ψi vanishes on those lines. Hence,

Si(s, 0)=(s, 0) and Si(s, 1)=(s, 1) for all s∈[0, 1]. As x(S(s, t))=s for all t∈R, by the

continuity of Si in the second variable, this implies that Si(s, [0, 1])={s}×{0}×[0, 1].

So,

Si([0, 1]
2)=U. (3.61)
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The mapping Si is related as follows to the mappings Ri,1, Ri,2, ... that are given

in (3.24). Suppose as above that s∈[mρ−i, (m+1)ρ−i) for some m∈Z, and fix t∈R and

n∈Z. Recalling that vi,1, vi,2, ... is an enumeration of the points in the grid Gi that is

given in (3.23), let j∈N be the index for which vi,j=(mρ−i, 0, nα−2ρ−2i). Then,

Si(s, t)=Ri,j(s−mρ−i, t−nα−2ρ−2i).

Recalling the definition (3.25) of the pseudo-quad Qi,j , this implies that

Si([mρ−i, (m+1)ρ−i)×[nα−2ρ−2i, (n+1)α−2ρ−2i]) =Qi,j .

Also, recalling the definitions (3.26) and (3.27), it follows that if we define ϕi:V0!R by

ϕi(s, 0, t)
def
= α−2ρ−iϕ(ρis, 0, α2ρ2it) for all (s, t)∈R2, (3.62)

then

βi(Si(s, t))=ϕi(s, 0, t) for all (s, t)∈R2. (3.63)

Fix i∈N∪{0}, a∈R, and (x, 0, z)∈U . Now let s=s(x, z), t=t(x, z), t′=t′(x, z, a)∈R
satisfy

Si(s, t)= (x, 0, z) and Si(s, t
′)= (x, 0, z−2−2a). (3.64)

Due to (3.40), we have e−2ρ−1

2−2a⩽t−t′⩽e2ρ−1

2−2a. Hence,

|t′−(t−2−2a)|⩽ (e2ρ
−1

−1)2−2a⩽ 3ρ−12−2a. (3.65)

Now,

|βi(x, 0, z)−βi(x, 0, z−2−2a)|
(3.63)

(3.64)
= |ϕi(s, 0, t)−ϕi(s, 0, t−2−2a)−ϕi(s, 0, t′)+ϕi(s, 0, t−2−2a)|

⩾ |ϕi(s, 0, t)−ϕi(s, 0, t−2−2a)|−|ϕi(s, 0, t′)−ϕi(s, 0, t−2−2a)|
(3.62)

⩾ |ϕi(s, 0, t)−ϕi(s, 0, t−2−2a)|−ρi|t′−(t−2−2a)|
(3.65)

⩾ |ϕi(s, 0, t)−ϕi(s, 0, t−2−2a)|−3ρi−12−2a.

In other words, we established the following pointwise estimate for the vertical difference

quotients that occur in the definition (2.29) of (parameterized) vertical perimeter:

|βi(x, 0, z)−βi(x, 0, z−2−2a)|
2−a

⩾
|ϕi(s, 0, t)−ϕi(s, 0, t−2−2a)|

2−a
− 3ρi−1

2a
.
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By integrating this inequality over U , we get

v̄PU,βi(a)
(2.29)

⩾
ˆ 1

0

ˆ 1

0

|ϕi(s(x, z), 0, t(x, z))−ϕi(s(x, z), 0, t(x, z)−2−2a)|
2−a

dx dz− 3ρi−1

2a

(3.33)
=

ˆ
S−1
i (U)

|ϕi(s, 0, t)−ϕi(s, 0, t−2−2a)|
2−a

∣∣∣∣∂z∂t (s, t)
∣∣∣∣ ds dt− 3ρi−1

2a

(3.40)

(3.61)

⩾
1

2

ˆ 1

0

ˆ 1

0

|ϕi(s, 0, t)−ϕi(s, 0, t−2−2a)|
2−a

ds dt− 3ρi−1

2a
.

It therefore remains to note the following identity.

ˆ 1

0

ˆ 1

0

|ϕi(s, 0, t)−ϕi(s, 0, t−2−2a)|
2−a

ds dt

=

ˆ ρi

0

ˆ α2ρ2i

0

α−4ρ−4i|ϕ(σ, 0, τ)−ϕ(σ, 0, τ−α2ρ2i2−2a)|
2−a

dσ dτ (3.66)

=
1

α

ˆ
U

|ϕ(v)−ϕ(vZ−α2ρ2i2−2a

)|
αρi2−a

dv (3.67)

=
1

α
v̄PU,ϕ(a−log2(αρ

i)), (3.68)

where (3.66) uses the definition (3.62) and the change of variables (s, t)=(ρ−iσ, α−2ρ−2iτ),

(3.67) holds by the periodicity of ϕ, and (3.68) is a restatement of the definition (2.29).

4. Pseudoquads and foliated patchworks

Let Γ be the intrinsic Lipschitz graph of f :V0!R. A pseudoquad Q is a region of V0

bounded by two vertical lines and two characteristic curves of Γ, i.e., a region of the form

Q= {(x, 0, z)∈V0 :x∈ I and g1(x)⩽ z⩽ g2(x)},

where I=[a, b]⊆R is a closed, bounded interval and g1, g2:R!R are functions whose

graphs are characteristic. We say that I is the base of Q, and we call g1 and g2 the lower

and upper bounds of Q, respectively. The width of the pseudoquad Q is just the length

ℓ(I)=b−a of its base I=[a, b]. But, the height of Q is not always well behaved, since

characteristic curves can join and split. We therefore introduce rectilinear pseudoquads,

which approximate projections of rectangles in vertical planes. If Γ is a vertical plane,

its characteristic curves are a family of parallel parabolas; conversely, any pseudoquad

bounded by two parallel parabolas is the projection of a rectangle in H (a loop composed

of two parallel horizontal lines and two vertical lines) to V0. Thus, if

R= {(x, 0, z)∈V0 :x∈ I and h1(x)⩽ z⩽h2(x)},
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where h1, h2:R!R are quadratic functions that differ by a constant, then we call R a

parabolic rectangle with width

δx(R)
def
= ℓ(I)

and height

δz(R)
def
= h2−h1.

For r>0 and an interval I, let rI be the scaling of I around its center by a factor of r,

i.e.,

rI
def
=
[
1
2 (a+b)−

1
2rℓ(I),

1
2 (a+b)+

1
2rℓ(I)

]
.

For ρ>0, let

ρR
def
= {(x, 0, z)∈V0 :x∈ ρI and z ∈ ρ2[h1(x), h2(x)]}

=
{
(x, 0, z)∈V0 :x∈ ρI and

∣∣z− 1
2 (h1(x)+h2(x))

∣∣⩽ 1
2ρ

2δz(R)
}
.

(4.1)

For 0<µ⩽ 1
32 , a µ-rectilinear pseudoquad is a pair (Q,R), where Q is a pseudoquad

and R is a parabolic rectangle with the same base I as Q such that, if g1 and g2 (resp.

h1 and h2) are the lower and upper bounds of Q (resp. R), then

max{∥g1−h1∥L∞(4I), ∥g2−h2∥L∞(4I)}⩽µδz(R). (4.2)

We will frequently refer to a µ-rectilinear pseudoquad (Q,R) as simply Q, but we define

its width and height to be the width and height of the associated parabolic rectangle,

i.e., δx(Q)=δx(R) and δz(Q)=δz(R). Likewise, for ρ⩾1, we define ρQ=ρR. Note that

Q need not be contained in 1Q=R, but the following lemma holds.

Lemma 4.1. Let Q be a µ-rectilinear pseudoquad. Then Q⊆2Q. In fact, for every

t∈R,
QZtδz(Q) ⊆

√
2|t|+2·Q.

Proof. Let R, g1, g2, h1, h2 be as above. Let mg=
1
2 (g1+g2) and mh=

1
2 (h1+h2).

Fix (x, 0, z)∈Q, so that g1(x)⩽z⩽g2(x). For i∈{1, 2}, we have

|mh(x)−gi(x)|⩽ |mh(x)−hi(x)|+|hi(x)−gi(x)|⩽ 1
2δz(Q)+µδz(Q)⩽ δz(Q),

so

|mh(x)−(z+tδz(Q))|⩽ (1+|t|)δz(Q).

Therefore,

(x, 0, z+δz(Q))∈
√
2|t|+2·Q.
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Continuing with the above notation, define the aspect ratio of Q to be

α(Q)
def
=

δx(Q)√
δz(Q)

. (4.3)

We use a square root here because the distance in the Heisenberg metric between the

top and bottom of Q is proportional to
√
δz(Q); thus this aspect ratio is invariant under

the Heisenberg scaling. Let |Q| be the Lebesgue measure of Q as a subset of V0∼=R2.

The following lemma is a direct consequence of Lemma 2.9.

Lemma 4.2. Let a, b∈R\{0} and let g=q�ρh�sa,b:H!H be a composition of a shear

map q, a left-translation by h∈H, and a stretch map sa,b. Let ĝ:V0!V0 be the map in-

duced on V0, i.e., ĝ(x)=Π(g(x)) for all x∈V0. Suppose that (Q,R) is a µ-rectilinear

pseudoquad for an intrinsic graph Γ. Then, (Q̂, R̂)=(ĝ(Q), ĝ(R)) is a µ-rectilinear pseu-

doquad for the intrinsic graph ĝ(Γ), with the following parameters:

δx(Q̂)= |a|δx(Q), δz(Q̂)= |ab|δz(Q), |Q̂|= |a2b|·|Q|, α(Q̂)=

√
|a|
|b|

·α(Q).

Remark 4.3. For any µ-rectilinear pseudoquad (Q,R), there is a transformation of

H that sends R to a square in V0, and Q to an approximation of the square. That is, if

a, b, c, d, x0, w∈R are such that

R= {(x, 0, z)∈V0 : |x−x0|⩽w and |ax2+bx+c−z|⩽ d},

h(v)= sw−1,wd−1(X−x0Y bZ−cÃ2a(v)),

and ĥ=Π�h, then, by the remarks after Lemma 2.9, ĥ(R)=[−1, 1]×{0}×[−1, 1].

By Lemma 4.2, (ĥ(Q), ĥ(R)) is µ-rectilinear, so if ĝ1 and ĝ2 are the lower and upper

bounds of ĥ(Q), then |ĝ1(t)+1|<2µ and |ĝ2(t)−1|<2µ for all t∈[−4, 4].

We will prove Theorem 1.18 by constructing a collection of nested partitions of V0

into pseudoquads. We will describe these partitions by associating a rectilinear pseudo-

quad with each vertex of a rooted tree. Let (T, v0) be a rooted tree with vertex set V(T ).
For v∈V(T ), we let C(v)=C1(v) denote the set of children of v and inductively, for n⩾2,

let

Cn(v)=
⋃

w∈Cn−1(v)

C(w)

be the set of nth generation descendants of v. Let D(v)=
⋃∞
n=0 Cn(v), where C0(v)={v}.

For v∈V(T )\{v0}, there is a unique parent vertex w such that v∈C(w), and we denote

this vertex by P(v). If w∈D(v), we say that w is a descendant of v or that v is an

ancestor of w and write w⩽v. This is a partial order with maximal element v0.
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Definition 4.4. (Rectilinear foliated patchwork) If Q is a µ-rectilinear pseudoquad, a

µ-rectilinear foliated patchwork for Q is a complete rooted binary tree (∆, v0) (i.e., every

vertex has exactly two children) such that every vertex v∈V(∆) is associated with a

µ-rectilinear pseudoquad (Qv, Rv) with Qv0=Q. Each vertex v∈V(∆) is either vertically

cut or horizontally cut in the following sense.

Let w and w′ be the children of v, let I=[a, b] be the base of Qv, and let g1 and g2

(resp. h1 and h2) be the lower and upper bounds of Qv (resp. Rv).

(1) If v is vertically cut, then Qw and Qw′ are the left and right halves of Qv,

separated by the vertical line x= 1
2 (a+b). That is,

Qw =
{
(x, 0, z)∈V0 : a⩽x⩽ 1

2 (a+b) and g1(x)⩽ z⩽ g2(x)
}
,

Qw′ =
{
(x, 0, z)∈V0 : 1

2 (a+b)⩽x⩽ b and g1(x)⩽ z⩽ g2(x)
}
.

Similarly,

Rw =
([
a, 12 (a+b)

]
×{0}×R

)
∩Rv and Rw′ =

([
1
2 (a+b), b]×{0}×R

)
∩Rv.

We therefore have

δx(Qw)= δx(Qw′)= 1
2δx(Qv) and δz(Qw)= δz(Qw′)= δz(Qv).

(2) If v is horizontally cut, then Qw and Qw′ are the top and bottom halves of Qv,

separated by a characteristic curve. That is, there is a function c:R!R whose graph is

characteristic, a quadratic function k:R!R, and d∈(0,∞) such that

Qw = {(x, 0, z)∈V0 : a⩽x⩽ b and g1(x)⩽ z⩽ c(x)},

Qw′ = {(x, 0, z)∈V0 : a⩽x⩽ b and c(x)⩽ z⩽ g2(x)},

Rw = {(x, 0, z)∈V0 : a⩽x⩽ b and k(x)−d⩽ z⩽ k(x)},

Rw′ = {(x, 0, z)∈V0 : a⩽x⩽ b and k(x)⩽ z⩽ k(x)+d}.

Then, δx(Qw)=δx(Qw′)=δx(Qv) and δz(Qw)=δz(Qw′)=d. Furthermore, Qw and Qw′

are assumed to be µ-rectilinear. Thus,

max{∥(k−d)−g1∥L∞(4I), ∥k−c∥L∞(4I), ∥(k+d)−g2∥L∞(4I)}⩽µd. (4.4)

In either case, Qv=Qw∪Qw′ and Qw, Qw′ have disjoint interiors. Let VV(∆)⊆V(∆)

be the set of vertically cut vertices, and let VH(∆)⊆V(∆) be the set of horizontally cut

vertices.
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It follows from the above definition that v⩽w if and only if Qv⊆Qw. Furthermore,

if the interior of Qv intersects Qw, then either v⩽w or w⩽v.

Lemma 4.5. For every ε>0 there exists 0<µ=µ(ε)⩽ 1
32 such that if Q is a µ-

rectilinear pseudoquad, then

(1−ε)δx(Q)δz(Q)⩽ |Q|⩽ (1+ε)δx(Q)δz(Q). (4.5)

If Q is horizontally or vertically cut as in Definition 4.4 and Q′ is a child of Q, then(
1
2−ε

)
|Q|⩽ |Q′|⩽

(
1
2+ε

)
|Q|. (4.6)

If Q is vertically cut, then δx(Q
′)= 1

2δx(Q), δz(Q
′)=δz(Q), and α(Q′)= 1

2α(Q). If Q is

horizontally cut, then δx(Q
′)=δx(Q), and(

1
2−2µ

)
δz(Q)⩽ δz(Q

′)⩽
(
1
2+2µ

)
δz(Q). (4.7)

Finally,

(
√
2−ε)α(Q)⩽α(Q′)⩽ (

√
2+ε)α(Q). (4.8)

When ε= 1
4 , we can take here µ= 1

32 .

Proof. Suppose that µ⩽ 1
8ε. Let (Q,R) be a µ-rectilinear pseudoquad. Suppose that

g1 and g2 (resp. h1 and h2) be the lower and upper bounds of Q (resp. R), and let I be

the base of Q. Then |R|=δx(Q)δz(Q) and∣∣|Q|−δx(Q)δz(Q)
∣∣= ∣∣|Q|−|R|

∣∣⩽ˆ
I

|g1−h1| dx+
ˆ
I

|g2−h2| dx⩽ 2µδx(Q)δz(Q), (4.9)

so (4.5) is satisfied.

Let Q′ be a child of Q. If Q is vertically cut, then the formulas for δx(Q
′), δz(Q

′),

and α(Q′) follow from Definition 4.4. As Q′ is µ-rectilinear, (4.9) implies that∣∣|Q′|− 1
2 |Q|

∣∣⩽ ∣∣|Q′|−δx(Q′)δz(Q
′)|+ 1

2 |δx(Q)δz(Q)−|Q|
∣∣⩽ 2µδx(Q)δz(Q)⩽ 4µ|Q|,

so Q satisfies (4.6) if Q is vertically cut.

If Q is horizontally cut, then we have δx(Q
′)=δx(Q) by Definition 4.4. Let c, k, and

d=δz(Q
′) be as in Definition 4.4, and let t∈I. Since ∥gi−hi∥L∞(I)⩽µδz(Q) for i∈{1, 2}

and δz(Q)=h2−h1, we have

(1−2µ)δz(Q)⩽ g2(t)−g1(t)⩽ (1+2µ)δz(Q).

By (4.4),

(1−µ)·2d⩽ g2(t)−g1(t)⩽ (1+µ)·2d.
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Then,

d⩽
1+2µ

2−2µ
δz(Q)<δz(Q),

so

|2d−δz(Q)|⩽ |2d−(g2(t)−g1(t))|+|(g2(t)−g1(t))−δz(Q)|⩽ 4µδz(Q),

proving (4.7). This directly implies equation (4.8), and the horizontally cut case of (4.6)

follows from the above calculation and (4.9).

The following two lemmas will be helpful later.

Lemma 4.6. For any quadratic function q:R!R and any t∈R,

|q(t)|⩽ (1+t+2t2)∥q∥L∞([−1,1]).

Proof. One only needs to note that, since q is quadratic, for any t∈R we have

q(t)= q(0)+t· q(1)−q(−1)

2
+t2 · q(−1)−2q(0)+q(1)

2
.

Lemma 4.7. For every r⩾2 there is µ=µ(r)>0 such that, if ∆ is a µ-rectilinear

foliated patchwork and v, w∈V(∆) satisfy w⩽v, then rQw⊆rQv.

Proof. It suffices to consider the case that w∈C(v). If v is vertically cut, this holds

vacuously, so suppose that v is horizontally cut. Let g1 and g2 (resp. h1 and h2) be the

lower and upper bounds of Qv (resp. Rv), and let I be their base. Denotemv=
1
2 (h1+h2).

Then, rRv is bounded by mv± 1
2r

2δz(Qv).

Let c, k, and d=δz(Qw) be as in Definition 4.4. By Lemma 4.5, we have d⩽ 3
4δz(Qv).

Then,

∥(k−d)−h1∥L∞(4I) ⩽ ∥k−d−g1∥L∞(4I)+∥g1−h1∥L∞(4I) ⩽µd+µδz(Qv)⩽ 2µδz(Qv).

Likewise, ∥(k+d)−h2∥L∞(4I)⩽2µδz(Qv). By Lemma 4.6, since k, h1, and h2 are qua-

dratic functions, if µ is at most a sufficiciently small universal constant multiple of r−2,

then

max{∥(k−d)−h1∥L∞(rI), ∥(k+d)−h2∥L∞(rI)}⩽ 1
16δz(Qv).

By the triangle inequality,

∥k−mv∥L∞(rI) ⩽
1
16δz(Qv).

Suppose that Qw is the lower half of Qv, so that Qw is bounded by g1 and c, and

Rw is bounded by k−d and k. Let mw=k− 1
2d, so that rQw is bounded by mw± 1

2r
2d.

For x∈rI,

|mv(x)−mw(x)|⩽ 1
16δz(Qv)+

1
2d⩽

7
16δz(Qv)⩽

1
2r

2δz(Qv)− 1
2r

2d,
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so [
mw(x)− 1

2r
2d,mw(x)+

1
2r

2d
]
⊆
[
mv(x)− 1

2r
2δz(Qv),mv(x)+

1
2r

2δz(Qv)
]
.

That is, rQw⊆rQv. The case that Qw is the upper half of Qv is treated analogously.

Let ∆ be a µ-rectilinear foliated patchwork for a µ-rectilinear pseudoquad Q. For

every subset of vertices S⊆V(∆), define the weight of S to be

W (S)
def
=
∑
w∈S

|Qw|
α(Qw)4

(4.3)
=
∑
w∈S

δz(Qw)
2

δx(Qw)4
|Qw|. (4.10)

We will use this to define a weighted Carleson condition which is a variant of the Carleson

packing condition that is used in the theory of uniform rectifiability [27].

Definition 4.8. (Weighted Carleson packing condition) Let ∆ be a µ-rectilinear fo-

liated patchwork for a µ-rectilinear pseudoquad Q. We say that ∆ satisfies a weighted

Carleson packing condition or that ∆ is weighted Carleson with constant C∈(0,∞) if

every v∈V(∆) satisfies

W (D(v)∩VV(∆))⩽C|Qv|, (4.11)

where we recall that D(v) are the descendants of v and VV(∆) are the vertically cut

vertices.

Remark 4.9. Vertical cuts increase W and horizontal cuts decrease it. More pre-

cisely, suppose that v, w∈V(∆) and w is a child of v. If v is vertically cut, then by

Lemma 4.5 (with ε= 1
4 ),

W ({w})=α(Qw)
−4|Qw|=16α(Qv)

−4|Qw|⩾ 16α(Qv)
−4 ·
(
1
2−ε

)
|Qv|⩾ 4W ({v}). (4.12)

When ε!0+, W ({w}) approaches 8W ({v}). If v is horizontally cut, then by Lemma 4.5

(with ε= 1
4 ),

W ({w})=α(Qw)
−4|Qw|⩽ (

√
2−ε)−4

(
1
2+ε

)
W ({v})⩽ 3

7W ({v}), (4.13)

and W ({w}) approaches 1
8W ({v}) when ε!0+.

The next lemma implies that, even though only VV(∆) appears in (4.11), this con-

dition formally implies bounds on VH(∆) as well.

Lemma 4.10. Let ∆ be a 1
32 -rectilinear foliated patchwork for Q with

W (VV(∆))<∞,

and let v0 be the root of ∆. Then,

W (VV(∆))≲W (VH(∆))≲W (VV(∆))+α(Q)−4|Q|.
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Proof. Let TH (resp. TV) be the set of connected components of the subgraph of ∆

spanned by VH(∆) (resp. VV(∆)). Let T∈TH and let M(T ) be the maximal vertex of T .

Each vertex of T is horizontally cut, so by (4.13), we have W (C(v))⩽ 6
7W ({v}) for all

v∈V(T ). Therefore, W (V(T ))≍W ({M(T )}), because

W (V(T ))=
∞∑
n=0

W (Cn(M(T ))∩V(T ))⩽
∞∑
n=0

(
6

7

)n
W ({M(T )})≲W ({M(T )}).

Hence, if we denote SM={M(T ):T∈TH}, then W (VH(∆))≍W (SM ).

Now, take T∈TV. By (4.12), we have W ({w})⩾4W ({v}) for all v∈V(T ) and w∈
C(v). As W (V(T ))<∞, it follows that T must be finite. Let

m(T )= {w∈V(T ) : C(w) ̸⊆ V(T )}

be the lower boundary of T , and let Sm=
⋃
T∈TV

m(T ).

For all v∈V(T ), let A(v)={w∈V(T ):w⩾v} be the set of ancestors of v in T . By

(4.12),

W (A(v))⩽
|A(v)|−1∑
n=0

4−nW ({v})⩽ 2W ({v}).

Every vertex of T is an ancestor of a leaf, so it follows that

W (V(T ))⩽W

( ⋃
v∈m(T )

A(v)

)
⩽

∑
v∈m(T )

W (A(v))⩽ 2W (m(T ))⩽ 2W (V(T )).

Therefore, W (VV(∆))≍W (Sm).

If v∈SM and v ̸=v0, then P(v) is horizontally cut and has a vertically cut child, so

P(v)∈Sm. In fact, P(SM \{v0})=Sm. Since W ({v})≍W ({P(v)}) for all v and since P
is a two-to-one map, it follows that W (SM \{v0})≍W (Sm). Therefore,

W (VH(∆))≍W (SM )≲W (Sm)+W ({v0})≍W (VV(∆))+α(Q)−4|Q|,

and

W (VV(∆))≍W (Sm)≍W (SM \{v0})⩽W (SM ).

Suppose that ∆=(Qv)v∈V(∆) is a µ-rectilinear foliated patchwork for Γ=Γf . For

σ>0, a set of σ-approximating planes for ∆ is a collection of vertical planes (Pv)v∈VH(∆)

such that, for every v∈VH(∆), if fv:V0!R is the affine function such that Γfv=Pv, then

∥fv−f∥L1(10Qv)

|Qv|
⩽σ

δz(Qv)

δx(Qv)
. (4.14)

The following lemma verifies that the choice of right-hand side in (4.14) produces a

condition that is invariant under stretch automorphisms and shear automorphisms.
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Lemma 4.11. Let ∆=(Qv)v∈V(∆) be a µ-rectilinear foliated patchwork for an in-

trinsic Lipschitz graph Γ=Γf with a set (Pv)v∈VH(∆) of σ-approximating planes and let

r:H!H be a left translation, a stretch automorphism, or a shear map. Moreover, let

r̂=Π�r:V0!V0 be the map induced on V0. Then,

∆′ =((r̂(Qv), r̂(Rv)))v∈V(∆)

is a µ-rectilinear foliated patchwork for r(Γ) and

(r(Pv))v∈VH(∆)

is a set of σ-approximating planes for ∆′.

Proof. By Lemmas 2.10 and 4.2, r(Γ) is an intrinsic Lipschitz graph and the ele-

ments of ∆′ are µ-rectlinear pseudoquads for r(Γ). It is straightforward to check that

Definition 4.4 holds for ∆′. Let v∈VH(∆) and let fv:V0!R be the affine function such

that Pv=Γfv . By Lemma 2.9, there are functions f̂ and f̂v such that

r(Γ)=Γf̂ and r(Pv)=Γf̂v .

If r is a left translation or a shear map and w∈10Qv, then r̂(w)∈10r̂(Qv) and

|f̂(r̂(w))−f̂v(r̂(w))|= |f(w)−fv(w)|.

In this case, δx(Qv)=δx(r̂(Qv)) and δz(Qv)=δz(r̂(Qv)), so if Pv is a σ -approximating

plane for Qv, then r(Pv) is a σ -approximating plane for r̂(Qv).

If r=sa,b for some a, b∈R\{0}, then we have r̂=r|V0
, r̂(10Qv)=10r̂(Qv), and for

any w∈10Qv,
|f̂(r̂(w))−f̂v(r̂(w))|= |b|·|f(w)−fv(w)|.

In this case,

δx(r̂(Qv))= |a|δx(Qv) and δz(r̂(Qv))= |ab|δz(Qv),

so, by (4.14),

∥f̂v−f̂∥L1(10r̂(Qv))

|r̂(Qv)|
=

|a2b2| ∥fv−f∥L1(10Qv)

|a2b|·|Qv|

⩽ |b|σ δz(Qv)
δx(Qv)

=σ
δz(r̂(Qv))

δx(r̂(Qv))
.
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5. Foliated corona decompositions

An intrinsic graph that admits rectilinear foliated patchworks that satisfy a weighted

Carleson condition and have approximating planes is said to have a foliated corona de-

composition.

Definition 5.1. Fix 0<µ0⩽ 1
32 and D:R+×R+

!R+. We say that an intrinsic Lip-

schitz graph Γ has a (D,µ0)-foliated corona decomposition if for every 0<µ⩽µ0, every

σ>0 and every µ-rectilinear pseudoquad Q⊆V0, there is a µ-rectilinear foliated patch-

work ∆ for Q such that ∆ is D(µ, σ)-weighted Carleson and has a set of σ -approximating

planes.

The following theorem is a more precise formulation of Theorem 1.18.

Theorem 5.2. For every 0<λ<1 there is a function Dλ:R+×R+
!R+ such that

for any 0<µ0⩽ 1
32 , any intrinsic λ-Lipschitz graph has a (Dλ, µ0)-foliated corona decom-

position.

Definition 5.1 requires the root of the foliated patchwork to be µ-rectilinear; the

next lemma shows that intrinsic Lipschitz graphs have many µ-rectilinear pseudoquads.

Lemma 5.3. Let µ0>0, let 0<λ<1, and let Γ=Γf be an intrinsic λ-Lipschitz graph.

There is an α0>0 with the following property. Let Q be a pseudoquad for Γ, let v be

a point in the lower boundary of Q and suppose that vZs is in the upper boundary.

Let r=δx(Q). If r/
√
s⩽α0, then there is a parabolic rectangle R such that (Q,R) is

µ0-rectilinear.

Proof. Denote

L
def
=

λ√
1−λ2

and α0
def
= min

{√
µ0

16L
,
µ0(1−λ)

24

}
.

Let g1, g2:R!R be the lower and upper bounds of Q, and let I be its base. After a trans-

lation, we may suppose that v=0 and f(v)=0. Then, I⊆[−r, r], g1(0)=0, g2(0)=s, and

g′1(0)=−f(0)=0. Let R=I×[0, s]; we claim that (Q,R) is a µ0-rectilinear pseudoquad.

It suffices to show that, for all t∈[−4r, 4r] and i∈{1, 2}, we have |gi(t)−gi(0)|⩽µ0s.

By Lemma 2.7, for all t∈[−4r, 4r], we have

|gi(t)−(gi(0)+tg
′
i(0))|⩽ 8r2L⩽ 1

2µ0s.

In particular, |g1(t)|⩽µ0s. Lemma 2.3 implies that

|g′2(0)|= |f(Zs)−f(0)|⩽ 3

1−λ
d(0, Zs)=

3
√
s

1−λ
⩽
µ0

8
· s
r
,

so, if |t|⩽4r, then

|g2(t)−g2(0)|⩽
µ0

8
· s
r
·4r+µ0s

2
⩽µ0s.
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Corollary 5.4. Continuing with the setting and notation of Lemma 5.3, any 1
32 -

rectilinear pseudoquad Q such that α(Q)⩽ 1
2α0 is µ0-rectilinear.

Proof. Let v be in the lower boundary of Q. Then there is an s⩾
(
1− 1

16

)
δz(Q) such

that vZs is in the upper boundary. If α(Q)⩽ 1
2α0, then

δx(Q)⩽ 1
2α0

√
δz(Q)⩽α0

√
s,

so Lemma 5.3 implies that Q is µ0-rectilinear.

The following lemma shows that the choice of µ0 is not important; we can increase

µ0 at the cost of an increase in D.

Lemma 5.5. For any λ>0 and 0<µ0<µ
′
0⩽

1
32 , and any D:R+×R+

!R+, there ex-

ists D′:R+×R+
!R+ such that, if Γ is an intrinsic λ-Lipschitz graph that has a (D,µ0)-

foliated corona decomposition, then Γ also has a (D′, µ′
0)-foliated corona decomposition.

Proof. Fix 0<µ<µ′
0 and 0<σ<1. Let α0>0 be as in Lemma 5.3. Suppose that

we are given a µ-rectilinear pseudoquad Q. We wish to construct a rectilinear foliated

patchwork for Q with a set of σ -approximating planes. If α(Q)< 1
2α0, then, by Corol-

lary 5.4, Q is µ0-rectilinear, and since Γ admits a (D,µ0)-foliated corona decomposition,

the desired patchwork and set of approximating planes for Q exist.

We thus suppose that α(Q)⩾ 1
2α0 and denote

i0 =

⌈
log2

α(Q)

α0

⌉
+1.

We will construct a rectilinear foliated patchwork for Q by first cutting Q vertically i0

times into pseudoquads P1, ..., P2i0 of width 2−i0δx(Q0), height δz(Q), and aspect ratio

α(Pi)=
δx(Pi)√
δz(Pi)

= 2−i0α(Q)<
α0

2
.

By Corollary 5.4, each Pi is µ0-rectilinear, and thus admits a D(µ, σ)-weighted Carleson

rectilinear foliated patchwork and a set of σ -approximating planes. Combining these

patchworks, we obtain a rectilinear foliated patchwork ∆′ for Q0. Let v0 be its root

vertex. Note that, for any 0⩽m⩽i0 and any w∈Cm(v0), we have α(Qw)=2−mα(Q0).

It remains to check that ∆′ is weighted Carleson. Let p1, ..., p2i0 ∈V(∆′) be the

vertices such that Pj=Qpj . If v∈V(∆′) and v⩽pj for some j, then Qv satisfies the

weighted Carleson condition (4.11) with constant at most D(µ, σ).

Otherwise, v is an ancestor of some pj and Qv=Pa∪...∪Pb for some a⩽b. For each

w∈V(∆′), let A(w) be the set of ancestors of w. Every ancestor of pj except possibly pj
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itself is vertically cut, so by (4.12), the weight of Pk(pj) decays exponentially. Thus

W (A(pj))=

i0∑
k=0

W ({Pk(pj)})
(4.12)

⩽
i0∑
k=0

4−kW ({pj})⩽ 2W ({pj}).

For each w∈V(∆′), let

DV(w)=D(w)∩VV(∆
′)

be the set of vertically cut descendants of w. As every element of DV(v) is a descendant

or an ancestor of some pj with a⩽j⩽b,

W (DV(v))⩽
b∑

j=a

[W (DV(pj))+W (A(pj))]⩽
b∑

j=a

[D(µ, σ)|Pj |+2W ({pj})]

=D(µ, σ)|Qv|+2·α(Pa)−4|Qv|⩽D(µ, σ)|Qv|+α−4
0 |Qv|.

Therefore, ∆′ is (D(µ, σ)+α−4
0 )-weighted Carleson.

6. Vertical perimeter and foliated corona decompositions

In this section we will assume Theorem 5.2 and prove the following theorem, which

bounds the vertical perimeter of half-spaces bounded by intrinsic Lipschitz graphs.

Theorem 6.1. For any 0<λ<1 and r>0, if Γ is an intrinsic λ-Lipschitz graph,

then

∥v̄Br(0)(Γ
+)∥L4(R) ≲λ r

3.

This coincides with the bound (1.32) needed in §1.2.1. Combined with the reduction

from arbitrary sets to intrinsic Lipschitz graphs described in that section, this completes

the proof of Theorem 1.1.

6.1. Vertical perimeter for graphs with foliated corona decompositions

Theorem 6.1 is a consequence of the following lemma.

Lemma 6.2. Suppose that f :V0!Γ is intrinsic Lipschitz and denote Γ=Γf . Fix

σ>0. Let Q⊆V0 be a 1
32 -rectilinear pseudoquad. Let ∆ be a 1

32 -rectilinear foliated

patchwork for Q and let (Pv)v∈VH(∆) be a set of σ-approximating planes. Denoting

t0=− log4 δz(Q), we have

∥v̄PQ,f∥L4([t0,∞)) ≲σ|Q|3/4W (V(∆))1/4. (6.1)
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Note that while the intrinsic Lipschitz constant of f appears in Theorem 6.1, it

does not appear in (6.1). Indeed, this bound is invariant under scalings and stretch

automorphisms; if Γ, Q, and (∆, (Qv)v∈V(∆)) are as in Lemma 6.2, a, b>0, s=sa,b, and

ŝ=Π�s|V0 = s|V0 ,

then, by Lemma 4.11, ŝ(Q) is a pseudoquad in s(Γ)=Γf̂ , where f̂=bf �ŝ
−1. Furthermore,

∆′=(ŝ(Qv))v∈V(∆) is a foliated patchwork for ŝ(Q) and (s(Pv))v∈VH(∆) is a set of σ -

approximating planes.

By Lemma 4.2, α(ŝ(Qv))=
√
a/bα(Qv) and |ŝ(Qv)|=a2b|Qv|, so

W (V(∆′))= b3W (V(∆))

and

|ŝ(Q)|3/4W (V(∆′))1/4 =(a2b)3/4|Q|3/4b3/4W (V(∆))1/4 =(ab)3/2|Q|3/4W (V(∆))1/4.

If (6.1) holds for f and Q, then, by Lemma 2.12,

∥v̄P
ŝ(Q),f̂

∥L4([t0−log4(ab),∞)) =(ab)3/2∥v̄PQ,f∥L4([t0,∞))

≲σ(ab)3/2|Q|3/4W (V(∆))1/4 =σ|ŝ(Q)|3/4W (V(∆′))1/4.

That is, (6.1) holds for f̂ and s(Q).

To prove Lemma 6.2, we will need some lemmas on partitions and coherent sets. A

collection {Q1, ..., Qn} of pseudoquads is a partition of Q if Q=
⋃n
i=1Qi and if the Qi

overlap only along their boundaries. A coherent subtree of T is a connected subtree such

that, for every v∈T , either all children of v are contained in T or none of them are. A

coherent subset of V(∆) is the vertex set of a coherent subtree.

Lemma 6.3. Let ∆ be a rectilinear foliated patchwork for Q and suppose that S⊆
V(∆) is coherent. Let M=maxS be the maximal element of S and let minS be the set

of minimal elements of S. Denote

F1 =F1(S)
def
= {p∈QM : there are infinitely many v ∈S such that p∈Qv}.

Then,

QM =F1

⋃( ⋃
w∈minS

Qw

)
. (6.2)

The interiors of {Qw :w∈minS} are pairwise disjoint and disjoint from F1. If S is

finite, then minS is a partition of QM .
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Proof. Let v∈minS and let p∈intQv. If u∈S and p∈Qu, then either u<v or v⩽u.

The first is impossible by the minimality of v, so v⩽u. It follows that there are only

finitely many w∈S such that p∈Qw and no such w is minimal except v. That is, intQv

is disjoint from F1, and if u∈minS and u ̸=v, then intQv is disjoint from intQu.

If p∈QM \F1, then the set {v∈S :p∈Qv} is finite, and thus has a minimal element v0.

Let w be a child of v0 such that p∈Qw. The minimality of v0 implies that w ̸∈S, so
v∈min(S) by the coherence of S. This implies (6.2).

Lemma 6.4. Fix 0<µ⩽ 1
32 and let (∆, (Qv)v∈∆) be a µ-rectilinear foliated patchwork

for Q with W (VV(∆))<∞. For any 0<σ⩽δz(Q), denote Sσ={v∈V(∆):δz(Qv)⩾σ} and

let Fσ=minSσ. Then, {Qv}v∈Fσ is a partition of Q into horizontally cut pseudoquads

such that σ⩽δz(Qv)<4σ for all v∈Fσ.

Proof. By Definition 4.4 and Lemma 4.5, the height of every pseudoquad of ∆ is

equal to the height of its sibling and at most the height of its parent. Therefore, Sσ is

coherent. If v∈Sσ, then

W ({v})=α(Qv)
−4|Qv| ≍ δz(Qv)

3δx(Qv)
−3 ⩾σ3δx(Q)−3,

which is bounded away from zero, so Lemma 4.10 implies that Sσ is finite. By Lemma 6.3,

Fσ partitions Q.

Suppose that v∈Fσ and let w∈C(v). By the minimality of v, we have v∈Sσ and

w ̸∈Sσ, so δz(Qv)⩾σ>δz(Qw). Since δz(Qw)<δz(Qv), v is horizontally cut. Furthermore,

by Lemma 4.5, σ>δz(Qw)⩾ 1
4δz(Qv), so v is a horizontally cut pseudoquad such that

σ⩽δz(Qv)<4σ, as desired.

We will use these partitions to decompose the parametric vertical perimeter of f

and prove Lemma 6.2.

Proof of Lemma 6.2. By the remarks after Lemma 6.2, condition (6.1) is invariant

under scaling, so we may rescale so that δz(Q)=1. Let ∆ be a 1
32 -rectilinear foliated

patchwork for Q and let (Pv)v∈VH(∆) be a set of σ -approximating planes. Without loss of

generality, we suppose thatW (V(∆))<∞. For each v∈VH(∆), let fv:V0!R be the affine

function such that Γfv=Pv. For i∈N∪{0}, let Ci=F2−2i−1⊆VH(∆) be as in Lemma 6.4,

so that {Qv}v∈Ci is a partition of Q into horizontally-cut pseudoquads with heights in

[2−2i−1, 2−2i+1). No vertex of ∆ appears in more than one of the Ci’s.

We start by bounding v̄PQv,f (t) from above for each v∈Ci for a fixed i∈N∪{0}. Then
we have 2−2i⩽2δz(Qv), so Lemma 4.1 implies that Z−2−2t

Qv⊆10Qv for any t∈[i, i+1].
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Therefore, since fv is constant on vertical lines,

v̄PQv,f (t)= 2t
ˆ
Qv

|f(w)−f(wZ−2−2t

)| dw

⩽ 2t
ˆ
Qv

(|f(w)−fv(w)|+|fv(wZ−2−2t

)−f(wZ−2−2t

)|) dw

=2t(∥f−fv∥L1(Qv)+∥f−fv∥L1(Z−2−2tQv)
)

(4.14)

⩽ 2t+1|Qv|σ
δz(Qv)

δx(Qv)

(4.5)
≍ σδz(Qv)

3/2 ≍σα(Qv)
−1|Qv|.

Since {Qv}v∈Ci is a partition of Q, we have v̄PQ,f (t)=
∑
v∈Ci v̄

P
Qv,f

(t) for all t∈R. Thus,

∥v̄PQ,f∥L4([i,i+1)) ⩽
∑
v∈Ci

∥v̄PQv,f∥L4([i,i+1]) ≲
∑
v∈Ci

σα(Qv)
−1|Qv|. (6.3)

Consequently,

∥v̄PQ,f∥4L4([0,∞)) =

∞∑
i=0

∥v̄PQ,f∥4L4([i,i+1))

(6.3)

≲ σ4
∞∑
i=0

( ∑
v∈Ci

α(Qv)
−1|Qv|

)4
⩽σ4

∞∑
i=0

( ∑
v∈Ci

|Qv|
)3( ∑

v∈Ci

α(Qv)
−4|Qv|

)
(4.10)
= σ4|Q|3

∞∑
i=0

W (Ci)⩽σ4|Q|3W (V(∆)),

where the third step is an application of Hölder’s inequality.

Finally, we use Lemmas 2.11 and 2.12 to prove Theorem 6.1.

Proof of Theorem 6.1. After scaling, it suffices to prove the theorem in the case that

r=1, i.e., that if Γ is the intrinsic graph of an intrinsic λ-Lipschitz function f :V0!R,
then

∥v̄B1(Γ
+)∥L4(R) ≲λ 1. (6.4)

By the definition (1.30),

v̄B1
(Γ+)(t)= 2t|B1∩(Γ+△Γ+Z2−2t

)|⩽ 2t|B1|≲ 2t for all t∈R.

Hence,

∥v̄B1
(Γ+)∥L4((−∞,a]) =

(ˆ a

−∞
v̄B1

(Γ+)(t)4 dt

)1/4
≲

(ˆ a

−∞
24t dt

)1/4
≲ 2a for all a∈R,
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and therefore we have the following simple a-priori bound.

∥v̄B1
(Γ+)∥L4(R) ≲ 2a+∥v̄B1

(Γ+)∥L4((a,∞)) for all a∈R. (6.5)

We will first treat the (trivial) case B5∩Γ=∅, so that either B5⊆Γ+ or B5⊆Γ−.

Without loss of generality, suppose that B5⊆Γ+. This implies that B1⊆Γ+∩Z2−2t

Γ+ for

any t⩾0, so v̄B1(Γ
+)(t)=0, and therefore in this case (6.4) follows from the case a=0

of (6.5).

We may thus suppose, from now on, that B5∩Γ ̸=∅. Fix any point p∈B5∩Γ. Then,
d(p, ⟨Y ⟩)⩽5 and p=vY f(v) for some v∈V0 with |f(v)|⩽5, so by Lemma 2.3, we have

|f(0)|⩽ |f(v)|+|f(v)−f(0)|⩽ 5+
2

1−λ
d(p, ⟨Y ⟩)≲ 1

1−λ
.

Likewise, for any t∈R,

|f(Zt)|⩽ |f(0)|+ 2

1−λ
d(0, Zt)≲ 1+

√
|t|

1−λ
.

For t∈R, let gt:R!R be a function such that gt(0)=t and the graph of gt is characteristic

for f . By (2.17), g′t(0)=−f(Zt), so by Lemma 2.7 and the estimate above,

max
x∈[−1,1]

|gt(x)−t|⩽ |g′t(0)|+
λ

2
√
1−λ2

= |f(Zt)|+ λ

2
√
1−λ2

≲λ 1+
√

|t|. (6.6)

The right-hand side of (6.6) grows slower than |t| as |t|!∞, so there is t0=t0(λ)>1 such

that the pseudoquadQ that is bounded by the lines x=±1 and z=g±t0(x) is
1
32 -rectilinear

and contains the projection Π(B1).

Theorem 5.2 applied with the choice of parameters µ0=
1
32 and σ=1 shows that Q

has a foliated patchwork ∆ and a set of 1-approximating planes that satisfy

W (VV(∆))≲λ |Q|≲λ 1.

By Lemma 4.10, this implies that

W (V(∆))≲W (VV(∆))+α(Q)−4|Q|≲λ 1. (6.7)

By Lemmas 2.11 and 6.2, we conclude as follows:

∥v̄B1
(Γ+)∥L4(R) ≲

1√
δz(Q)

+∥v̄B1
(Γ+)∥L4([− log4 δz(Q),∞))

⩽
1√
δz(Q)

+∥v̄PQ,f∥L4([− log4 δz(Q),∞))

≲
1√
δz(Q)

+|Q|3/4W (V(∆))1/4 ≲λ 1,

where the first step is an application of (6.5) with a=− log4 δz(Q), the second step is

an application of Lemma 2.11 because Q⊇Π(B1), the third step is an application of

Lemma 6.2, and the final step holds due to (6.7) and because |Q|≍δz(Q)≍λ1.
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7. The subdivision algorithm: constructing a foliated corona decomposition

In this section, we will formulate an iterative subdivision algorithm (Lemma 7.3 below)

and prove that, given certain propositions on the geometry of pseudoquads, this algorithm

produces a foliated corona decomposition. In the following sections, we will prove these

geometric propositions. Together, these arguments establish Theorem 5.2.

Fix λ, σ∈(0, 1). Let f :V0!R, and suppose that Γ=Γf is an intrinsic λ-Lipschitz

graph. Let 0<µ⩽ 1
32 . To show that Γ admits a foliated corona decomposition, we must

show that, for any µ-rectilinear pseudoquad Q, there is a µ-rectilinear foliated patchwork

∆ for Q which has a set of σ -approximating planes and such that ∆ is weighted Carleson.

In order to describe the subdivision algorithm that produces ∆, we will introduce

the R-extended parametric normalized non-monotonicity of Γ, denoted by ΩPΓ+,R, which

is a measure on V0 with density based on how horizontal line segments of length at most

R>0 intersect Γ. If Γ is a plane, for instance, then ΩPΓ+,R=0, while ΩPΓ+,R has positive

density when Γ is bumpy at scale R.

This is in the spirit of the quantitative non-monotonicity used in [23] and [91], but

it counts different segments, and, like the parametric vertical perimeter, it is defined in

terms of the function f . We will give a full definition in §8 and discuss the relationship

between extended non-monotonicity and quantitative non-monotonicity in Remarks 8.4

and 10.2. In §9, we will show that there is c>0 depending on the intrinsic Lipschitz

constant of Γ such that the following kinematic formula (inequality) holds for every

measurable subset U⊆V0: ∑
i∈Z

ΩPΓ+,2−i(U)⩽ c|U |. (7.1)

Definition 7.1. Suppose that η, r,R>0 and let Q be a 1
4 -rectilinear pseudoquad. We

say that Γ is (η,R)-paramonotone on rQ if it satisfies the following bound:

ΩPΓ+,Rδx(Q)(rQ)

|Q|
⩽

η

α(Q)4
. (7.2)

This condition is invariant under scalings, stretch maps, and shear maps; see the discus-

sion immediately after the proof of Lemma 8.8 below.

One of the main results of [23] was that for small η>0, any η -monotone set is

close to a plane in H; this is a “stability version” of the characterization of monotone

sets in [21]. The following proposition, which we will prove in §§10–12, states not only

that paramonotone pseudoquads are close to vertical planes in H, but also that their

characteristic curves are close to the characteristic curves of their approximating planes.
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Proposition 7.2. There is a universal constant r>1 such that, for any σ>0 and

any 0<ζ⩽ 1
32 , there are η,R>0 such that, if Γ=Γf is the intrinsic Lipschitz graph

of f :V0!R, and if Q is a 1
32 -rectilinear pseudoquad for Γ such that Γ is (η,R)-

paramonotone on rQ, then the folowing statements hold.

(1) There is a vertical plane P⊆H (a σ-approximating plane) and an affine function

F :V0!R such that P is the intrinsic graph of F and

∥F−f∥L1(10Q)

|Q|
⩽σ

δz(Q)

δx(Q)
. (7.3)

(2) Let u∈4Q and let gΓ, gP :R!R be such that {z=gΓ(x)} (resp. {z=gP (x)}) is

a characteristic curve for Γ (resp. P ) that passes through u. Then,

∥gP−gΓ∥L∞(4I) ⩽ ζδz(Q).

It is important to observe that the bounds in Proposition 7.2 do not depend on the

intrinsic Lipschitz constant of f . Indeed, this proposition holds when Γ is merely the

intrinsic graph of a continuous function. This is important because paramonotonicity is

invariant under stretch automorphisms; a bound that depended on the intrinsic Lipschitz

constant of Γ would not be invariant.

Proposition 7.2 allows us to construct a µ-rectilinear foliated patchwork and a col-

lection of σ -approximating planes by recursively subdividing Q according to a greedy

algorithm.

Lemma 7.3. Let r be as in Proposition 7.2. Fix 0<µ⩽ 1
32 and σ>0. There are

η,R>0 with the following property. Let Γ be an intrinsic Lipschitz graph and let Q be a

µ-rectilinear pseudoquad. There is a µ-rectilinear foliated patchwork ∆ for Q such that,

for all v∈V(∆), Qv is horizontally cut if and only if Γ is (η,R)-paramonotone on rQ,

and ∆ admits a set of σ-approximating planes.

Proof. Let r, η, and R be positive constants such that Proposition 7.2 is satisfied

with ζ= 1
4µ.

We construct ∆ by a greedy algorithm. Denote the root vertex of ∆ by v0 and let

Qv0=Q; by assumption, it is µ-rectilinear. Suppose by induction that we have already

constructed a µ-rectilinear pseudoquad (Qv, Rv). Let v∈V(∆) be a vertex with children

w and w′. Let I=[a, b] be the base of Qv and let g1, g2:R!R be its lower and upper

bounds, respectively.

Suppose that Γ is not (η,R)-paramonotone on rQv. The vertical line x= 1
2 (a+b)

cuts Qv and Rv vertically into two halves. Let Qw and Qw′ be the halves of Qv and let
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Rw and Rw′ be the halves of Rv. Since (Qv, Rv) is µ-rectilinear, (Qw, Rw) and (Qw′ , Rw′)

are both µ-rectilinear.

Now suppose that Γ is (η,R)-paramonotone on rQv. Proposition 7.2 states that

there is a σ -approximating plane P for Qv such that, for every u∈4Qv, any characteristic

curve of Γ that passes through u is ζδz(Q)-close to the characteristic curve of P that

passes through u. For i∈{1, 2}, let ui=
(
1
2 (a+b), gi

(
1
2 (a+b)

))
, and let m be the midpoint

of u1 and u2.

Let g3:R!R be a function whose graph is a characteristic curve for Γ that passes

through m. Let Qw and Qw′ be the pseudoquads with base I that are bounded by the

graphs of g1, g3, and g2.

The characteristic curves of P that pass through u1, u2, and m are parallel evenly-

spaced parabolas; let h1, h2, h3:V0!R be the corresponding quadratic functions and

let d=h2−h3=h3−h1 be the constant distance between them. Let Rw and Rw′ be

the parabolic rectangles with base I that are bounded by these three parabolas. By

Proposition 7.2, we have ∥gi−hi∥L∞(4I)⩽ζδz(Q) for i∈{1, 2, 3}. In particular, every

x∈I satisfies

|δz(Q)−2d|⩽ |δz(Q)−(g2(x)−g1(x))|+|g2(x)−g3(x)−d|+|g3(x)−g1(x)−d|

⩽ 3ζδz(Q),

so d⩾ 1
4δz(Q) and

∥gi−hi∥L∞(4I) ⩽ 4ζd=µd

for i∈{1, 2, 3}. That is, (Qw, Rw) and (Qw′ , Rw′) are µ-rectilinear and satisfy Defini-

tion 4.4 with k=h3. We construct the desired rectilinear foliated patchwork by repeating

this process for every vertex of ∆.

Pseudoquads that are not paramonotone contribute to the non-monotonicity of Γ,

so, as in [91], the total number and size of these pseudoquads is bounded by the measure

of Γ. In §9, we will use an argument based on the Vitali covering lemma to prove that

rectilinear foliated patchworks constructed using Lemma 7.3 satisfy a weighted Carleson

condition, as stated in the following proposition.

Proposition 7.4. Let r>1 and 0<µ⩽ 1
32r2 . Let η,R>0 and let 0<λ<1. Let Γ

be an intrinsic λ-Lipschitz graph, let ∆ be a µ-rectilinear foliated patchwork for Γ, and

suppose that, for all v∈V(∆), the pseudoquad Qv is horizontally cut if and only if Γ

is (η,R)-paramonotone on rQv. Let W : 2V(∆)
![0,∞] be as in (4.10). Then, for any

v∈V(∆),

W ({w∈VV(∆) :w⩽ v})≲η,r,R,λ |Qv|. (7.4)
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With these tools at hand, Theorem 5.2 follows directly.

Proof of Theorem 5.2 assuming Propositions 7.2 and 7.4. Let r be as in Proposi-

tion 7.2 and write µ0=1/32r2. Fix 0<µ⩽µ0 and σ>0, and let η and R be as in

Lemma 7.3. Since Γ is an intrinsic λ-Lipschitz graph, Lemma 7.3 produces a µ-rectilinear

foliated patchwork ∆ rooted at Q with a set of σ -approximating planes. By Proposi-

tion 7.4, this patchwork is weighted Carleson with a constant depending on η, r, R, σ, and

λ. Since r>1 is universal and η and R depend only on µ and σ, we obtain Theorem 5.2

by using Lemma 5.5 to increase µ0=1/32r2 to µ0=
1
32 .

Observe in passing that since in the above proof the patchwork that established

Theorem 5.2 was obtained from Proposition 7.2, we actually derived the following more

nuanced formulation of Theorem 5.2; it is worthwhile to state it explicitly here because

this is how it will be used in forthcoming work of the second named author.

Theorem 7.5. For every 0<λ<1 there is a function Dλ:R+×R+
!R+, and for ev-

ery 0<µ⩽ 1
32 and σ>0 there are η=η(µ, σ), R=R(µ, σ)>0 with the following properties.

Suppose that Γ⊆H is an intrinsic λ-Lipschitz graph over V0 and Q⊆V0 is a µ-rectilinear

pseudoquad for Γ. Then, there is a µ-rectilinear foliated patchwork ∆ for Q such that ∆

is Dλ(µ, σ)-weighted Carleson and has a set of σ-approximating planes. Moreover, for

all vertices v∈V(∆), the associated pseudoquad Qv is horizontally cut if and only if Γ

is (η,R)-paramonotone on rQ, where r>1 is the universal constant in Proposition 7.2.

Remark 7.6. While the results in this paper rely only on approximating a intrinsic

Lipschitz graph by vertical planes to bound its vertical perimeter, Theorem 7.5 allows

one to glue vertical planes together to approximate an intrinsic Lipschitz graph by ruled

surfaces. Indeed, with notation as in Theorem 7.5, let F⊆V(∆) be a finite coherent

subset such that every vertex in F is horizontally cut. Let vF be the maximal element

of F and let m(F ) be the set of minimal elements of F . Then, {Qv :v∈m(F )} is a

partition of QvF into a stack of pseudoquads Q1, ..., Qk that are vertically adjacent. The

characteristic curves bounding these pseudoquads can be approximated by parabolas,

denoted h0, ..., hk, and the µ-rectilinearity of ∆ implies that these parabolas do not

intersect inside QvF ; see the proof of Lemma 9.5. We can then construct a foliation of

QvF by parabolas by linearly interpolating between the hi’s. Since any parabola is the

projection of a horizontal line to V0, this foliation is the set of characteristic curves of a

ruled surface Σ⊆H. By passing to a limit, one can construct a ruled surface corresponding

to any coherent subset of horizontally cut vertices. This procedure is roughly analogous

to the method used in [26] to approximate stopping-time regions in uniformly rectifiable

sets in Rn by Lipschitz graphs. In our setting, we can use linear interpolation instead of

using a partition of unity as in [26] or [91].
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By Proposition 7.2, Σ approximates Γ and the characteristic curves of Σ approximate

the characteristic curves of Σ inside QvF (with accuracy depending on the heights of the

Qi’s). In fact, if v∈VH(∆) is a vertex such that every descendant of v is horizontally

cut (i.e., D(v)⊆VH(∆)), then Σ coincides with Γ over Qv. We omit the details of these

approximations because they are not needed in the current work, but complete details

will be given in forthcoming work of the second named author where they will be used

to analyze intrinsic Lipschitz functions.

We will prove Propositions 7.2 and 7.4 in the following sections. Specifically, in

§8, we will define extended non-monotonicity and extended parametric normalized non-

monotonicity and prove some of their basic properties. In §9, we will prove that Propo-

sition 7.2 implies Proposition 7.4. Finally, in §§10–12, we will prove Proposition 7.2.

8. Extended non-monotonicity

8.1. Extended non-monotonicity in R

In this section, we define the extended non-monotonicity and extended parameterized non-

monotonicity of a set E⊆H. Like the quantitative non-monotonicity that was defined

in [23] and the horizontal width that was defined in [33], these measure how horizontal

lines intersect ∂E.

We first define these quantities on subsets of lines, then define them on subsets of H
by integrating over the space of horizontal lines. Let L be the space of horizontal lines

in H. Let N be the Haar measure on L, normalized so that the measure of the set of

lines that intersect the ball of radius r is equal to r3.

Recall that a measurable subset S⊆R is monotone [21] if its indicator function is a

monotone function (i.e., S is equal to either ∅, R, or some ray). For a measurable set

U⊆R, we define the non-monotonicity of S on U by

NMS(U)
def
= inf{H1(U∩(M△S)) :M is monotone},

where, as usual, M△S=(M \S)∪(S\M) is the symmetric difference of M and S.

For S⊆R, we say that S has finite perimeter if ∂H1S is a finite set, where we recall

the notation (2.2) for measure theoretical boundary, which in the present setting becomes

∂H1S
def
= {x∈R : 0<H1((x−ε, x+ε)∩S)< 2ε for all ε> 0}.

If S⊆R is a set of finite perimeter, then there is a unique collection of disjoint closed

intervals of positive length I(S)={I1(S), I2(S), ... } such that S△
⋃
I(S) has measure
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zero. For any R>0, we define as follows a point measure ωS,R supported on the bound-

aries of the intervals in I(S) of length at most R:

ωS,R
def
=

∑
I∈I(S)

H1(I)⩽R

H1(I)·(δmin I+δmax I).

Let

ω̂S,R= 1
2 (ωS,R+ωR\S,R).

These measures are inspired by analogous measures {ŵi}i∈Z used in [23]. It was

shown in [23] that, if δ>0 is sufficiently small, then the non-monotonicity of S at scale

δi is bounded in terms of a measure ŵi that counts the set of endpoints of intervals in S

or R\S of length between δi and δi+1. The main difference between ŵi and ω̂S,δi is that

ŵi ignores intervals of length less than δi+1, but ω̂S,δi weights them by their lengths.

For U⊆R, we call ω̂S,R(U) the R-extended non-monotonicity of S on U . (We will

typically use this notation when R>diamU .) We use the term “extended” here because

it depends not only on S∩U , but also on the behavior of S outside U . For example, let

U=[a, b] and suppose that S⊆R is a set with locally finite perimeter. If ω̂S,R(U)=0 for

all R>0, then there can be no finite-length interval in I(S) or I(R\S) with a boundary

point in U . That is, U∩∂H1S is empty or, up to a measure-zero set, S=[c,∞) or

S=(−∞, c] for some c∈[a, b]. Similarly, when S=[a, b] and R>b−a, if ω̂S,R(U) is much

smaller than b−a, then either U∩∂H1S is almost empty, or U is almost monotone on an

R-neighborhood of S. This follows from the following two lemmas. The first lemma is

based on the bounds in [23, Proposition 4.25] and [33, Lemma 3.4].

Lemma 8.1. Let a, b∈R, let U⊆[a, b], and let R⩾b−a. For any finite-perimeter set

S⊆R,
NMS(U)⩽diam((a, b)∩∂H1S)⩽ ω̂S,R((a, b)).

Proof. Let δ=diam((a, b)∩∂H1S). Consider the following set of closed intervals:

J
def
= {I ∈I(S)∪I(R\S) : I∩(a, b) ̸=∅}.

This set is finite, so we may label its elements J1, ..., Jn in increasing order. After changing

S on a measure-zero subset, the interiors of the Ji’s are alternately contained in S and

disjoint from S. If n=1, then NMS(U)=0 and δ=0, so we suppose that n⩾2. Then,

δ=min(Jn)−max(J1)=

n−1∑
i=2

H1(Ji)
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and

ω̂S,R((a, b))⩾ 2

n−1∑
m=2

H1(Jm)⩾ δ.

Regardless of whether J1 and Jn are in or out of S, there is a monotone subset M⊆R
such that 1M agrees with 1S on J1 and Jn. Then,

NMS(U)⩽H1(U∩(S△M))⩽H1([a, b]\(J1∪Jn))= δ.

A similar reasoning gives the following lower bound. Recall that suppH1 and intH1

denote measure-theoretic support and interior, see (2.1)–(2.3).

Lemma 8.2. Fix R, a, b∈R with a<b and R⩾b−a. Let S⊆R have locally finite

perimeter such that a, b∈suppH1(R\S). For any closed interval I⊆[a, b], either

I ⊆ intH1 S or ω̂S,R(I)⩾ 1
2H

1(S∩I).

Proof. Suppose I ̸⊆intH1 S. Let I1, ..., In be the intervals in I(S) that intersect

I. By assumption, each of the intervals I1, ..., In has at least one endpoint in I. Fur-

thermore, since a, b∈suppH1(R\S), we have Ij⊆[a, b] for all j∈{1, ..., n}. In particular,

maxj∈{1,...,n} ℓ(Ij)⩽R. Up to a null set, we have S∩I⊆
⋃n
j=1 Ij , so

ω̂S,R(I)⩾
n∑
j=1

H1(Ij)

2
⩾

H1(S∩I)
2

.

These lemmas yield the following description of sets with small extended non-

monotonicity, which states that points in their measure theoretic boundary must be

either very close to each other, or very far from each other.

Proposition 8.3. Let S⊆R be a set with locally finite perimeter and fix c, d∈R
with c<d. Let R⩾d−c and suppose that 0<ε< 1

8 (d−c) and ω̂S,R((c, d))<ε. Then,

diam((t−R, t+R)∩∂H1S)<ε for all t∈ [c+4ε, d−4ε]∩∂H1S. (8.1)

Proof. Fix t∈[c+4ε, d−4ε]∩∂H1S. We will prove that this implies that

(t−R, t+R)∩∂H1S⊆ (c, d). (8.2)

Equation (8.1) is a consequence of the inclusion (8.2), since, by Lemma 8.1,

diam((t−R, t+R)∩∂H1S)
(8.2)

⩽ diam((c, d)∩∂H1S)⩽ ω̂S,R((c, d))<ε.
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Suppose by way of contradiction that (8.2) fails. So, there is

u∈ (t−R, t+R)∩∂H1S

with u⩾d or u⩽c. We will treat only the case u⩾d, since the case u⩽c is analogous.

Lemma 8.2 applied with [a, b]=[t, u] and I=[t, d], gives

1
2H

1(S∩[t, d])⩽ ω̂S,R([t, d])<ε.

If we replace S by R\S, the Lemma 8.2 gives

H1([t, d]\S)
2

⩽ ω̂S,R([t, d])<ε.

So d−t<4ε, which contradicts the choice of t.

Remark 8.4. Despite the name “extended non-monotonicity”, there is no direct

comparison between the extended non-monotonicity of S on U and the non-monotonicity

of S on a neighborhood of U . For example, if R>0, 0<ε<1, and S=[−ε, ε]∪[R,∞), then

NMS(R)=4ε, but ω̂S,R is the point measure

ω̂S,R= εδ−ε+
(
1
2ε+

1
2R
)
δε+

1
2RδR,

so ω̂S,R([−1, 1]) is large, despite S having small non-monotonicity. Conversely, for any

T⊆R that contains [−1, 1], the boundary ∂H1T is disjoint from (−1, 1), so

ω̂T,R((−1, 1))= 0,

regardless of the behavior of T on the rest of R.

8.2. Extended non-monotonicity in H

We have defined NM and ω̂ for subsets of R, but the same definitions are valid for subsets

of any line L∈L. This lets us define the non-monotonicity of a subset of H by integrating

over horizontal lines.

When U,E⊆H are measurable sets, we define the non-monotonicity of E on U by

NME(U)
def
=

ˆ
L
NME∩L(U∩L) dN (L).

(Note that this definition differs from the definition in [23]. Specifically, in [23], this was

only defined in the case that U=Br(x) for some r∈(0,∞) and x∈H, and was normalized

by a factor of r−3 to make it scale-invariant.)
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Definition 8.5. Fix R>0. Let E⊆H be a set with finite perimeter. By the kinematic

formula (§2.5), for almost every L∈L, the intersection E∩L is a set with finite perimeter,

and we define, for U⊆H,

ω̂E,R(U,L)
def
= ω̂E∩L,R(U∩L). (8.3)

We then define a measure ENME,R on H by setting

ENME,R(U)
def
=

ˆ
L
ω̂E,R(U,L) dN (L).

We call ENME,R(U) the R-extended non-monotonicity of E on U , and for ν>0 we say

that E is (ν,R)-extended monotone on U if ENME,R(U)⩽ν. Like ω̂S,R( ·), ENME,R(U)

depends on the behavior of E in an R-neighborhood of U . If R⩽R′, then

ENME,R⩽ENME,R′ .

When we say that a subset U⊆H is convex, we will always mean that it is convex

as a subset of the vector space R3. For every g∈H, the map v 7!gv is an affine map from

H to itself, so convexity is preserved by left multiplication.

Lemma 8.6. Let U⊆H be a measurable bounded set and let K⊆U be convex. Let

E⊆H be a finite-perimeter set. Then, for every R>diamU , we have

NME(K)⩽ENME,R(U).

Proof. Let L∈L be a horizontal line. By convexity, the intersection I=L∩K is an

interval and ℓ(I)⩽diamU . By Lemma 8.1,

NME∩L(I)⩽ ω̂E∩L,R(I)⩽ ω̂E,R(U,L).

Integrating both sides of this inequality with respect to N yields the desired bound.

We will also define a parametric version of extended non-monotonicity that is better

adapted to intrinsic Lipschitz graphs. This is based on a different measure on the space

of horizontal lines, denoted NP , which we next describe.

Let W0={x=0} be the yz -plane and let LP be the set of horizontal lines that are

not parallel to W0. Each L∈LP intersects W0 in a single point w(L), called the intercept

of L, and has a unique slope m(L)∈R such that L=w(L)·⟨X+m(L)Y ⟩.
The map (m,w):LP!R×W0 is a bijection, and we define NP to be the pullback of

the Lebesgue measure on R×W0 under this bijection. This measure is preserved by shear

maps and translations. If a, b>0 and if L(0,y,z),m is the line with slope m and intercept

(0, y, z), then sa,b(L(0,y,z),m)=L(0,by,abz),mb/a, so, for any measurable set A⊆LP ,

NP (sa,b(A))= b3NP (A). (8.4)
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Let E⊆H. For any R>0, any U⊆V0, and any L∈LP , we define

ω̂PE,R(U,L)
def
= ω̂x(E∩L),R(x(Π

−1(U)∩L)). (8.5)

This is similar to ω̂E,R(Π
−1(U), L) in (8.3), but the projection to the x-coordinate that

appears in (8.5) changes the measures and lengths involved by a constant factor.

When E is a finite-perimeter subset of H, we define a measure ΩPE,R on V0, by setting

for any measurable subset U⊆V0,

ΩPE,R(U)
def
=

1

R

ˆ
LP

ω̂PE,R(U,L) dNP (L). (8.6)

We call ΩPE,R(U) the R-extended parametric normalized non-monotonicity of E on U .

Now, note that the definition (8.6) includes an R−1 factor that does not appear in

Definition 8.5; we will see that this normalization allows for the kinematic formula (1.33)

to hold.

In general, the measure ΩPE,R is not necessarily locally finite. Indeed, if B⊆H is a

ball, then the set of lines that pass through B has infinite NP -measure. But when Γ is

an intrinsic λ-Lipschitz graph, any line with sufficiently large slope intersects Γ exactly

once. If E=Γ+ and L∈LP is a line such that L∩E is non-monotone, then L has bounded

slope; it follows that ΩPΓ+,R(K) is finite for any compact K⊆V0. Furthermore, ΩPΓ+,R is

bounded below by ENMΓ+,R.

Lemma 8.7. Let R>0 and x∈H. Suppose that E is a finite-perimeter subset of H,

and let U⊆H be measurable. Then,

ENME,R(U)≲RΩPE,R(Π(U)).

Proof. Let L∈LP and let m=m(L) be the slope of L, so that the restriction x|L
shrinks lengths by a factor of ϕ(m)=

√
1+m2. Then,

ω̂PE,R(Π(U), L)=
ω̂E,ϕ(m)·R(Π

−1(Π(U)), L)

ϕ(m)
⩾
ω̂E,R(U,L)

ϕ(m)
.

For w∈W0 and m∈R, let Lw,m be the line Lw,m=w·⟨X+mY ⟩∈LP . Then, it follows

that

RΩPE,R(Π(U))=

ˆ
W0

ˆ
R
ω̂PE,R(Π(U), Lw,m) dmdw⩾

ˆ
W0

ˆ
R

ω̂E,R(U,Lw,m)√
1+m2

dmdw.

For θ∈R, let Rθ:H!H be the rotation by angle θ around the z -axis. Since N is

invariant under translations and rotations, there is c>0 such that, for any measurable

f :L!R, ˆ
L
f(M) dN (M)= c

ˆ
W0

ˆ π/2

−π/2
f(Rθ(Lg,0)) dθ dg.
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Any line in LP can be written as Rθ(Lg,0) for some θ∈R and g∈W0. Specifically, for

w∈W0 and m∈R, let
θ(m)= arctanm

and let gm(w) be the W0-intercept of R−θ(m)(Lw,m)), so that Lw,m=Rθ(m)(Lgm(w),0).

Writing gm in coordinates as gm=(0, bm, cm), its Jacobian is

Jgm(y, z)=det


dbm
dy

dbm
dz

dcm
dy

dcm
dz

=det

( cos(arctanm) 0

dcm
dy

1

)
=

1√
1+m2

.

Consequently,

ˆ
W0

ˆ π/2

−π/2
f(Rθ(Lg,0)) dθ dg=

ˆ
W0

ˆ
R
f(Lw,m)

dθ

dm
Jgm(w) dmdw

=

ˆ
W0

ˆ
R

f(Lw,m)

(1+m2)3/2
dmdw.

Thus,

ENME,R(U)=

ˆ
L
ω̂E,R(U,L) dN (L)= c

ˆ
W0

ˆ
R

ω̂E,R(U,Lw,m)

(1+m2)3/2
dmdw

⩽ cRΩPE,R(Π(U)),

as desired.

One advantage of ΩP over ENM is that ΩP scales nicely under automorphisms.

Lemma 8.8. Fix a, b∈R\{0} and let

g= q�ρh�sa,b:H−!H

be a composition of a shear map q, a left-translation by h∈H, and a stretch map sa,b.

Let ĝ:V0!V0 be the map induced on V0, i.e., ĝ(x)=Π(g(x)) for all x∈V0. Let E⊆H
be a set with finite perimeter. For any measurable U⊆V0 and any R>0, if ΩPE,R(U) is

finite, then

ΩPg(E),|a|R(ĝ(U))= |b|3ΩPE,R(U) (8.7)

and
ΩPg(E),|a|R(ĝ(U))

|ĝ(U)|
=
b2

a2
·
ΩPE,R(U)

|U |
. (8.8)

In particular, if g is a composition of a scaling, shear, and translation, i.e., when a=b

above, then g preserves the density of ΩPE,R.
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Proof. The identity (8.7) is verified by computing as follows, using (8.4):

ΩPg(E),|a|R(ĝ(U))=
1

|a|R

ˆ
LP

ω̂Pg(E),|a|R(ĝ(U), L) dNP (L)

=
|b|3

|a|R

ˆ
LP

ω̂Pg(E),|a|R(ĝ(U), g(L)) dNP (L)

=
|b|3

|a|R

ˆ
LP

|a|ω̂PE,R(U,L) dNP (L)

= |b|3ΩPE,R(U),

By Lemma 2.8, we have |ĝ(U)|=a2|b|·|U |, which implies (8.8).

Suppose that Q is a pseudoquad for an intrinsic Lipschitz graph Γ⊆H, and that g

is as in Lemma 8.8. If Γ is (η,R)-paramonotone on rQ as in Definition 7.1, then the

density of ΩPΓ+,Rδx(Q) is bounded as follows:

ΩPΓ+,Rδx(Q)(rQ)

|Q|
⩽

η

α(Q)4
.

Let Q̂=ĝ(Q) and Γ̂=g(Γ). Then (8.8) and Lemma 4.2 imply that

ΩP
Γ̂+,Rδx(Q̂)

(rQ̂)

|Q̂|
⩽

ηb2

a2α(Q)4
=

η

α(Q̂)4
,

so Γ̂ is (η,R)-paramonotone on rQ̂ if and only if Γ is (η,R)-paramonotone on rQ.

In particular, it follows from Lemma 8.7 that if Γ is (η,R)-paramonotone on rQ,

then

ENMΓ+,Rδx(Q)(Π
−1(rQ))≲Rδx(Q)ΩPΓ+,Rδx(Q)(rQ)⩽

δx(Q)|Q|
α(Q)4

ηR≍Q ηR. (8.9)

9. The kinematic formula and the proof of Proposition 7.4

In this section, we prove Proposition 7.4 using two lemmas. The first bounds the total

weight of the vertically cut descendants of a vertex v∈V(∆) in terms of ΩP .

Lemma 9.1. Let r, η, R, λ, Γ, and ∆ be as in Proposition 7.4. Then, for any

v∈V(∆),

W ({w∈VV(∆) :w⩽ v})≲η,r,R
∞∑
i=0

ΩPΓ+,2−iRδx(Qv)
(rQv). (9.1)

The second is a kinematic formula bounding ΩP in terms of Lebesgue measure on V0.
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Lemma 9.2. Let 0<λ<1 and let Γ be an intrinsic λ-Lipschitz graph. For any

measurable set U⊆V0, ∑
i∈Z

ΩPΓ+,2−i(U)≲λ |U |. (9.2)

Proposition 7.4 follows from Lemmas 9.1 and 9.2.

Proof of Proposition 7.4 assuming Lemmas 9.1 and 9.2. Let us fix v∈V(∆) and de-

note δ=δx(Qv). Due to Lemma 9.1,

W ({w∈VV(∆) :w⩽ v})≲η,r,R
∞∑
i=0

ΩPΓ+,2−iRδ(rQv).

Let k be the integer such that 2k−1⩽Rδ<2k. Then,

∞∑
i=0

ΩPΓ+,2−iRδ(rQv)⩽
∞∑
i=0

2ΩPΓ+,2−i+k(rQv)
(9.2)

≲λ |rQv|.

Thus,

W ({w∈VV(∆) :w⩽ v})≲η,r,λ,R |Qv|.

We first establish Lemma 9.1, which we prove using an argument based on the Vitali

covering lemma. The first step is to construct partitions of Q into pseudoquads with

dyadic widths. As in Lemma 6.4, we construct these partitions from coherent subtrees.

Lemma 9.3. Let 0<µ⩽ 1
32 and let (∆, (Qv)v∈∆) be a µ-rectilinear foliated patchwork

for a µ-rectilinear pseudoquad Q. Fix j∈N∪{0}. For v∈V(∆), let DV(v)⊆V(∆) denote

the set of vertically cut descendants of v, and let

Fj(v)
def
= {w∈DV(v) : δx(Qw)= 2−jδx(Q)}.

Then, for any w,w′∈Fj(v), if w ̸=w′, then Qw and Qw′ have disjoint interiors.

Proof. Let D(v) be the set of descendants of v, and let

Rj = {w∈D(v) : δx(Qw)⩾ 2−jδx(Qv)}.

By Lemma 4.5, this is a coherent set and Fj(v)=minRj , so Lemma 6.3 implies that

Fj(v) consists of pseudoquads with disjoint interiors.

Let v0 be the root of ∆ (so Q=Qv0). For each j∈N∪{0} we write Fj=Fj(v0).

Denote I=x(Q) and lj=2−jℓ(I)=2−jδx(Q). Let Ij,1, ..., Ij,2j be the partition of I into

2j intervals of length lj such that, for any v∈V(∆), there are j,m∈N∪{0} such that

x(Qv)=Ij,m. We partition Fj into columns as follows:

Fj,m
def
= {w∈Fj :x(Qw)= Ij,m} for all m∈{1, ..., 2j}. (9.3)

Each column satisfies the following version of the Vitali covering lemma.
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Lemma 9.4. For each j∈N∪{0} and m∈{1, ..., 2j}, there is a (possibly finite) se-

quence of vertices Dj,m={v1, v2, ... }⊆Fj,m such that rQv1 , rQv2 , ... are pairwise disjoint

and

W (Dj,m)≍rW (Fj,m).

We prove Lemma 9.4 using the following expansion property.

Lemma 9.5. Let r>1 and let 0<µ⩽1/32r2. Let ∆ be a µ-rectilinear foliated

patchwork. Let v, w∈V(∆) be two vertices such that x(Qv)=x(Qw), and suppose that

rQv∩rQw is non-empty. If δz(Qv)⩾δz(Qw), then Qw⊆3rQv, and if δz(Qw)⩾δz(Qv),

then Qw⊆3rQv.

Proof. Write I=[−1, 1]. By rescaling and translating, we may suppose without loss

of generality that x(Qv)=x(Qw)=I. Moreover, we may suppose that Qv is vertically

below Qw. We first construct a stack of pseudoquads of width at least 2 that connects

Qv and Qw.

For u∈V(∆), let A(u)={t∈V(∆):t⩾u} be the set of ancestors of u. If u ̸=v0, let
S(u) be the sibling of u and let P (u) be the parent of u. Let

J =A(v)∪A(w)∪S(A(v)∪A(w)).

Since A(v)∪A(w) spans a connected subtree of ∆, so does J , and J is a coherent subset

of V(∆). Furthermore, J is finite, so K=minJ is a partition of Q.

If u∈K, then u is either an ancestor of v or w, or a sibling of such an ancestor.

In either case, δx(Qu)⩾2, and the base of Qu either contains I or its interior is disjoint

from I. Let K ′={u∈K :I⊆x(Qu)}. For each u∈K ′, Qu intersects the z -axis in an

interval. We denote the elements of K ′ by u1, ..., un, in order of increasing z -coordinate.

These pseudoquads form a stack; each pseudoquad Qui is vertically adjacent to Qui+1 .

We suppose that ua=v and ub=w, with a<b.

Rectilinearity implies that the boundaries of the Qui ’s have similar slopes. For each

i∈{1, ..., n}, let gi be the lower bound of Qui and let gi+1 be its upper bound. These may

be defined on different domains, but all of their domains contain I. For each i∈{1, ..., n},
let Rui be the parabolic rectangle associated with Qui and let di=δz(Qui), so that there

are quadratic functions hi:R!R satisfying∥∥gi−(hi− 1
2di
)∥∥
L∞(I)

⩽µdi and
∥∥gi+1−

(
hi+

1
2di
)∥∥
L∞(I)

⩽µdi.

Then, ∥∥(hi+1− 1
2di+1

)
−
(
hi+

1
2di
)∥∥
L∞(I)

⩽µ(di+di+1). (9.4)
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Hence, for any i, j∈{1, ..., n} with i<j,

∥∥∥∥hj−hi−j−1∑
k=i

dk+dk+1

2

∥∥∥∥
L∞(I)

⩽µ

j−1∑
k=i

(dk+dk+1).

Since

hj−hi−
j−1∑
k=i

dk+dk+1

2

is quadratic, by Lemma 4.6 it follows that

∥∥∥∥hj−hi−j−1∑
k=i

dk+dk+1

2

∥∥∥∥
L∞([−r,r])

⩽ 4r2µ

j−1∑
k=i

(dk+dk+1)⩽
j−1∑
k=i

di+di+1

8
.

Denoting

D=

b−1∑
k=a

dk+dk+1

2
,

it follows that, for all x∈[−r, r], we have

3
4D⩽hb(x)−ha(x)⩽ 5

4D. (9.5)

Suppose that δz(Qw)⩽δz(Qv). For each i∈{1, ..., n}, the definition (4.1) of rQ states

rQui =
{
(x, z)∈V0 :x∈ [−r, r] and |z−hi(x)|⩽ 1

2r
2di
}
.

Since δz(Qw)⩽δz(Qv) and rQv intersects rQw, there is t∈[−r, r] such that

hb(t)−ha(t)⩽ 1
2r

2(db+da)=
1
2r

2(δz(Qv)+δz(Qw))⩽ r2δz(Qv),

and thus by (9.5) we have D⩽ 4
3r

2δz(Qv).

Let (x, z)∈Qw. By (9.4),

z ∈ [gb(x), gb+1(x)]⊆
[
hb(x)− 3

4δz(Qw), hb(x)+
3
4δz(Qw)

]
,

so

|ha(x)−z|⩽ |ha(x)−hb(x)|+|hb(x)−z|⩽ 5
4D+ 3

4δz(Qw)⩽
1
2 (3r)

2δz(Qv),

where the penultimate step uses (9.5), and the final step uses the upper bound on D that

we derived above and the assumption δz(Qw)⩽δz(Qv). It follows (x, z)∈3rQv, and thus

Qw⊆3rQv. If δz(Qv)⩽δz(Qw), then the analogous reasoning shows Qv⊆3rQw.
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Proof of Lemma 9.4. Similarly to the proof of the Vitali covering lemma, we define

inductively a sequence S0, S1 ..., of subsets of Fj,m as follows. Let S0=∅. For each i∈N,
let vi be an element of Fj,m\

⋃i−1
k=0 Si that maximizes δz(Qvi). Define

Si=

{
w∈Fj,m\

i−1⋃
k=0

Sk : rQvi∩rQw ̸=∅
}
.

If
⋃i
k=1 Sk=Fj,m, then we stop. By construction, rQv1 , rQv2 , ... are disjoint. We will

show that the set Dj,m={v1, v2, ... }⊆Fj,m satisfies the desired properties.

We first claim that Fj,m=S1∪S2∪... , where this holds by construction if there are

only finitely many vi’s. So, suppose that there are infinitely many vi’s and let w∈Fj,m.

There are only finitely many elements of Fj,m with height greater than δz(Qw), so there

is i∈N such that δz(Qvi)<δz(Qw). By the maximality of δz(Qvi), this implies that

w∈S1∪...∪Si−1.

We next show that

W (Dj,m)≍rW (Fj,m).

As Dj,m⊆Fj,m, we have W (Dj,m)⩽W (Fj,m). Conversely, if w∈Si, then rQw intersects

rQvi and δz(Qw)⩽δz(Qvi), so Lemma 9.5 implies that Qw⊆3rQvi . Since the elements

of Fj,m are pairwise disjoint (Lemma 9.3) pseudoquads of the same width, we have

α(Qw)⩾α(Qvi) and

W (Si)=
∑
w∈Si

α(Qw)
−4|Qw|⩽α(Qvi)

−4
∑
w∈Si

|Qw|

=α(Qvi)
−4

∣∣∣∣ ⋃
w∈Si

Qw

∣∣∣∣⩽α(Qvi)
−4|3rQvi | ≍ r3W ({vi}).

By summing this bound over j, we conclude

W (Fj,m)=W (S1)+W (S2)+...≲ r3
(
W ({v1})+W ({v2})+...

)
= r3W (Dj,m).

We are now ready to prove Lemma 9.1.

Proof of Lemma 9.1. It suffices to treat the case where v is the root of ∆, so Qv=Q.

Fix j∈N∪{0} and m∈{1, ..., 2j}. Let Fj,m and Dj,m be as in Lemma 9.4.

Since, by definition, Fj,m consists only of vertices that are vertically cut, by hypoth-

esis, Γ is not (η,R)-paramonotone on Qw for each w∈Fj,m, i.e.,

ΩPΓ+,Rlj
(rQw)>ηα(Qw)

−4|Qw|= ηW ({w}) for all w∈Fj,m.
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Let Sm=rIj,m×{0}×R⊆V0. The sets {rQw}w∈Dj,m are disjoint subsets of Sm∩rQ, so

W (Fj,m)≍rW (Dj,m)⩽ η−1
∑

w∈Dj,m

ΩPΓ+,Rlj
(rQw)⩽ η−1ΩPΓ+,Rlj

(Sm∩rQ).

By summing this bound over m∈{1, ..., 2j}, we get

W (Fj)≲r

2j∑
m=1

η−1ΩPΓ+,Rlj
(Sm∩rQ)≲r η

−1ΩPΓ+,Rlj
(rQ), (9.6)

where the last step holds because the scaled intervals rIj,1, ..., rIj,2j have bounded overlap

(depending on r). By summing this bound over j, we conclude as follows:

W (VV(∆))=

∞∑
j=0

W (Fj)≲r η
−1

∞∑
j=0

ΩPΓ+,R2−jδx(Q)(rQ).

Next, we prove Lemma 9.2 using the following kinematic formula for intrinsic Lip-

schitz graphs. Recall (§2.1) that for a measurable subset E⊆H, we let PerE denote

the perimeter measure of E; this measure is supported on ∂E, and when E is bounded

by an intrinsic Lipschitz graph, it differs from 3-dimensional Hausdorff measure on ∂E

by at most a multiplicative constant. For any horizontal line L∈L, let ∂H1|LE be the

measure-theoretic boundary of E in L and let PerE,L be the counting measure on ∂H1|LE.

Lemma 9.6. Fix 0<λ<1. Let ψ:V0!R be intrinsic λ-Lipschitz, and let Γ=Γψ

be its intrinsic graph. Let U⊆V0 be a measurable set. For almost every L∈LP , the

intersection L∩Γ+ has locally finite perimeter. If M⊆LP is the set of lines that intersect

Γ at least twice, then ˆ
M

PerΓ+,L(Π
−1(U)) dNP (L)≲λ |U |. (9.7)

Proof. The measures NP and N are absolutely continuous with respect to each

other. Indeed, for each m>0, if D⊆LP is a set of lines with slopes that lie in [−m,m],

then NP (D)≍mN (D). By (2.24), there is c>0 such that, for any measurable A⊆H,

PerΓ+(A)= c

ˆ
L
PerΓ+,L(A) dN (L).

Since Γ+ has locally finite perimeter, this implies that, for almost every line L∈LP , the
intersection L∩Γ+ has locally finite perimeter. For L∈LP let m(L) be the slope of L

as in §8. Suppose that p∈L∩Γ. By (2.14), if |m(L)|>λ/
√
1−λ2, then L⊆p·Coneλ and

thus L intersects Γ exactly once. Consequently, |m(M)|⩽λ/
√
1−λ2 for every M∈M,

and hence NP (D)≍λNP (D) for every measurable D⊆M. So, by (2.24) and Lemma 2.5,ˆ
M

PerΓ+,L(Π
−1(U)) dNP (L)≲λ PerΓ+(Π−1(U))≍λ |U |.
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Proof of Lemma 9.2. For a finite-perimeter set S⊆R and R>0, let I(S) and

ω̂S,R= 1
2 (ωS,R+ωR\S,R)

be as in §8.1. Divide I(S) according to the length of the intervals as follows:

Cj(S)
def
= {I ∈I(S) : 2−j−1< |I|⩽ 2−j} for all j ∈Z.

Let Ej(S)⊆R be the set of endpoints of the intervals in Cj(S). Let λS,j be the counting

measure on Ej(S) and let

λ̂j(S)
def
= 1

2 (λS,j+λR\S,j).

Then, ∑
j∈Z

λ̂S,j ⩽PerS .

(This is not necessarily an equality as the left-hand side is influenced only by bounded

intervals while the right-hand side could have a contribution from rays.)

For each k∈Z, the measure ω̂S,2−k is a point measure supported on the set

∞⋃
j=k

(Ej(S)∪Ej(R\S)),

that weights each point according to the lengths of the intervals it bounds. In particular,

supp(ω̂S,2−k−ω̂S,2−k−1)⊆Ek(S)∪Ek(R\S)

and

2−k−2 ⩽ ω̂S,2−k(p)−ω̂S,2−k−1(p)⩽ 2−k for all p∈Ek(S)∪Ek(R\S).

Consequently, if we denote

κ̂S,k
def
= 2k(ω̂S,2−k−ω̂S,2−k−1),

then κ̂S,j≍λ̂S,j and∑
j∈Z

κ̂S,j =
∑
j∈Z

2j+1ω̂S,2−j−
∑
j∈Z

2jω̂S,2−j =
∑
j∈Z

2jω̂S,2−j .

It follows that ∑
j∈Z

2jω̂S,2−j ≍
∑
j∈Z

λ̂S,j ⩽PerS . (9.8)
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For every measurable E⊆H and U⊆V0, and every L∈LP , we have

∑
j∈Z

2jω̂PE,2−j (U,L)

(8.5)

(9.8)

≲ Perx(E∩L)(x(Π
−1(U)∩L))=PerE,L(Π

−1(U)). (9.9)

LetM⊆LP be the set of lines that intersect Γ at least twice. If L∈LP \M, then I(L∩Γ+)

consists of infinite rays, so ω̂Γ+,R(U,L)=0 for any U⊆V0. Thus,∑
j∈Z

ΩPΓ+,2−j (U)
(8.6)
=
∑
j∈Z

ˆ
M

2jω̂PΓ+,2−j (U,L) dNP (L)

(9.9)

≲
ˆ
M

PerΓ+,L(Π
−1(U)) dNP (L)

(9.7)

≲λ |U |.

10. Outline of proof of Proposition 7.2

The rest of this paper is dedicated to the proof of Proposition 7.2. This is the longest

part of the proof of Theorem 5.2, and we will divide it into two pieces.

In the first step (§11), we prove the following Proposition 10.1, which is a stability

result for extended-monotone sets (Definition 8.5). For every r>0 and h∈H, let 
Br(h)⊆H
be the convex hull of Br(h) (as a subset of R3); when h is omitted, we take it to be 0.

The convex hull of Br with respect to the horizontal lines or with respect to all lines in

R3 is the same, and 
Br⊆B2r.

Proposition 10.1. Let E⊆H be a measurable set. For any ε>0, there are ν,R>0

such that, if E⊆H is (ν′, R′)-extended monotone on 
B1 for some ν′, R′>0 that satisfy

R′⩾R and ν′R′⩽νR, then there is a plane P⊆H such that

|
B1∩(P+△E)|<ε.

If Γ is an intrinsic Lipschitz graph and E=Γ+, then we can take P to be a vertical plane.

Proposition 10.1 is in the spirit of the stability theorem for monotone sets that was

proved in [23], though here we do not need to obtain an explicit dependence of ν and

R on ε (in [23] it was important to get power-type dependence). The lack of explicit

dependence lets us use a compactness argument that was not available in the context

of [23]. At the same time, [23, Theorem 4.3] states that, if the non-monotonicity of

E is small on the unit ball B1, then there is a smaller ball Bε3 on which E is O(ε)-

close to a plane, while Proposition 10.1 assumes a stronger hypothesis, namely that

ENME,R(
B1)<ν, and obtains the stronger conclusion that E is close to a plane on the

same ball 
B1.
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Remark 10.2. The stronger conclusion above is crucial for the covering argument

that we used in §9 because of the delicacy of the Vitali-type argument used in Lemma 9.4.

We use Lemma 9.4 to show that, if ∆ is a µ-rectilinear foliated patchwork, with

0<µ<1/32r2, and F⊆V(∆) is a collection of vertices corresponding to pseudoquads

of the same width, then there is a large subset G of these pseudoquads such that, if

Q,Q′∈G, then rQ is disjoint from rQ′. Lemma 9.4 only holds when µ=O(r−2). If µr2

is too large, then a µ-rectilinear foliated patchwork could contain arbitrarily many ver-

tically cut pseudoquads Q1, ..., Qn of equal height and width such that rQ1, ..., rQn all

intersect.

We do not see how a modified subdivision algorithm that uses monotonicity instead

of paramonotonicity can ensure that the conditions of Lemma 9.4 are satisfied. For

example, consider a modification of the subdivision algorithm in §7 that produces a

patchwork ∆ by cutting a pseudoquad Q horizontally or vertically depending on whether

Γ is η -monotone (rather than paramonotone) on rQ for some r>0. Note that [23,

Theorem 4.3] implies that, if Γ is sufficiently monotone on rQ, then Γ is O(r−1/3)-close

to a plane on Q. Indeed, there are sets that have zero non-monotonicity on rQ, but are

only ε(r)-close to a plane on Q, where ε(r)!0 as r!∞. It follows that this modified

algorithm can, at best, produce µ(r)-rectilinear foliated patchworks, where µ(r)!0 as

r!∞. In particular, as µ(r) depends on r, we cannot choose µ so that µ<1/32r2.

Consequently, we cannot prove the weighted Carleson condition for this modified

algorithm. The weighted Carleson condition bounds the number of vertically cut pseu-

doquads based on the total non-monotonicity of Γ, but without Lemma 9.4, a small

amount of non-monotonicity can lead to many vertically cut pseudoquads. That is, if

Q1, ..., Qn are pseudoquads in the patchwork such that rQ1, ..., rQn all intersect, then

non-monotonicity on the intersection rQ1∩...∩rQn could force the algorithm to cut all

of the Qi’s vertically.

Using extended non-monotonicity rather than non-monotonicity lets us avoid this

problem. The fact that r is a universal constant in Proposition 7.2 means that, for

any µ, there is a subdivision algorithm that produces a µ-rectilinear foliated patchwork

by cutting each pseudoquad Q based on whether Γ is (η(µ), R(µ))-paramonotone on rQ.

In particular, we can choose µ<1/32r2, so that Lemma 9.4 applies.

In the second step, we prove parts (1) and (2) of Proposition 7.2. By Remark 4.3,

after a stretch, shear, and translation, we may suppose that Q is a rectilinear pseudoquad

for Γ that is close to [−1, 1]2 and Γ is (η,R)-paramonotone on rQ. For any given c, if R

is sufficiently large, η is sufficiently small, and Π(
Bc)⊆rQ, then, by Lemma 8.7, Γ+ has

small extended non-monotonicity on 
Bc, so Γ+ is close to a half-space P+ on 
Bc.

Note that, even though Γ+ is close to a half-space P+ on 
Bc, it does not immediately
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follow that the corresponding intrinsic Lipschitz function f is L1-close to an affine func-

tion. Using Remark 4.3 to normalize Q stretches Γ and changes its intrinsic Lipschitz

constant. Consequently, even though f is close to an affine function on most of Q, it

may still take on large values on the rest of Q. To show that this does not happen, we

must introduce new methods based on analyzing the characteristic curves of Γ.

For example, a key step in the proof of part (1) of Proposition 7.2 is to show that

∥f∥L1(Q) is bounded. Since f is intrinsic Lipschitz, ∥f∥L1(Q)<∞, but we need a bound

independent of the intrinsic Lipschitz constant. We obtain such a bound by studying

how lines intersect the characteristic curves. Since Q is µ-rectilinear, the top and bottom

boundaries of Q are characteristic curves that are close to the top and bottom edges of

[−1, 1]2. If L is a horizontal line such that Π(L) crosses [−1, 1]2 from top to bottom, then

Π(L) must also cross the top and bottom boundaries of Q. At these intersection points,

the slope of Π(L) is less than the slope of the boundary, so the corresponding points

of L lie in Γ+. If Γ+∩L is close to monotone, then most of the interval between these

points lies in Γ+ and therefore, f is bounded on Q∩Π(L). By integrating over a family

of lines that all cross the top and bottom boundaries, we obtain the desired L1 bound.

Similar arguments based on characteristic curves lead to part (2) of Proposition 7.2,

which completes the proof of Proposition 7.2.

11. Extended-monotone sets are close to half-spaces

In this section, we will prove Proposition 10.1 by studying limits of (ε,R)-extended mono-

tone sets. Let U⊆H be measurable and let E1, E2, ...⊆H be a sequence of measurable

sets such that Ei is (1/i, i)-extended monotone on U . By passing to a subsequence, we

may suppose that 1Ei converges weakly to a function f∈L∞(H) taking values in [0, 1].

We call f a U -LEM (limit of extended monotones) function.

One difficulty of studying f is that it need not take values only in {0, 1}. Indeed, the
extended monotonicity ENMEi,i(


B1) only depends on the intersection of Ei with lines

that pass through 
B1. These lines do not cover all of H, so there are regions of H where

f can take on arbitrary values.

Nevertheless, in §11.1, we will show that, after changing f on a measure-zero set,

f(
B1)⊆{0, 1}. This will follow from the fact that, by Lemma 8.6,

lim
i!∞

NMEi(

B1)= 0.

We will show that a sequence of sets with non-monotonicity going to zero on 
B1 converges

to a subset which is monotone on 
B1. If U is an open set, a subset E⊆H is said to be

monotone on U if NME(U)=0.
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Then, in §11.2, we will use techniques from [21] and [23] to characterize sets such

that NMF (
B1)=0. A set that is monotone on 
B1 need not be a half-space, but we will

show that if F is such a set, then the measure-theoretic boundary ∂H4F is a union of

horizontal lines that has an approximate tangent plane at every point. That is, for any

g∈∂H4F , the blowups g ·sn,n(g−1∂H4F ) converge in the Hausdorff metric to a plane Tg

as n!∞. In fact, at all but countably many points g∈∂H4F , there is a unique horizontal

line Lg through g that is contained in ∂H4F , and Tg is the vertical plane containing Lg; in

this case, g has an approximate tangent subgroup in the sense of [71]. At the remaining

points, Tg is the horizontal plane centered at g.

Finally, in §11.3, we prove Proposition 10.1. The proof is somewhat involved, but,

as an illustration, we consider the case that f=1E , where E is precisely ∞-extended

monotone on 
B1. That is, for every line L, either 
B1∩∂(L∩E)=∅ or L∩E is a monotone

subset of L.

We first claim that, for every point b∈
B1∩∂H4E, if the approximate tangent plane

Tb is vertical and Hb is the horizontal plane centered at b, then

Hb∩∂H4E=Hb∩Tb.

Let T±
b be the two half-spaces bounded by Tb, labeled so that T+

b ∩Br(b) approximates

E∩Br(b) at small scales. Let Lb=Hb∩Tb be the horizontal line in ∂H4E that passes

through b and let L be a line through b that intersects Tb transversally. Then E∩L is a

monotone set with b∈∂H1(E∩L), so

T+

b ∩L⊆E∩L and T−
b ∩L⊆L\E.

This holds for every horizontal line through b except Lb, so Lb cuts Hb into two half-planes

P±=T
±
b ∩Hb such that P+⊆E and P−⊆Hb\E.

When b′∈Lb is close to b, the plane Hb′ intersects Hb along Lb and the angle between

the two planes is small. As above, there are two half-planes P ′
±=T

±
b′ ∩Hb′ such that P ′

+⊆E
and P ′

−⊆Hb′ \E. As b′ varies over points close to b, the half-plane P ′
+ varies over half-

planes close to P+. Therefore P+ is in the interior of E, P− is in the exterior, and

Hb∩∂H4E=Lb.

Suppose that L1 and L2 are two lines in ∂H4E that intersect 
B1, and suppose by way

of contradiction that they are not coplanar. By the hyperboloid lemma [21, Lemma 2.4]

(see Lemma 11.1), for any point q∈L1 except possibly a single point, there is a horizontal

lineM that connects q to a point r in L2. Then r∈Hq∩∂H4E=L1, so L1 and L2 intersect

and are thus coplanar; this is a contradiction. It follows that 
B1∩∂H4E is contained in a
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plane. The proof of Proposition 10.1 runs along the same lines, but it takes some further

technical work to apply the weaker hypothesis that f is merely an LEM function.

One of the key tools in the proof is the following “hyperboloid lemma”, which is

stated as [21, Lemma 2.4]. A pair of horizontal lines L1, L2∈L are said to be skew if L1

and L2 are disjoint and the projections π(L1),π(L2)⊆H∼=R2 are not parallel.

Lemma 11.1. (Cheeger–Kleiner hyperboloid lemma [21]) For any L1, L2∈L, the

following statements hold.

(1) Suppose that the projections π(L1) and π(L2) are parallel but π(L1) ̸=π(L2).

Then, every point in L1 can be joined to L2 by a unique line. In fact, there is a unique

fiber π−1(p) such that every line joining L1 to L2 passes through π−1(p). Conversely,

for every a∈π−1(p), there is a unique line joining L1 to L2 that passes through a.

(2) If L1 and L2 are skew, then there is a hyperbola S⊆H with asymptotes π(L1)

and π(L2) such that every tangent line of S has a unique horizontal lift that intersects

L1 and L2. If p∈H is the intersection between π(L1) and π(L2), and a∈L1 is such that

π(a) ̸=p, then there is a unique horizontal line that connects a to a point in L2.

11.1. Stability of locally monotone sets

We begin the proof of Proposition 10.1 by using a compactness argument to prove the

following lemma. Throughout what follows, given a measure space (S,Σ, µ) and a mea-

surable subset Ω∈Σ with µ(Ω)>0, we use the (standard) notation
ffl
Ω

to denote the

averaging operator on Ω, i.e.,

 
Ω

f dµ
def
=

1

µ(Ω)

ˆ
Ω

f dµ for all f ∈L1(Ω, µ).

Lemma 11.2. Let U⊆H be a bounded open set and let E1, E2, ...⊆H be a sequence of

measurable sets such that NMEi(U)<1/i for every i∈N. There is a subsequence (Eij )j∈N

and a set F⊆U that is monotone on U such that

lim
j!∞

|(Eij∩U)△F |=0.

It follows that, for any ε>0, there is a δ>0 such that if E⊆H is a measurable set

and NME(U)<δ, then there is a set F⊆U such that |(E∩U)△F |<ε and F is monotone

on U .

Proof. After passing to a subsequence, we may suppose that the characteristic func-

tions 1Ei converge weakly to a function f∈L∞(U) taking values in [0, 1]. We claim that

f is a characteristic function.
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By [23, Theorem 4.3] (see also [91, Theorem 63]), for every ε>0 there are c(ε)>0 and

δ(ε)>0 such that if p∈H, α>0, and NME(Bα(p))<δ(ε)α
−3, then there is a half-space

P+ such that  
Bc(ε)α(p)

|1P+(h)−1E(h)| dH4(h)<ε. (11.1)

(The hypothesis in [23] is that NME(Bα(p))<δ(ε), but our definition of NME(Bα(p))

differs from the definition in [23] by a normalization factor.)

By the Lebesgue density theorem, for almost every point p∈U , we have

lim
s!0

 
Bs(p)

|f(h)−f(p)| dH4(h)= 0. (11.2)

Let p be such a point and let r>0 be such that Br(p)⊆U . By (11.1), for any 0<s<r,

any ε>0, and any sufficiently large i∈N (depending on s, ε), there is a half-space Q+

i

with  
Bc(ε)s(p)

|1Q+
i
(h)−1Ei(h)| dH4(h)<ε.

Choose a half-space Q+ such that, for infinitely many i∈N, we have 
Bc(ε)s(p)

|1Q+(h)−1Ei(h)| dH4(h)< 2ε.

Then,  
Bc(ε)s(p)

|1Q+(h)−f(h)| dH4(h)< 3ε. (11.3)

Since the function (x∈[0, 1]) 7!x(1−x) is non-negative and 1-Lipschitz, 
Bc(ε)s(p)

f(h)(1−f(h)) dH4(h)⩽ 3ε+

 
Bc(ε)s(p)

1Q+(h)(1−1Q+(h)) dH4(h)= 3ε.

This holds for all 0<s<r, so

lim
s!0

 
Bs(p)

f(h)(1−f(h)) dH4(h)= 0.

By (11.2), this implies f(p)(1−f(p))=0, and hence f(p)∈{0, 1}.
Thus, f is equivalent to a characteristic function on U . Let F=f−1(1). By weak

convergence,

lim
i!∞

|U∩(Ei△F )|=0.

For any i∈N,

NMF (U)=

ˆ
L
NMF∩L(U∩L) dN (L)

⩽
ˆ
L
(NMEi∩L(U∩L)+H1(U∩L∩(Ei△F ))) dN (L)

≲NMEi(U)+|U∩(Ei△F )|.
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Both terms on the right-hand side go to zero as i!∞, so

NMF (U)= 0,

i.e., F is monotone on U .

Corollary 11.3. Let U⊆H be a convex bounded open set and let f :H![0, 1] be a

U -LEM function. There is a monotone set E⊆U such that f |U=1E up to a measure-zero

set.

Proof. Suppose that E1, E2, ...⊆H are measurable, Ei is (1/i, i)-extended monotone

on U for all i∈N, and 1Ei converges weakly to f . By Lemma 8.6, for i>diamU we have

NMEi(U)⩽ENMEi,i(U)⩽
1

i
.

So, by Lemma 11.2, f |U=1F for some set F⊆U that is monotone on U .

11.2. Locally monotone sets are bounded by rectifiable ruled surfaces

Here we will describe sets that are monotone on an open subset of H, which we call

locally monotone sets. Note that a locally monotone set need not be a half-space; see [23,

Example 9.1]. Regardless, we use the techniques developed in [21] and [23] to describe

such sets.

Proposition 11.4. Let E⊆H be a measurable set that is monotone on a convex

open set U⊆H. Then, the following statements hold.

(1) U∩∂H4E has empty interior.

(2) For every p∈U∩∂H4E, there is a horizontal line L through p with U∩L⊆∂H4E.

If this line is not unique, then U∩Hp⊆∂H4E, and we call p a characteristic point.

(3) ∂H4E has an approximate tangent plane Tp at every p∈U∩∂H4E. The plane

Tp is horizontal if and only if p is a characteristic point, and there are only countably

many characteristic points in U .

(4) If Tp is vertical, then it divides H into two half-spaces T+

p and T−
p such that the

following holds. For ε, t>0, let

W±
ε,t= {v ∈T±

p ∩
Bt(p) : d(v, Tp)>εt}

For any 0<ε< 1
10 , there is r>0 such that, if 0<α<r, then

W+

ε,α⊆ intH4(E) and W−
ε,α⊆ intH4(H\E).
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We rely on the following proposition and lemmas, which adapt results from [21].

Proposition 11.5. (Generalization of [21, Proposition 5.8]) Let E⊆H be a measur-

able set that is monotone on a convex open set U⊆H. Let L be a horizontal line and let

p, q∈L be points such that p ̸=q and the segment [p, q]⊆L is contained in U . We choose

the linear order on L so that p<q. Suppose that q∈intH4(E).

(1) If p∈suppH4(E) and r∈L∩U satisfies p<r<q, then r∈intH4(E).

(2) If p∈suppH4(H\E) and r∈L∩U satisfies p<q<r, then r∈intH4(E).

Proof. [21, Proposition 5.8] proves this result in the case that U=H, generalizing [21,

Proposition 4.6], which proves it when E is precisely monotone (i.e., M∩E and M∩Ec

are connected sets for every horizontal line M). The reasoning in [21, Proposition 5.8]

only uses the fact that, for almost every line segment S in a small neighborhood of

[p,max{q, r}], the intersection S∩E is monotone. This holds here, so the conclusion of

Proposition 5.8 holds here as well. For completeness, we will sketch the argument of [21].

For any x∈H and v1, v2∈H, let γx,v1,v2 : [0, 2]!H be the broken geodesic

γx,v1,v2(t)=

{
xvt1, t∈ [0, 1],

xv1v
t−1
2 , t∈ [1, 2].

In case (1), we have p<r<q with p∈suppH4(E) and q∈intH4(E). Given an ε>0,

one considers the paths γx,v1,v2 , where x∈Bε(p)∩E and v1, v2∈H satisfy

∥vi−(p−1r)1/2∥<ε.

Then γx,v1,v2(0) is close to p, γx,v1,v2(2) is close to r, and γx,v1,v2 lies in a small neigh-

borhood of [p, q]. Further, for any x, we can vary v1 and v2 so that γx,v1,v2(2)=xv1v2

covers a neighborhood of r.

Suppose that E is precisely monotone and that q∈int(E). Let x, v1, and v2 be as

above, and let λ1(t)=xv
t
1 and λ2(t)=xv1v

t
2 be the two segments of γx,v1,v2 . These are

two lines that are close to L, so there are t1, t2>1 such that λi(ti) is close to q. Since

q∈int(E), if ε is sufficiently small, then λi(ti)∈E. Since λ1(0)=x∈E and λ1(t1)∈E,

precise monotonicity implies λ1(1)∈E, and since λ2(0)=λ1(1)∈E and λ2(t2)∈E, we have

λ2(1)=xv1v2∈E. If we fix x and let v1 and v2 vary, then xv1v2 covers a neighborhood

of r, so r∈int(E).

In our case, E is not precisely monotone and q∈intH4(E), but the reasoning above

still holds for almost every triple (x, v1, v2). As H4(Bε(p)∩E)>0, there is x∈Bε(p)∩E)

such that xv1v2∈E for almost every pair (v1, v2). Therefore, r∈intH4(E).

In case (2), we have p<q<r, with p∈suppH4(H\E) and q∈intH4(E). Let s∈L∩U
be such that p<q<r<s, and consider γx,v1,v2 such that

x∈Bε(p)\E, ∥v1−p−1s∥<ε, and ∥v2−s−1r∥<ε.
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That is, γx,v1,v2 is a path from a neighborhood of p to a neighborhood of s to a neigh-

borhood of r. Again, for any x, we can vary v1 and v2 so that γx,v1,v2(2)=xv1v2 covers

a neighborhood of r. If ε is sufficiently small, we have γx,v1,v2([0, 2])⊆U .

Suppose again that E is precisely monotone and that q∈int(E). Let

λ1(t)=xvt1 and λ2(t)=xv1v
t
2.

Since λ1 and λ2 are both close to L, if ε is sufficiently small, there are t1∈(0, 1) and t2>1

such that λi(ti) is close to q and λi(ti)∈E. Since λ1(0)=x ̸∈E and λ1(t1)∈E, we have

λ1(1)∈E, and since λ2(0)=λ1(1)∈E and λ2(t2)∈E, we have λ2(1)=xv1v2∈E. For any

fixed x, as v1 and v2 vary, xv1v2 covers a neighborhood of r.

Again, when E is not precisely monotone and q∈intH4(E), the reasoning above fails

for a null set of triples (x, v1, v2). Since p∈suppH4(H\E), there is an x∈Bε(p)∩(H\E)

such that xv1v2∈E for all but a measure-zero set of pairs (v1, v2), so r∈intH4(E).

By Proposition 11.5 and the proof of [21, Lemma 4.8], we get the following lemma.

Lemma 11.6. (Generalization of [21, Lemma 4.8]) Let E⊆H be a measurable set

that is monotone on a convex open set U⊆H. If L is a horizontal line such that L∩U
contains at least two points of ∂H4E, then L∩U⊆∂H4E.

Proof. Let I=L∩U . Let p, q∈I∩∂H4E be distinct points. Choose the linear order

on L so that p<q. Let r∈I be such that q<r. By part (1) of Proposition 11.5, if

r∈intH4(E), then q∈intH4(E), which is a contradiction. Likewise, if r∈intH4(H\E),

then q∈intH4(H\E), which is a contradiction, so r∈∂H4E. Thus [q,∞)∩I⊆∂H4E. By

symmetry, I\(p, q)=I∩
(
(−∞, p]∪[q,∞)

)
⊆∂H4E for any distinct points p, q∈I∩∂H4E.

Let r, s∈I∩[q,∞) be such that r<s. Then r, s∈I∩∂H4E, so I\(r, s)⊆∂H4E. Since (r, s)

and (p, q) are disjoint, I⊆∂H4E.

Likewise, the following lemma is based on the proof of [21, Lemma 4.9].

Lemma 11.7. (Generalization of [21, Lemma 4.9]) Let E⊆H be a measurable set that

is monotone on a convex open set U⊆H. For every p∈U∩∂H4E, there is a horizontal

line L such that p∈L and L∩U⊆∂H4E.

Proof. Let B⊆U be a ball centered at p and let Hp be the horizontal plane centered

at p. Let B′=B\{p}. Suppose by way of contradiction that Hp∩B′∩∂H4E=∅. Since

Hp∩B′ is connected, we have Hp∩B′⊆intH4(E) or Hp∩B′⊆intH4(H\E). Without loss

of generality, we assume that Hp∩B′⊆intH4(E).

Let M be a line through p and let q, r∈M∩B be two points on opposite sides of p.

Then q, r∈intH4(E), so, by part (1) of Proposition 11.5, we have p∈intH4(E). This is

a contradiction, so there exists some point q lying in Hp∩B′∩∂H4E. Let L be the line

containing p and q. Then, by Lemma 11.6, L∩U⊆∂H4E, as desired.
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The fact that U∩∂H4E has empty interior also follows from the techniques of [21].

Lemma 11.8. If E and U are as in Lemma 11.7, then U∩∂H4E has empty interior.

Proof. The measure-theoretic version of [21, Lemma 4.12], whose proof appears in

(part (4) of) the proof of [21, Theorem 5.1], asserts that, if F⊆H is monotone on H, then

∂H4F ̸=H. That proof relies on the monotonicity of a configuration of line segments,

and it directly shows that there is a large enough universal constant r>0 such that

this configuration lies in the ball Br(0). Consequently, if Br(0)⊆U , then there is a

point p∈Br(0) such that p ̸∈∂H4E. By rescaling and translation, this is true with Br(0)

replaced by an arbitrary ball, and thus intH4(E)∪intH4(R\E) is dense in U .

Lemma 11.8 proves part (1) of Proposition 11.4. Lemmas 11.6 and 11.7 imply the

first half of part (2) of Proposition 11.4. Before proving the rest of Proposition 11.4, we

make the following definition.

Definition 11.9. Let U⊆H be a convex open set and let A⊆H. We say that A is

U -ruled if, for all L∈L, if L∩U intersects A in two points, then L∩U⊆A. We call such

a line L a U -ruling of A.

Lemmas 11.6–11.8 imply that U∩∂H4E is U -ruled and has empty interior. We will

prove the rest of Proposition 11.4 by studying lines in the boundary of such a set. The

following lemma is based on Step B3 in [23, §8.2], which shows that the boundary of a

monotone set cannot contain skew lines.

Lemma 11.10. Let M1 be the line ⟨X⟩ and let M2 be the line Z⟨Y ⟩. There exists

r0>1 such that any 
Br0-ruled set containing (M1∪M2)∩
Br0 has non-empty interior.

Proof. Let r0 be large enough that [−2, 2]3⊆
Br0 . Let E be a 
Br0-ruled set with

Br0-rulings M1,M2∈L. By Lemma 11.1, there is a hyperbola S⊆H, asymptotic to the

x-axis and the y-axis, such that every tangent line of S has a unique horizontal lift that

intersects M1 and M2. Indeed, for every t ̸=0, the points Xt∈M1 and ZY 2/t∈M2 are

connected by a horizontal line

Lt(u)
def
= Xt

(
−t, 2

t
, 0

)u
=

(
(1−u)t, 2u

t
, u

)
for all u∈R.

For t∈[−2,−1]∪[1, 2] and u∈[0, 1], the point Lt(u) lies on a horizontal line segment

connecting two points in E, so Lt(u)∈E. The resulting family of points

S
def
= {Lt(u) : t∈ [−2,−1]∪[1, 2], u∈ [0, 1]}⊆E

consists of two disjoint embedded surfaces.
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Let

w
def
= L√

2

(
1

2

)
=

(√
2

2
,

√
2

2
,
1

2

)
,

and let w′=s−1,−1(w)=L−
√
2

(
1
2

)
. Let M be the horizontal line from w to w′. Then M

intersects S twice, at w and w′, so M∩
Br0⊆E. One calculates

d

dt
Lt(u)

∣∣∣∣
(t,u)=(

√
2,1/2)

=(1−u,−2ut−2, 0)|(t,u)=(
√
2,1/2) =

(
1

2
,−1

2
, 0

)
d

du
Lt(u)

∣∣∣∣
(t,u)=(

√
2,1/2)

=(−t, 2t−1, 1)|(t,u)=(
√
2,1/2) =(−

√
2,
√
2, 1),

so M intersects S transversally at w and w′. By transversality, any horizontal line M ′

close toM intersects S near w and w′, soM ′∩
Br0⊆E. These lines cover a neighborhood

of M , so E contains a non-empty open set.

As shown in the next lemma, for any pair of skew lines, there is an automorphism

of H that sends them to M1 and M2. The next lemma uses this fact to show that nearby

skew lines in ∂H4E must have nearly parallel projections. For ϕ∈R, let Rϕ:H!H be the

rotation by angle ϕ around the z-axis.

Lemma 11.11. Let r0 be as in Lemma 11.10. Let L1, L2∈L be skew lines and let

p∈H be the intersection of π(L1) and π(L2). Suppose that the angle between π(L1) and

π(L2) is θ∈
(
0, 12π

)
. For i∈{1, 2}, let qi∈H be the point where π−1(p) intersects Li.

Suppose that

d(q1, q2)⩽

√
θ

r0
√
2
. (11.4)

If L1, L2∈L are 
B1(q1)-rulings of an 
B1(q1)-ruled set S, then S has non-empty interior.

Proof. After applying a translation and rotation, and possibly replacing S by s1,−1(S),

we may suppose that q1=0, q2=Z
h for some h>0, and that π(L1) and π(L2) form angles

of 1
2θ with the x-axis. (We cannot control which line forms a positive angle with the

x-axis and which line forms a negative angle.) Let t=tan 1
2θ∈(0, 1) so that the lines

π(s√t,1/
√
t(L1)) and π(s√t,1/

√
t(L2))

are perpendicular. There is an angle ϕ=± 1
4π such that, if

f
def
= Rϕ�s1/

√
h,1/

√
h�s

√
t,1/

√
t,

then f(L1)=M1 and f(L2)=M2, where M1 and M2 are the lines in Lemma 11.10. Now,

by the ball-box inequality and our hypothesis on d(q1, q2), we have

Lip(f−1)=

√
h√
t

(2.6)

⩽
d(q1, q2)√
tan 1

2θ
⩽
d(q1, q2)√

1
2θ

(11.4)

⩽
1

r0
.
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Thus, f−1(
Br0)⊆
Br0 Lip(f−1)⊆
B1, or 
Br0⊆f(
B1). Since f(S) is a f(
B1)-ruled set, and

M1 and M2 are f(
B1)-rulings of f(S), by Lemma 11.10, f(S) has non-empty interior,

and thus S has non-empty interior.

It follows from Lemmas 11.8 and 11.11 that two lines in ∂H4E with different angles

must either intersect or stay at least a definite distance apart. In the terminology of [23],

every pair of rulings of ∂H4E must form a degenerate initial condition.

Lemma 11.12. For any ε>0, there is δ>0 such that, if S is a 
B1-ruled set with

empty interior, and L1 and L2 are 
B1-rulings of S that intersect 
Bδ and such that

∠(π(L1),π(L2))>ε,

then L1 and L2 intersect.

Proof. We suppose that 0<ε<1 and take

δ=
ε3/2

100r0
⩽

1

100
,

where r0 is as in Lemma 11.10.

Let p∈H be the intersection of the projections π(L1) and π(L2). Since π(
Bδ) is the

ball BH
δ of radius δ in H, the projections intersect BH

δ and form an angle of at least ε, so

∥p∥⩽ δ

sin 1
2ε

⩽
4δ

ε
<

1

4
.

For i∈{1, 2}, let qi=π−1(p)∩Li. By assumption, L1 and L2 intersect 
Bδ⊆B2δ, so if

bi∈Li∩
Bδ, then

d(0, qi)⩽ d(0, bi)+d(bi, qi)= d(0, bi)+∥π(bi)−π(qi)∥

⩽ d(0, bi)+∥π(bi)∥+∥p∥⩽ 3δ+∥p∥.

In particular, d(0, qi)⩽ 1
2 . Hence, 
B1/2(q1)⊆
B1, so S is a 
B1/2(q1)-ruled set. Further,

d(q1, q2)⩽ 2∥p∥+6δ <
20δ

ε
⩽

√
ε

5r0
.

Because S has empty interior, Lemma 11.11 implies that L1 and L2 cannot be skew lines,

and must therefore intersect.

The next lemma completes the proof of part (2) of Proposition 11.4.
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r

b

N

Mq

L1p

a

L2

Figure 4. If line Mq intersects the y-axis L2 but not the x-axis L1, there must be a line N

intersecting L1 and Mq as seen above. Lines above are projected to H by π.

Lemma 11.13. Suppose that U is a convex open set and that E⊆H is monotone

on U . Let p∈U , and let L1 and L2 be two distinct U -rulings of ∂H4E that intersect

at p. Then, U∩Hp⊆∂H4E, and there is a neighborhood A containing p such that

A∩∂H4E=A∩Hp,

where we recall that Hp denotes the horizontal plane through p.

Proof. Since U is convex, ∂H4E is U -ruled. After translating and applying an au-

tomorphism, we may suppose that p=0, and that L1 and L2 are the x-axis and y-axis,

respectively. Set ε= 1
40 and let δ>0 satisfy Lemma 11.12. Suppose that 
Bδ⊆U .

Fix q∈Bδ/8∩∂H4E. By Lemma 11.7, ∂H4E has a U -rulingMq that passes through q.

We will show thatMq intersects both L1 and L2 and that any such line passes through p.

For any horizontal line L, let L̄=π(L). Either ∠(L̄1,�Mq)⩾ π
4 or ∠(L̄2,�Mq)⩾ π

4 .

Therefore, by Lemma 11.12, Mq intersects either L1 or L2. Suppose by way of contradic-

tion that Mq intersects L2 but not L1. By Lemma 11.12, this implies that ∠(L̄1,�Mq)⩽ε.

Let r be the intersection of �Mq with L̄2 and let t=d(p, r)>0 (see Figure 4). Straightfor-

ward trigonometry shows that t< 1
2δ.

Let a=pX−t∈L1. By Lemma 11.1, there is a unique point b∈Mq such that there is a

horizontal line N that passes through a and b. Indeed, since r, p, a, and b are the vertices

of a quadrilateral Q in H whose sides are horizontal lines, the projection π(Q) has zero

signed area. Since the triangle △π(p)π(r)π(a) has area 1
2 t

2, the triangle △π(b)π(r)π(a)

must also have area 1
2 t

2, so π(b) is the intersection of �Mq with the line ⟨X+Y ⟩. Because
�Mq has slope between −ε and ε, this implies that |π(b)−(t, t)|⩽4εt⩽ 1

10 t. In particular,

d(r, b)= |π(r)−π(b)|⩽ 2t, ∠(L̄1,�N)>ε, and ∠(L̄2,�N)>ε.

Then,

d(p, b)⩽ d(p, r)+d(r, b)⩽ 3t< δ,
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so b∈
Bδ.
Since a, b∈U∩∂H4E, N is a U -ruling of ∂H4E. By Lemma 11.12 and the fact that

∠(L̄2,�N)>ε, N intersects L2. That is, L1, L2, and N are three distinct lines in H that

intersect pairwise. If three distinct lines intersect pairwise, then they must all intersect

at the same point. Otherwise, their projections to H would contain a non-degenerate

triangle that lifts to a horizontal closed curve in H, but this is impossible since the signed

area of the projection of a horizontal closed curve must vanish. But L1 intersects N at

a and intersects L2 at p, where d(p, a)=t>0 by construction. This is a contradiction, so

Mq intersects L1 and L2. Since Mq, L1, and L2 are distinct lines that intersect pairwise,

Mq must intersect L1 and L2 at p.

Hence, every point q∈Bδ/2∩∂H4E lies on the horizontal plane Hp through p. The

measure-theoretic boundary of E disconnects Bδ/2, so

Bδ/2∩∂H4E=Bδ/2∩Hp.

Consequently, any line L through p intersects U∩∂H4E in at least two points, so

U∩L⊆∂H4E. The union of all such lines is Hp, so U∩Hp⊆∂H4E

Finally, we prove parts (3) and (4) of Proposition 11.4.

Proof of parts (3) and (4) of Proposition 11.4. Due to Lemma 11.13, if p is a char-

acteristic point, then we have that ∂H4E has a horizontal approximate tangent plane

at p. Lemma 11.13 also implies that, if p is a characteristic point, then there is a ball

B such that B contains no characteristic points other than p. That is, the characteristic

points form a discrete subset of H; since H is separable, there are only countably many

characteristic points.

Let p∈U∩∂H4E be a non-characteristic point such that there is a unique line L

through p. Let V be the vertical plane that contains L. Fix 0<ε< 1
10 . We claim that

there is r>0 such that, if 0<α⩽r, then 
Bα(p)∩∂H4E is contained in the εα-neighborhood

of V .

We translate, rotate, and rescale so that p=0, L is the x-axis, and 
B1 is a subset of

U that contains no characteristic points. Then, V =V0 is the xz-plane. Let Π:H!V0 be

the projection to V0 along cosets of ⟨Y ⟩, as in §2.2, so that Π(x, y, z)=
(
x, 0, z− 1

2xy
)
.

For each point s∈
B1∩∂H4E, there is a unique U -ruling Ms passing through s. By

Lemma 11.12, there is δ∈(0, 1) such that ∠(Ms, L)<
ε2

200 for every s∈
Bδ∩∂H4E. Let

r=min
{
δ, 1

80ε
}
and let 0<α⩽r. Let q∈
Bα∩∂µE and suppose by way of contradiction

that d(q, V0)=|y(q)|>εα. Without loss of generality, we may suppose that y(q)>εα.

Let m∈R be the slope of π(Mq), so that Mq=q ·⟨X+mY ⟩. Let γ(t)=q ·(X+mY )t

parameterize Mq. Then,

|m|= |sin∠(Ms, L)|<
1

200
ε2.
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Since q∈
Bα⊆B2α, we have Π(q)∈B4α, and thus |z(Π(q))|⩽16α2. By (2.17), for all

t∈R,
d

dt
z(Π(γ(t)))=−y(γ(t))=−y(q)−mt.

Consequently,

z(Π(γ(t)))= z(q)−y(q)t− 1
2mt

2 for all t∈R.

Letting s=20α/ε, it follows that

z(Π(γ(s)))⩽ 16α2−αεs+ 1
200ε

2 · 12s
2 ⩽−3α2

and

z(Π(γ(−s)))⩾−16α2+αεs− 1
200ε

2 · 12s
2 ⩾ 3α2.

So, there is t with |t|<s⩽ 1
4 and z(Π(γ(t)))=0, i.e., Π(γ(t))∈L. The coset N=γ(t)⟨Y ⟩ is

thus a horizontal line that intersects Mq at γ(t) and intersects L at Π(γ(t)). Since

d(0, γ(t))⩽ d(0, q)+|t|⩽ 2α+ 1
4 ⩽

1
2

and

d(0,Π(γ(t)))⩽ 2d(0, γ(t))⩽ 1,

γ(t) and Π(γ(t)) belong to 
B1∩∂H4E, so N∩
B1⊆∂H4E. Then, Mq and N are distinct

U -rulings of ∂H4E passing through γ(t), which contradicts the fact that there are no

characteristic points in 
B1. Therefore, d(q, V0)⩽εα for all q∈
Bα∩∂H4E.

Let Tp=V0, and let T+

p and T−
p be the corresponding half-spaces. The argument

above shows that, for any 0<α⩽r, the sets W±
ε,α are disjoint from ∂H4E, so each set is

contained in either intH4(E) or intH4(H\E).

Consider W+

ε,r and W
−
ε,r. Every line sufficiently close to the y-axis intersects both of

these sets, so if both are contained in intH4(E), then by Proposition 11.5, p∈intH4(E)

as well. Likewise, if both are contained in intH4(H\E), then p∈intH4(H\E). Either of

these conclusions is a contradiction, so one of W+

ε,r and W−
ε,r is contained in intH4(E)

and the other is contained in intH4(E). If necessary, we switch T+

p and T−
p so that

W+

ε,r ⊆ intH4(E).

We claim that W+

ε,α⊆intH4(E) for every α∈(0, r]. Fix 0<β⩽r with 1
2β<α<β.

Then, W+

ε,α intersects W+

ε,β , so if W+

ε,β⊆intH4(E), then W+

ε,α⊆intH4(E) as well. By

induction, W+

ε,α⊆intH4(E) for 0<α⩽r. Likewise, W−
ε,α⊆intH4(H\E) for 0<α⩽r.
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11.3. Stability of extended monotone sets

Here we prove Proposition 10.1. We show that there are ν>0 and R>0 such that, if

E is a set that is (ν,R)-extended monotone on 
B1, then E is close to a half-space on

B1. If R

′⩾R and ν′R′⩽νR, then (ν′, R′)-extended monotonicity implies (ν,R)-extended

monotonicity, so this implies the full proposition.

To prove this, it suffices to show that, if f is a 
B1-LEM function, then f |

B1

is the

characteristic function of a half-space. Suppose that f is a weak limit of a sequence

(1Ei)i, where E1, E2, ...⊆H are sets such that Ei is (1/i, i)-extended monotone on 
B1.

By Corollary 11.3, f |

B1

is the characteristic function of a locally monotone subset F⊆
B1,

but this result only uses the fact that each Ei is (1/i)-monotone on 
B1. In this section,

we improve Corollary 11.3 by using the stronger hypothesis that the Ei’s are extended

monotone sets.

The first issue is that ENMEi,R(

B1) only depends on the intersection of Ei with

lines through 
B1. These lines do not cover all of H, so a 
B1-LEM function need not take

values in {0, 1} outside 
B1. The following lemma shows that it takes values in {0, 1} on

lines that intersect the boundary of F transversally. For p∈H and V ∈H a horizontal

vector, the coset p⟨V ⟩ is a horizontal line. Let

p⟨V ⟩+ = {pV t : t> 0} and p⟨V ⟩− = {pV t : t< 0}.

Lemma 11.14. Let f be a 
B1-LEM function and let F=f−1(1)∩
B1 be the corre-

sponding locally monotone set. Let p∈
B1∩∂H4F be a point with a vertical approximate

tangent plane Tp and let V ∈Hp be a horizontal vector pointing into T+

p . Then,

p⟨V ⟩+ ⊆ intH4(f−1(1)) and p⟨V ⟩− ⊆ intH4(f−1(0)). (11.5)

Proof. Let Ei⊆H be a sequence of sets such that Ei is (1/i, i)-monotone on 
B1 and

1Ei converges weakly to f . Let L=p⟨V ⟩, L±=p⟨V ⟩±, and θ=∠(V, Tp). Let ε= 1
20θ and

let W±
ε,t be as in Proposition 11.4. For t>0, L± intersects W±

ε,t in an interval of length

at least 1
2 t.

Fix t>0 and let q=pV t. For the first inclusion in (11.5), the goal is to demonstrate

that q∈intH4(f−1(1)). Let 0<α< 1
2 t be a radius such that 
Bα(p)⊆
B1, W

+

ε,α⊆F up to a

null set, and W−
ε,α⊆H\F up to a null set. For any δ>0, let Kδ⊆L be the set of lines of

the form q′⟨V ′⟩, where q′∈
Bδ(q) and V ′∈H is a horizontal vector such that ∠(V, V ′)<δ.

For K∈Kδ, let K±=K∩T±
p .

Since the lines Kδ are all close to L, there is a δ depending on θ and α such that

0<δ<min{ε, α} and every line K∈Kδ intersects both W+

ε,α and W−
ε,α in intervals of

length at least 1
4α. We claim that

lim
i!∞

H4((H\Ei)∩
Bδ(q))= 0,
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and thus that f=1 almost everywhere on 
Bδ(q).

For each i∈N define

Ti
def
=
{
K ∈Kδ :H1(K∩
B1∩(Ei△F ))< 1

8α
}
.

By Fubini’s theorem, for any measurable subset A⊆H and any horizontal vector M∈H
that is not parallel to Tp, we have

ˆ
Tp

H1(b⟨M⟩∩A) sin(∠(M,Tp)) dH3(b)≍H4(A). (11.6)

Therefore, limi!∞ N (Ti)=N (Kδ), and for almost every K∈Ti,

H1(K+∩F∩
Bα(p))⩾H1(K+∩W+

ε,α)>
1
4α.

By the definition of Ti, this implies that

H1(K+∩Ei∩
Bα(p))> 1
8α, (11.7)

and likewise

H1(K−∩Eci ∩
Bα(p))> 1
8α. (11.8)

Let

Si
def
= {K ∈Ti :H1(K∩
Bδ(q)∩(H\Ei))> 0}.

Suppose that i⩾d(p, q)+2δ+2α and K∈Si. By (11.7), (11.8), and the definition of Si,
there are disjoint intervals

I1 =K−∩
Bα(p), I2 =K+∩
Bα(p), and I3 =K∩
Bδ(q)

such that the following conditions hold:

• I2 is between I1 and I3;

• I1∪I2∪I3 has diameter at most i;

• H1(I1∩(H\Ei))> 1
8α;

• H1(I2∩Ei)> 1
8α;

• H1(I3∩(H\Ei))>0.

Lemma 8.2 implies that

ω̂Ei,i(

B1,K)⩾ ω̂Ei,i(


Bα(p),K)⩾ 1
2H

1(Ei∩I2)⩾ 1
16α.

Hence,
α

16
N (Si)⩽

ˆ
L
ω̂Ei,i(


B1,K) dN (K)=ENMEi,i(

B1)⩽

1

i
,
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and so limi!∞ N (Si)=0.

Let

Ri
def
= {K ∈Kδ :H1(K∩
Bδ(q)∩(H\Ei))> 0}.

Then N (Ri)⩽N (Si)+N (Kδ\Ti), and so limi!∞ N (Ri)=0. By (11.6),

H4(
Bδ(q)∩(H\Ei))≍δ
ˆ
Kδ

H1(K∩
Bδ(q)∩(H\Ei)) dN (K)⩽
ˆ
Ri

2δ dN (K),

where the last inequality follows from the fact that H1(K∩
Bδ(q))⩽2δ for any horizontal

line K. We therefore conclude as follows:

lim
i!∞

H4(
Bδ(q)∩(H\Ei))⩽ lim
i!∞

2δN (Ri)= 0.

By Lemma 11.7, 
B1∩∂H4F is a union of line segments. Extended monotonicity

implies that these line segments can be extended to lines.

Lemma 11.15. Let f be a 
B1-LEM function and let F=f−1(1)∩
B1 be the corre-

sponding locally monotone set. Let L be a horizontal line. If an open subinterval I⊆L
is contained in 
B1∩∂H4F , then L⊆∂H4F .

Proof. By Proposition 11.4, ∂H4F has at most countably many characteristic points.

Let p∈I be non-characteristic. Then, the vertical plane Tp containing L is the approxi-

mate tangent plane to ∂H4F at p. Recalling that Hp is the horizontal plane centered at

p, every horizontal line through p, other than L itself, intersects ∂H4F transversally at

p, so by Lemma 11.14, we have

T+

p ∩Hp⊆ intH4(F ) and T−
p ∩Hp⊆ intH4(H\F ).

Since L lies in the closures of T+

p ∩Hp and T−
p ∩Hp, we have

L⊆ suppH4(F )∩suppH4(H\F )= ∂H4F.

Finally, we show that if 
B1∩∂H4F is non-planar, then we can construct an arrange-

ment of lines that leads to a contradiction.

Lemma 11.16. Let f be a 
B1-LEM function. There is a plane Q⊆H such that

f |

B1

=1Q+ outside of a null set. In fact, the same holds true in a larger set. Let

S
def
=(Q∩
B1)H (11.9)

be the union of the horizontal lines intersecting Q∩
B1. Then, we have f |S=1Q+ outside

of a null set.
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Proof. Let F=f−1(1)∩
B1 be the locally monotone set corresponding to f and sup-

pose, by way of contradiction, that 
B1∩∂H4F is non-planar. By part (2) of Proposi-

tion 11.4 and by Lemma 11.15, for every point p∈
B1∩∂H4F , there is a horizontal line

Mp through p such that Mp⊆∂H4F .

Reasoning as in [21, Lemma 4.11] shows that there are two 
B1-rulings of F that

satisfy one of the cases of Lemma 11.1, i.e., they are a pair of skew lines or a pair of

lines with distinct parallel projections. Indeed, suppose that J and K are 
B1-rulings

of F with parallel projections. If π(J) ̸=π(K), we are done; otherwise, J and K are

contained in a vertical plane V . Let L be a 
B1-ruling of F not in V , which exists by

the assumed non-planarity. Then, L is skew to J or K, or parallel to V with a distinct

projection. It remains to treat the case when any two 
B1-rulings of F have non-parallel

projections. Let J and K be two such rulings. If J and K are disjoint, we are done,

so we suppose J and K intersect at a point p and are thus contained in the horizontal

plane Hp centered at p. If L is a 
B1-ruling of F that is not contained in Hp (it exists by

assumed non-planarity), then L intersects Hp at a single point other than p, so L is skew

to either J or K, as desired.

This shows that there are two 
B1-rulings L1 and L2 of F that are skew or have

distinct parallel projections. Let I=L1∩
B1 and let p∈I be a non-characteristic point

such that π(p) ̸∈π(L2). By Lemma 11.1, there is a horizontal line M that goes through

p and intersects L2 at q. This line is not equal to L1, so it intersects ∂H4F transversally

at p. By Lemma 11.14, this implies that q∈intH4(f−1(0)) or q∈intH4(f−1(1)), but

q∈L2⊆∂H4F , which is a contradiction. Therefore, 
B1∩∂H4F is planar, and there is a

plane Q such that F∩
B1=Q
+∩
B1 up to a null set. Since f takes values in {0, 1} inside


B1, this implies the first part of Lemma 11.16.

With S as in (11.9), take w∈Q+∩S. Then w lies on a horizontal line that intersects

Q∩
B1 transversally, and Lemma 11.14 implies that w∈intH4(f−1(1)). It follows that

f=1 almost everywhere inQ+∩S and likewise that f=0 almost everywhere inQ−∩S.

The second part of Proposition 10.1 states that extended monotone intrinsic graphs

are close to vertical planes. This follows from the fact that neighborhoods of the center

of a horizontal plane cannot be approximated by intrinsic graphs.

Lemma 11.17. Let V0 be the xz-plane and let E1, E2, ...⊆H be a sequence of intrinsic

graphs over V0 such that E+

i is (1/i, i)-extended monotone on 
B1 and 1E+
i

converges

weakly to a function f∈L∞(H) as i!∞. There is a vertical plane Q⊆H such that

f |

B1

=1Q+ outside of a null set. Furthermore, if S is as in (11.9), then f |S=1Q+

outside of a null set.

Proof. For any intrinsic graph Γ and any g∈Γ+, we have gY t∈Γ+ for every t>0.
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As H4 is right-invariant, this implies that, for any measurable set U⊆N and any i∈N,

H4(U∩E+

i )⩽H4(U∩E+

i Y
t).

Therefore, ˆ
U

f dH4 ⩽
ˆ
UY t

f dH4.

Consequently,

f(g)⩽ f(gY t) for almost every (g, t)∈H×(0,∞). (11.10)

If f is almost-surely constant on 
B1, we can take Q to be a vertical plane that

does not intersect 
B1. We thus suppose that f |

B1

is not almost-surely constant. By

Lemma 11.16, there is a plane Q that satisfies f |S=1Q+ outside of a null set, where S is

given in (11.9).

Suppose for contradiction that Q is horizontal. Let c∈H be such that Q=Hc=cH

and let p∈Q∩int(
B1) be such that x(p) ̸=x(c). Let L be the horizontal line from c to p

and let V =(xV , yV , 0) be the horizontal vector such that p=cV . Set

q= cV −1 = c(−xV ,−yV , 0).

We claim that there is ε>0 such that {pY ±ε, qY ±ε}⊆S. Choose ε>0 so that pY t∈
B1

and rt=c(xV , yV +t, 0)∈
B1∩Q for all t∈[−2ε, 2ε]. Then,

rt
(
−2xV ,−2yV − 3

2 t, 0
)
= c(xV , yV +t, 0)

(
−2xV ,−2yV − 3

2 t, 0
)

= c
(
−xV ,−yV − 1

2 t,
1
4xV t

)
= qY −t/2.

It follows that qY −t/2∈rtH⊆S. In particular, qY ±ε∈S. At the same time, pY ε and

pY −ε are on opposite sides of Q; equation (11.10) implies that pY ε∈Q+ and pY −ε∈Q−.

Likewise, qY ±ε∈Q±. But since c is between p and q, the points pY ε and qY ε are on

opposite sides of Q, which is a contradiction. Therefore, Q is a vertical plane.

Proof of Proposition 10.1. If the first part of the proposition were false, then there

would exist ε>0 and a sequence of measurable sets (Ei)
∞
i=1 such that, for any i∈N, the

set Ei is (1/i, i)-extended monotone on 
B1 and |
B1∩(P+△Ei)|>ε for every plane P⊆H.

There is a subsequence (Ei(j))
∞
j=1 whose characteristic functions converge weakly to a


B1-LEM function f . By Lemma 11.16, there is a plane Q⊆H such that f=1Q+ almost

everywhere on 
B1. Then,

lim
j!∞

|
B1∩(Q+△Ei(j))|=0,

which is a contradiction.
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Similarly, if the second part of the proposition were false, then there would exist ε>0

and a sequence of intrinsic graphs (Ei)
∞
i=1 over V0 such that, for any i∈N, the epigraph

E+

i is (1/i, i)-extended monotone on 
B1 and |
B1∩(P+△E+

i )|>ε for every vertical plane

P⊆H. Passing to a subsequence, we may suppose that the indicators 1E+
i

converge

weakly to a 
B1-LEM function f . By Lemma 11.17, there is a vertical plane Q⊆H such

that f=1Q+ almost everywhere on 
B1. Then,

lim
i!∞

|
B1∩(Q+△E+

i )|=0,

which is a contradiction.

12. L1 bounds and characteristic curves on monotone intrinsic graphs

Here we complete the proof of Proposition 7.2, which obtains L1 bounds for paramono-

tone pseudoquads and bounds their characteristic curves.

Fix 0<µ⩽ 1
32 and a µ-rectilinear pseudoquadQ in an intrinsic Lipschitz graph Γ=Γf .

Suppose that Γ is (η,R)-paramonotone on rQ. By Remark 4.3, we can normalize Q and

Γ so that the corresponding parabolic rectangle is the square [−1, 1]×{0}×[−1, 1]; by

Lemma 8.8 and the discussion immediately after its proof, the normalized pseudoquad

remains paramonotone. So, it suffices to prove Proposition 7.2 for such pseudoquads.

For t>0, denote

Dt= [−t, t]×{0}×[−t2, t2]⊆V0.

By our choice of normalization, we have tQ=Dt. Furthermore, Dt⊆B5t and Π(
Bt)⊆Dt.

We will proceed in several steps.

(1) First, we will prove in Lemma 12.2 that there is a universal constant κ>0 such

that ∥f∥L1(Q)⩽κ when η is sufficiently small. This relies on Lemma 12.1 that bounds

the tails of f in regions that are bounded above and below by supercharacteristic curves

(projections of horizontal curves in Γ∪Γ+).

(2) Next, we will show that Γ is close to a plane on a ball around the origin. Since

∥f∥L1(Q)⩽κ, the intersections Γ+∩Bκ and Γ−∩Bκ both have positive measure. For any

r>0, we have Π(
Br)⊆rQ, so ENMΓ+,R(
Br)≲ηR. When ηR is sufficiently small, and r

and R are sufficiently large, Proposition 10.1 implies that there is a vertical plane P that

intersects Bκ and approximates Γ on Br, i.e.,

H4((Γ+△P+)∩
Br)<ε.

Furthermore, since ∥f∥L1(Q)⩽κ, the slope and y-intercept of π(P ) are both at most some

universal constant.
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We then apply an automorphism that sends P to V0. Since the slope and y-intercept

of P are bounded, there is a universal constant c>0 and a map q:H!H (a composition

of a left translation in the y–direction and a shear) such that q(P )=V0 and

Bc−1s−c⊆ q(Bs)⊆Bcs+c

for all s>c2. We let

Γ̂= q(Γ) and Q̂= q̂(Q)=Π(q(Q)),

and let f̂ be such that Γ̂=Γf̂ . Since q preserves H4, we have

H4((Γ̂+△V +

0 )∩
Bc−1r−c)<ε. (12.1)

This inequality controls f̂ on V0∩
Bc−1r−c, and we choose r large enough that

11Q̂⊆ 
Bc−1r−c.

(3) By (12.1), ˆ
10Q̂

min{1, |f̂(p)|} dH3(p)⩽ ε,

so a bound on the tails of f̂ would lead to a bound on ∥f̂∥L1(10Q̂). We bound the tails in

Lemma 12.4, by finding supercharacteristic curves above and below 10Q̂, then applying

Lemma 12.1 again. This implies that ∥f̂∥L1(10Q̂)≲ε when η is sufficiently small, which

proves the first part of Proposition 7.2.

(4) Finally, we bound the characteristic curves of Γ̂ in Lemma 12.6, by showing that,

if Γ̂ contains characteristic curves that are not nearly parallel to the x-axis, then either

∥f̂∥L1
is bounded away from zero, or ΩPΓ+,R is bounded away from zero. This completes

the proof of Proposition 7.2.

We will use the following notation for horizontal lines. Every horizontal line in LP
can be written uniquely as follows for some w=(0, y0, z0)∈H and m∈R:

Lw,m
def
= w⟨X+mY ⟩.

Let ρLw,m :R!Lw,m be the following parametrization, so that x(ρL(t))=t for all t∈R:

ρLw,m(t)
def
= w(X+mY )t for all t∈R.

For every x∈R define

gLw,m(x)
def
= z(Π(ρLw,m(x)))=− 1

2mx
2−y0x+z0. (12.2)

Note that, since Lw,m is horizontal, we have y(ρLw,m(x))=−g′Lw,m(x).
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12.1. Bounding the tails of f

We start by showing that, if Q is a rectilinear pseudoquad for Γ=Γf such that Γ+ is

(η,R)-paramonotone on rQ, as in Proposition 7.2, and Q is normalized so that the

corresponding parabolic rectangle is a 2×2 square, as in Remark 4.3, then there is a

universal constant κ such that ∥f∥L1(Q)⩽κ when r and R are sufficiently large and η is

sufficiently small.

This step relies on the following lemma, which will also be used in step 3. A

supercharacteristic curve (resp. subcharacteristic curve) for Γ is the projection Π(γ)

of a horizontal curve γ: I!H such that x(γ(t))=t for all t∈I and γ(I)⊆Γ∪Γ+ (resp.

γ(I)⊆Γ∪Γ−).

Such a curve can be written as a graph of the form {z=g(x)}⊆V0. By the argument

of Lemma 2.6, g is differentiable almost everywhere and satisfies g′(x)=y(γ(x)) for almost

every x∈I. Since g is locally Lipschitz, we have

g(x)= g(x0)+

ˆ x

x0

g′(t) dt= g(x0)+

ˆ x

x0

y(γ(t)) dt for all x, x0 ∈ I,

and therefore g′(x)=y(γ(x)) for every x∈I. In particular, g′(x)⩽−f(x, 0, g(x)) for all

x∈I. We then say that g is a function with supercharacteristic graph.

Lemma 12.1. Let g1, g2: [−2, 2]!R be functions with supercharacteristic graphs such

that sup g1([−2, 2])<inf g2([−2, 2]). For 0⩽r⩽2, let

Ur = {(x, 0, z)∈V0 : |x|⩽ r and g1(x)⩽ z⩽ g2(x)}.

Denoting H=max{∥g1∥L∞([−2,2]), ∥g2∥L∞([−2,2])}, for any t⩾8H we have

|{v ∈U1 : f(v)⩾ t}|≲ 1

t2
ΩPΓ+,4(U2). (12.3)

Likewise, if g1, g2: [−2, 2]!R have subcharacteristic graphs, and Ur and H are as above,

then for any t⩾8H we have

|{v ∈U1 : f(v)⩽−t}|≲ 1

t2
ΩPΓ+,4(U2).

Once we prove Lemma 12.1, we will apply it to the case that Q approximates [−1, 1]2

and g1 and g2 are the lower and upper bounds of Q.

Proof. Fix t⩾8H and y0,m, z0∈R such that∣∣y0− 1
2 t|<

1
12 t and |m|< 1

12 t.
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Let L=L(0,y0,z0),m. For any s∈[−2, 2] we have∣∣g′L(s)+ 1
2 t
∣∣= ∣∣y(ρL(s))− 1

2 t
∣∣< 1

4 t, (12.4)

so − 3
4 t<g

′
L(s)<− 1

4 t on [−2, 2].

We claim that for almost every such L we have

ω̂PΓ+,4(U2, L)⩾ 1
2H

1(x(Γ−∩L∩Π−1(U1))). (12.5)

By (12.4), we have

gL(−2)= gL(s)−
ˆ s

−2

g′L(u) du>−H+(s+2)
t

4
⩾−H+2H =H,

and

gL(2)= gL(s)+

ˆ 2

s

g′L(u) du<H−(2−s) t
4
⩽H−2H =−H.

Hence, Π(L) crosses U2 negatively (from top to bottom), as depicted in Figure 12.1. The

curve Π(L) only intersects the top and bottom of U2, not the sides, so we say that Π(L)

is transverse to the boundary of U2 if Π(L) intersects the top and bottom boundaries

transversally; that is, if gL(u)=gi(u) for some u∈[−2, 2] and i=1, 2, then g′L(u) ̸=g′i(u).
Suppose that Π(L) is transverse to the boundary of U2 and that L∩Γ+ has finite

perimeter; these are true for almost every L. If Π(L) does not intersect U1, then the

right-hand side of (12.5) is zero and the inequality holds trivially. We thus suppose in

addition that L intersects U1. In this case, there is some s∈[−1, 1] such that |gL(s)|⩽H.

Fix i∈{1, 2} and suppose that Π(L) crosses the graph of gi negatively at (u, 0, gL(u)).

Let v=ρL(u) be the point on L over the intersection. Then

gL(u)= gi(u) and g′L(u)<g
′
i(u).

Since the graph of gi is supercharacteristic, f(u, 0, gi(u))⩽−g′i(u), and therefore

y(v)=−g′L(u)>−g′i(u)⩾ f(u, 0, gi(u))= f(Π(v)).

That is, v∈Γ+.

Since Π(L) is transverse to the boundary of U2, the intersection Π(L)∩U2 consists

of a collection of intervals. Let [a1, b1], ..., [an, bn]⊆R be the disjoint intervals such that

x(Π(L)∩U2)= [a1, b1]∪...∪[an, bn],

and these intervals are in ascending order. The projection Π(L) does not intersect the

left or right boundary of U2, so Π(L) crosses the graph of g1 or g2 at each ai or bi. Since
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g2

g1

L

Figure 5. Two characteristic curves g1 and g2 and a horizontal line L, projected to V0; the
positive y-axis points toward the reader. Since Π(L) crosses U2 negatively, the segments of

L at the first and last crossings lie in Γ+, and therefore the size of the intersection L∩Γ− is

bounded by ω̂P
Γ+,4

(U2, LZt).

gL is decreasing and sup g1([−2, 2])<inf g2([−2, 2]), the crossings of g2 all have smaller

x-coordinate than the crossings of g1.

Consider S=x(L∩Γ+). Since Π(L) crosses the graph of g2 negatively at a1 and

crosses the graph of g1 negatively at bn, the argument above implies that a1, bn∈S.
Furthermore, for each i∈{1, ..., n}, one of following three cases holds.

(1) Π(L) crosses the graph of g2 negatively at ai and positively (from bottom to

top) at bi.

(2) Π(L) crosses the graph of g2 negatively at ai and crosses the graph of g1 nega-

tively at bi.

(3) Π(L) crosses the graph of g1 positively at ai and negatively at bi.

In each case, ai∈S or bi∈S. By Lemma 8.2 (applied with [a, b]=[a1, bn]),

ω̂S,4([ai, bi]) = ω̂R\S,4([ai, bi])⩾
1

2
H1(x(Γ−∩L)∩[ai, bi]).

Summing over i∈{1, ..., n}, we find that

ω̂S,4

( n⋃
i=1

[ai, bi]

)
= ω̂PΓ+,4(U2, L)⩾

1

2
H1(x(Γ−∩L∩Π−1(U2))). (12.6)

This proves (12.5).

Next, let

A=U1∩f−1([t,∞)).

By (12.4), y(ρL(s))<t for all s∈[−2, 2], so if Π(ρL(s))∈A, then ρL(s)∈Γ−. So, by (12.5),

1
2H

1(x(Π(L)∩A))⩽ 1
2H

1(x(Γ−∩L∩Π−1(U1)))⩽ ω̂PΓ+,4(U2, L).
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By Fubini’s Theorem, for any y0 and m as above,

1

2
|A|= 1

2

ˆ
R
H1(x(L(0,y0,z0),m∩A)) dz0 ⩽

ˆ
R
ω̂PΓ+,4(U2, L(0,y0,z0),m) dz0.

Therefore, recalling the definition (8.6) of ΩP , we have

ΩPΓ+,4(U2)=
1

4

ˆ
L
ω̂PΓ+,4(U2, L) dNP (L)

⩾
1

4

ˆ t/12

−t/12

ˆ 7t/12

5t/12

ˆ
R
ω̂PΓ+,4(U2, L(0,y0,z0),m) dz0 dy0 dm

⩾
1

8

ˆ t/12

−t/12

ˆ 7t/12

5t/12

|A| dy0 dm=
t2

288
|A|.

That is,

|{v ∈U1 : f(v)⩾ t}|≲ 1

t2
ΩPΓ+,4(U2).

This proves (12.3).

We can show that

|{v ∈U1 : f(v)⩽−t}|≲ 1

t2
ΩPΓ+,4(U2).

when g1 and g2 have subcharacteristic graphs by either applying a similar argument or

by replacing Γ, Ur, etc. by s1,−1(Γ), s1,−1(Ur), etc.

The desired bound on ∥f∥L1(Q) follows by integrating (12.3) with respect to t.

Lemma 12.2. Let f :V0!R be a continuous function and let Γ be its intrinsic

graph. Let (Q, [−1, 1]×{0}×[−1, 1]) be a 1
32 -rectilinear pseudoquad for Γ. Suppose that

ΩPΓ+,4(2Q)⩽1. There is a universal constant κ>0 such that ∥f∥L1(Q)⩽κ.

Proof. Let g1 and g2 be the lower and upper bounds of Q and for 0⩽r⩽2, let Ur be

as in Lemma 12.1. Then Q=U1 and U2⊆2Q. Let H=2. Since the graphs of g1 and g2

are supercharacteristic and U2⊆2Q, Lemma 12.1 implies that, for any t⩾16,

|{v ∈Q : f(v)⩾ t}|≲ t−2ΩPΓ+,4(U2)⩽ t−2ΩPΓ+,4(2Q)⩽ t−2.

Since the graphs of g1 and g2 are also subcharacteristic, for any t⩾16 we also have

|{v ∈U1 : f(v)⩽−t}|≲ t−2.

Then

∥f∥L1(Q) =

ˆ ∞

0

∣∣{v ∈Q : |f(v)|⩾ t}
∣∣ dt≲ 16|Q|+

ˆ ∞

16

t−2 dt≲ 1.
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12.2. Constructing the approximating plane

Now we will use Lemma 12.2 and the results of §11 to show that, if Q is a paramonotone

pseudoquad for Γf , then f is close on Q to an affine function with bounded coefficients.

Lemma 12.3. Let κ>0 be the constant in Lemma 12.2, and let C=4κ. For any

0<ε<1 and r⩾2κ+6, there are 0<η< 1
2 and R>0 with the following property.

Let Γ=Γf be an intrinsic graph such that (Q, [−1, 1]×{0}×[−1, 1]) is a 1
32 -rectilinear

pseudoquad for Γ. Let g1 and g2 be the lower and upper bounds of Q, respectively. If Q

is (η,R)-paramonotone on rQ, then there is a vertical plane P⊆H such that

H4(
Br∩(P+△Γ+))<ε. (12.7)

Moreover, P is the graph of an an affine function F :V0!R of the form F (w)=a+bx(w),

whose coefficients satisfy max{|a|, |b|}⩽C.

Proof. We have δx(Q)=2 and α(Q)=
√
2. Also, 2⩽|Q|⩽6. Hence, recalling (7.2), if

Γ is (η,R)-paramonotone on rQ, then assuming R⩾2 and ηR<1, we have

ΩPΓ+,4(2Q)⩽ 1
2RΩ

P
Γ+,2R(rQ)⩽ 1

2Rηα(Q)−4|Q|⩽Rη< 1,

so by Lemma 12.2 we have ∥f∥L1(Q)<κ.

Since Π(
Br)⊆rQ, (8.9) implies that

ENMΓ+,2R(
Br)≲ ηR.

By Proposition 10.1, when R is sufficiently large and ηR is sufficiently small, there is a

half-space P+ bounded by a vertical plane such that

H4(
Br∩(P+△Γ+))<ε.

If necessary, we may rotate P infinitesimally around the z-axis so that it is not perpen-

dicular to V0. Then P is the graph of an affine function F :V0!R. Let a, b∈R be such

that F (w)=a+bx(w) for all w∈V0.
For all w∈V0, let f̄(w) (resp. 
F (w)) be the element of [−2κ, 2κ] that is closest to

f(w) (resp. F (w)). As r⩾2κ+6, the intrinsic graphs of 
F and f̄ over Q both lie in 
Br.

Therefore,

∥
F−f̄∥L1(Q) ⩽H4(
Br∩(Γ+

f̄
△Γ+

	F
))⩽H4(
Br∩(Γ+

f△Γ+

F ))⩽ ε,

and thus

∥
F∥L1(Q) ⩽ ε+∥f̄∥L1(Q) ⩽ ε+∥f∥L1(Q) ⩽ 2κ. (12.8)

The map F is affine, and [−1, 1]×{0}×[− 1
2 ,

1
2 ]⊆Q, so |{q∈Q:|F (q)|>2κ}|>1 if |a|>2κ

or |b|>4κ, which implies that ∥
F∥L1(Q)>2κ, in contradiction to (12.8). So,

max{|a|, |b|}⩽ 4κ.
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We will next use Lemma 12.3 to construct a new intrinsic Lipschitz graph Γ̂ that is

close to V0 on a ball around 0. Let 0<ε<1 and r>0 be numbers to be chosen later. Let η,

R, C, Γ, f , and Q be as in Lemma 12.3, so that there is a vertical plane P approximating

Q that is the graph of an affine function F (w)=a+bx(w) with max{|a|, |b|}⩽C.
Let q=qa,b:H!H be the map given by

q(x, y, z)
def
= Y −a(x, y−bx, z)=

(
x, y−a−bx, z+ 1

2ax
)

for all (x, y, z)∈H.

This is a shear map that preserves the x-coordinate and sends P to V0. Let q̂:V0!V0 be

the map that q induces on V0, i.e.,

q̂(x, 0, z)=Π(q(x, 0, z))=
(
x, 0, z+ax+ 1

2bx
2
)

for all x, z ∈R. (12.9)

Let Γ̂=q(Γ) and Q̂=q̂(Q). By Lemma 2.9, Q̂ is a pseudoquad for Γ̂ that contains 0 and

Γ̂=Γf̂ , where

f̂(v)= f(q̂−1(v))−a−bx(v)= f(q̂−1(v))−F (q̂−1(v)).

Since a, b∈[−C,C], there is a universal constant c>0 such that, for all s>c2,

Dc−1s−c⊆ q̂(Ds)= sQ̂⊆Dcs+c, (12.10)

where we recall Ds=[−s, s]×{0}×[−s2, s2], and

Bc−1s−c⊆ q(Bs)⊆Bcs+c. (12.11)

Bounds on Γ and Q correspond directly to bounds on Γ̂ and Q̂. For example, shear

maps preserve H4, so

H4(Bc−1r−c∩(V +

0 △Γ̂+))⩽H4(q(Br)∩(V +

0 △Γ̂+))=H4(Br∩(P+△Γ+))<ε. (12.12)

In particular, when r is sufficiently large, we have∥∥min
{
|f−F |, 12r

}∥∥
L1(10Q)

⩽H4(Br∩(P+△Γ+))<ε. (12.13)

Maps induced by shears preserve the Lebesgue measure H3 on V0, so by (12.10),

∥f−F∥L1(10Q) = ∥f̂∥L1(10Q̂) ⩽ ∥f̂∥L1(D11c), (12.14)

and by Lemma 8.8, Γ̂ is (η,R)-paramonotone on rQ̂.
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12.3. Bounding ∥f−F∥L1(10Q)

Next, we bound ∥f−F∥L1(10Q). Lemmas 12.2 and 12.3, together with (12.13) imply that

∥f−F∥L1(Q) and
∥∥min

{
|f−F |, 12r

}∥∥
L1(10Q)

can be made arbitrarily small. It remains

to show that |f−F | does not have large tails on 10Q. We previously used Lemma 12.1

to bound the tails of f on Q, but this used the fact that Q is bounded above and below

by characteristic curves. We will have to do more work to find supercharacteristic curves

above and below 10Q. In fact, we will show the following bound on f̂ , then use (12.14)

to show a similar bound on |f−F |.

Lemma 12.4. For any δ>0, there is β=β(δ)>0 with the following property. Let

Γ̂=Γf̂ be an intrinsic Lipschitz graph. Let τ>0 and suppose that

H4(B144τ∩(Γ̂+△V +

0 ))<βτ4, (12.15)

and that the density of ΩP
Γ̂+,48τ

on D24τ is bounded by

τ−3ΩP
Γ̂+,48τ

(D24τ )<β.

Then, ∥f̂∥L1(D8τ )⩽δτ
4.

Proof. Recall that, by Lemma 8.8, the density of ΩP
Γ̂+,48τ

is invariant under scaling,

so, after rescaling, it is enough to treat the case τ=1. Let

U def
=
{
L(0,y0,z0),m : z0 ∈ [200, 201], y0 ∈ [1, 2], and m∈

[
− 1

20y0,−
1
21y0

]}
.

We claim that there is some L∈U such that the segment Π(ρL([−16, 16])) is a superchar-

acteristic curve above D8. A similar construction will produce a second supercharacter-

istic curve below D8, so we can use Lemma 12.1 to bound f̂ from above.

We clip f̂ between −24 and 24 and call the result h; that is, for all w∈V0, let h(w)
be the element of [−24, 24] that is closest to f̂(w). For L∈LP and t∈R, let

hL(t)=h(Π(ρL(t))).

Define

U1
def
= {L∈U : Π(ρL([−16, 16])) is supercharacteristic},

U2
def
=

{
L∈U :

ˆ 24

−24

|hL(t)| dt>
1

24

}
,

U3
def
= {L∈U : ω̂P

Γ̂+,48
(D24, L)⩾ 1}.
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We claim that almost every L∈U is contained in U1∪ U2∪ U3.

Let L∈U and suppose that x(L∩Γ̂+) is a subset of R with locally finite perimeter.

This is true for almost every L. Suppose that L ̸∈U1∪ U2. Then, Π(ρL([−16, 16])) is

not supercharacteristic, so there is some a∈[−16, 16] such that ρL(a)∈Γ̂−. Let p be

the intersection point of L with V0; by our choice of parameters, x(p)∈[20, 21]. Also,

since m<− 1
24 , we have y(ρL(t))>

1
24 for t⩽19. Since L ̸∈U2, there are b1∈[16, 17] and

b2∈[18, 19] such that, for i∈{1, 2}, we have hL(bi)⩽ 1
24<y(ρL(bi)), and thus ρL(bi)∈Γ̂+.

Similarly, y(ρL(t))<− 1
24 for all t⩾22, so there is c∈[22, 23] such that hL(c)>y(ρL(c))

and ρL(c)∈Γ̂−. There is an element of ∂H1x(L∩Γ̂+) in (a, b1) and another in (b2, c).

Since a, b1, b2, c∈[−24, 24], Lemma 8.1 implies that

ω̂P
Γ̂+,48

(D24, L)⩾ b2−b1 ⩾ 1

and thus L∈U3.

Therefore, U1∪ U2∪ U3 contains all of U except a null set. We will next show that

NP (U2) and NP (U3) are bounded by multiples of β.

Suppose L=L(0,y0,z0),m. As in (12.2), let

gL(t)= z(Π(ρL(t)))=− 1
2mt

2−y0t+z0.

For every t∈[−24, 24], we have

|gL(t)−200|⩽ 1+
m

2
t2+y0|t|⩽ 1+

242

20
+48⩽ 100, (12.16)

so Π(ρL([−24, 24]))⊆D24. Furthermore, D24⊆B120, so for all v∈D24 and t∈[−24, 24],

we have vY t∈B144. Thus,

∥h∥L1(D24) ⩽H4(B144∩(Γ̂+△V +

0 ))<β. (12.17)

Therefore, for any y0∈[1, 2] and m∈
[
− 1

20y0,−
1
21y0

]
,

ˆ 201

200

ˆ 24

−24

|hL(t)| dt dz0 ⩽ ∥h∥L1(D24)<β.

It follows that {z0∈[200, 201]:L(0,y0,z0),m∈U2} has measure at most 24β, and thus

NP (U2)⩽
ˆ 2

1

ˆ −y0/21

−y0/20
24β dmdy0 ⩽ 24β.

To bound NP (U3), observe that

NP (U3)⩽
ˆ
LP

ω̂P
Γ̂+,48

(D24, L) dNP (L)= 48ΩP
Γ̂+,48

(D24)< 48β.
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It follows that, if β is sufficiently small, then

NP (U1)⩾NP (U)−NP (U2)−NP (U3)> 0.

Therefore, U1 is non-empty. That is, there exists a line L∈U with parametrization ρL

such that S2=Π(L)∩{−16⩽x⩽16} is a supercharacteristic curve. By (12.16), S2 is above

D8 and S2⊆D24. By symmetry, there also exists a line L′ and a supercharacteristic curve

S1=Π(L′)∩{−16⩽x⩽16} that lies below D8 and satisfies S1⊆D24.

By Lemma 12.1 applied to a rescaling of Γ̂, there is some C>24 such that, for any

t>C,

|{v ∈D8 : f̂(v)⩾ t}|≲ t−2ΩP
Γ̂+,48

(D24)⩽ t−2β.

Applying another symmetry, the analogous reasoning shows that, for any t>C,

|{v ∈D8 : f̂(v)⩽−t}|≲ t−2β.

Then, for all sufficiently small β,

∥f̂∥L1(D8) = ∥h∥L1(D8)+

ˆ ∞

24

∣∣{v ∈D8 : |f̂(v)|⩾ t}
∣∣ dt

≲ ∥h∥L1(D8)+C
∣∣{v ∈D8 : |f̂(v)|⩾ 24}

∣∣+ˆ ∞

C

t−2β dt

⩽β+C
∣∣{v ∈D8 : |f̂(v)|⩾ 24}

∣∣+β,
where we use the fact that C>24 to go from the first line to the second. But∣∣{v ∈D8 : |f̂(v)|⩾ 24}

∣∣= ∣∣{v ∈D8 : |h(v)|=24}
∣∣⩽ 1

24∥h∥L1(D8) ⩽
1
24β,

so ∥f̂∥L1(D8)≲β. This proves Lemma 12.4, for β at most a constant multiple of δ.

We will use the following corollary in the proof of Proposition 7.2.

Corollary 12.5. Let c be the universal constant in (12.10)–(12.14), and let κ be

the universal constant in Lemma 12.2. Denote

τ
def
= 1

8 max{100, 11c} and r
def
= max{2κ+6, 144cτ+c2}.

For any λ>0, there are η,R>0 with the following property. Let Γ=Γf be an intrinsic

Lipschitz graph and (Q, [−1, 1]×{0}×[−1, 1]) a 1
32 -rectilinear pseudoquad for Γ. Suppose

that Γ is (η,R)-paramonotone on rQ, and P , F , and Γ̂=Γf̂ are as in Lemma 12.3 and

the remarks immediately after its proof. Then,

∥F−f∥L1(10Q) ⩽λ|Q| and ∥f̂∥L1(D100) ⩽λ.
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Proof. Set δ=λτ−4. Let β=β(δ) be as in Lemma 12.4. By Lemma 12.3, there are

η0 and R0 such that, if Γ is (η0, R0)-paramonotone on rQ, then

H4(
B144cτ+c2∩(P+△Γ+))<βτ4.

By (12.12), this implies that

H4(
B144τ∩(V +

0 △Γ̂+))<βτ4.

We take R>R0 and ηR<η0R0 such that (η,R)-paramonotonicity implies (η0, R0)-

paramonotonicity. Then, by (12.10) and the paramonotonicity of Q,

ΩP
Γ̂+,48τ

(D24τ )⩽
Rδx(Q̂)

48τ
ΩP

Γ̂+,Rδx(Q̂)
(D24τ )

⩽
R

24τ
ΩPΓ+,Rδx(Q)(D24cτ+c2)⩽

R

24τ
|Q|ηα(Q)−4 ≲ η.

If η is sufficiently small, then Lemma 12.4 implies that

∥f̂∥L1(Dmax{100,11c})<λ.

By (12.14), this implies that ∥F−f∥L1(10Q)⩽λ|Q|.

12.4. Characteristic curves are close to lines

Finally, in this section we will show that the characteristic curves of Γ̂ are close to horizon-

tal lines and prove Proposition 7.2. The key argument is that when characteristic curves

fail to be horizontal, configurations like those in Figure 6 produce non-monotonicity.

Lemma 12.6. For any A>0, there are δ=δ(A), θ=θ(A)>0 with the following prop-

erty. Let Γ̂=Γf̂ be an intrinsic Lipschitz graph. Suppose that

ΩP
Γ̂+,16

(D8)<θ and ∥f̂∥L1(D8)<δ.

Let γ:R!V0 be a characteristic curve through 0 and write γ(t)=(t, 0, g(t)) for t∈R.
Then, |g(t)|<A for all t∈[−1, 1].

Proof. We may suppose that 0<A<1. Choose

δ=
A2

96
and θ=

A3

105
.

Our goal is to show that, if ∥f̂∥L1(D8)<δ and if there is t0∈[−1, 1] with |g(t0)|⩾A,
then ΩP

Γ̂+,16
(D8)⩾θ. After applying a symmetry, we may suppose that t0>0 and that

g(t0)⩽−A, as in Figure 6.
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γ(t0)

γ(0)

q

L

γ

p

Figure 6. A characteristic curve γ and a horizontal line L, projected to V0. The projection of

L crosses γ positively at p, so L passes behind Γ̂ at p, and L intersects V0 (shown as parallel

horizontal lines) at q. If f̂ is zero away from γ, then L intersects Γ̂ at least three times (twice
near p and once at q) and the contribution to ω̂P is at least 1

2
(x(q)−x(p)).

Take z0∈
(
− 1

2A, 0
)
, y0∈

[
1
4A,

1
2A
]
, m∈

[
− 1

5y0,−
1
6y0
]
, w=(0, y0, z0). Let L=Lw,m.

Suppose that Π(L) and γ intersect transversally and L∩Γ̂− has finite perimeter; these

hold for almost every tuple (y0, z0,m). We will show that, if

ˆ 8

0

|f̂(t, 0, gL(t))| dt<
A

24
, (12.18)

then ω̂P
Γ̂+,16

(D8, L)⩾1, where gL=z(Π(ρL)).

Suppose that (12.18) holds. For t∈[−8, 8], we have

|gL(t)|⩽ |z0|+ 1
2 |m|t2+|y0t|< 1+ 64

20+4< 64,

so Π(ρL([−8, 8]))⊆D8. The graphs of gL and g intersect as depicted in Figure 6. That

is, gL(0)=z0<g(0), gL is decreasing on [0, 5], and gL(0)−gL(1)= 1
2m+y0<

1
2A, so

gL(t0)⩾ gL(1)>gL(0)− 1
2A>−A⩾ g(t0).

It follows that the graph of gL crosses γ positively at some point p=(a, 0, g(a)), where

a∈[0, t0]. Since g is characteristic,

f̂(a, 0, g(a))=−g′(a)>−g′L(a)= y(ρL(a)),

so ρL(a)∈Γ̂−.

Let q be the point where L intersects V0. Then x(q)=−y0/m∈[5, 6]. Sincem⩽− 1
24A,

we have y(ρL(t))⩾ 1
24A for t⩽4 and y(ρL(t))⩽− 1

24A for t⩾7. By (12.18), there are

b1∈[1, 2] and b2∈[3, 4] such that

f̂(bi, 0, gL(bi))<
1
24A⩽ y(ρL(bi)).
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This implies that ρL(bi)∈Γ̂+. Similarly, there is c∈[7, 8] such that y(ρL(c))<f̂(c, 0, gL(c))

and thus ρL(c)∈Γ̂−. There is an element of ∂H1(x(L∩Γ̂+)) in (a, b1) and another in (b2, c),

and, by Lemma 8.1,

ω̂P
Γ̂+,16

(D8, L)⩾ b2−b1 ⩾ 1,

as desired.

Therefore, for almost every (m, y0, z0) as above, regardless of whether (12.18) holds,

ω̂P
Γ̂+,16

(D8, L)+
24

A

ˆ 8

0

|f̂(t, 0, gL(t))| dt⩾ 1, (12.19)

since we showed that at least one of the summands on the left-hand side of (12.19) is at

least 1. By integrating (12.19) with respect to z0, we see that for almost every (m, y0)

that satisfy y0∈[A4 ,
A
2 ] and m∈[−y0

5 ,−
y0
6 ], we have

ˆ 0

−A/2
ω̂P
Γ̂+,16

(D8, L) dz0 ⩾
A

2
− 24

A

ˆ 0

−A/2

ˆ 8

0

|f̂(x, 0, gL(x))| dx dz0

⩾
A

2
− 24

A
∥f̂∥L1(D8) ⩾

A

2
− 24δ

A
=
A

4
.

By integrating this bound over m and y0 as above, we conclude as follows:

ΩP
Γ̂+,16

(D8)⩾
1

16

ˆ A/2

A/4

ˆ −y0/6

−y0/5

ˆ 0

−A/2
ω̂P
Γ̂+,16

(D8, L) dz0 dmdy0 ⩾
A3

105
.

Part (2) of Proposition 7.2 follows from Lemma 12.6.

Corollary 12.7. For every 0<ζ<1 there are δ=δ(ζ)>0 and θ=θ(ζ)>0 with the

following property. Let Γ̂=Γf̂ be an intrinsic Lipschitz graph such that

ΩP
Γ̂+,128

(D100)<θ and ∥f̂∥L1(D100)<δ.

Let Q̂ be a pseudoquad for Γ̂ with x(Q̂)=[−1, 1] such that 0∈Q̂ and δz(Q̂)=2. For

u∈4Q̂, if gu:R!R is such that {z=gu(x)} is a characteristic curve for Γ̂ that passes

through u, then

∥g−z(u)∥L∞([−4,4]) ⩽ ζ.

That is, Q̂ satisfies part (2) of Proposition 7.2 for P=V0.

Proof. For p∈V0 and t>0, denote Dt(p)=pDt. Let A= 1
64ζ and let δ, θ>0 be con-

stants satisfying Lemma 12.6 for this choice of A.

Let p∈D36 be such that D64(p)⊆D100. Then,

ΩP
Γ̂+,8·16(D82(p))<θ and ∥f̂∥L1(D82 (p))

<δ,
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so by Lemma 8.8, the rescaling s1/8,1/8(p
−1Γ̂) satisfies Lemma 12.6. Hence, if

γ= {z= gp(x)}

is a characteristic curve for Γ̂ that passes through p, then

∥gp−z(p)∥L∞([x(p)−8,x(p)+8]) ⩽ 64A= ζ.

Let g1 and g2 be the lower and upper bounds of Q̂, respectively. Then g1(0)∈[−3, 0]

and g2(0)∈[0, 3], so ∥g1−g1(0)∥L∞([−8,8])⩽ζ and ∥g2−g2(0)∥L∞([−8,8])⩽ζ. Therefore,

4Q̂⊆D36. If u∈4Q̂ and {z=gu(x)} is a characteristic curve, then

∥gu−z(u)∥L∞([−4,4]) ⩽ ∥gu−z(u)∥L∞([x(u)−8,x(u)+8]) ⩽ ζ.

Finally, we combine the results of this section to prove Proposition 7.2.

Proof of Proposition 7.2. By Lemmas 2.9 and 8.8, if Q is a pseudoquad of Γ and h

is a composition of a shear map, a translation, and a stretch map, then Q and Γ satisfy

Proposition 7.2 if and only if ĥ(Q)=Π(h(Q)) and h(Γ) do. So, by Remark 4.3, it suffices

to prove Proposition 7.2 for rectilinear pseudoquads of the form

(Q, [−1, 1]×{0}×[−1, 1]).

Let r be as in Corollary 12.5; we may suppose r>100. Let δ=δ(ζ), θ=θ(ζ)>0 as in

Corollary 12.7. Then we can choose R0=R0(λ, ζ)>0 and η0=η0(λ, ζ)>0 so that, if Γ is

(η0, R0)-paramonotone on rQ and P , F , and Γ̂=Γf̂ are as above, then

∥F−f∥L1(10Q) ⩽λ|Q| and ∥f̂∥L1(D100) ⩽ δ. (12.20)

Denote R=max{R0, 128} and η=min{θ/R, η0R0/R}. Since R⩾R0, ηR⩽η0R0, and

Γ is (η,R)-paramonotone on rQ, it is also (η,R)-paramonotone, so Q satisfies (12.20),

which implies part (1) of Proposition 7.2. Furthermore,

ΩP
Γ̂+,128

(D100)⩽
128

R
ΩP

Γ̂+,R
(rQ)⩽

1

128
R|Q|α(Q)−4η < θ.

Thus, Γ̂ satisfies the hypotheses of Corollary 12.7, and so Q̂ satisfies part (2) of Propo-

sition 7.2. As Q̂ is the image of Q under a shear map, part (2) of Proposition 7.2 holds

for Q as well.
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Appendix A. On the implicit dependence on p in [58]

A version of Theorem 1.3 was stated in [58] with an implicit dependence on the expo-

nent p. In this appendix, we explain how the arguments in [58] can be used to derive the

explicit dependence on p that we needed in §1.1.3.
Let (E, ∥ · ∥E) be a Banach space and fix q∈[2,∞]. The q -uniform convexity constant

of X, denoted Kq(E), is defined [6], [8] as the infimum over K∈(0,∞] such that(
∥x∥qE+

1

Kq
∥y∥qE

)1/q
⩽

(
1

2
∥x+y∥qE+

1

2
∥x−y∥qE

)1/q
for all x, y ∈E. (A.1)

Setting x=0 in (A.1) shows that necessarily K⩾1. By convexity, (A.1) always holds

when K=∞ or when q=∞ and K=1. Thus, (A.1) quantifies the extent to which the

norm ∥ · ∥E is strictly convex. An equivalent (but somewhat less convenient to work

with) formulation of this fact (see [34], [8]) is that Kq(E) is bounded above and below

by universal constant multiples of the infimum over those C>0 such that the sharpened

triangle inequality

∥u+v∥E ⩽ 2−C−q∥u−v∥qE
holds for any two unit vectors u, v∈E.

Theorem 1.3 is the special case E=R, q=2, and 1<p⩽2 of the following theorem.

Theorem A.1. For any p>1 and q⩾2, if (E, ∥ · ∥E) is a Banach space with

Kq(E)<∞,

then every smooth and compactly supported function f :H!E satisfies(ˆ ∞

0

∥Dt
vf∥

max{p,q}
Lp(H4;E)

dt

t

)1/max{p,q}

≲max{(p−1)1/q−1,Kq(E)}∥∇Hf∥Lp(H4;ℓ2p(E)),

(A.2)



foliated corona decompositions 191

where we use the (standard) notation

∇Hf
def
=(Xf,Yf)∈E×E

for the horizontal gradient.

Theorem A.1 is due to [58], except that it is stated there with a factor that depends

in an unspecified way on p, q, and E in place of the quantity

max

{
Kq(E),

1

(p−1)1−1/q

}
.

This is because the proof of [58] uses the vector-valued Littlewood–Paley–Stein inequality

of [70], for which explicit bounds on the relevant constants were not available in the

literature at the time when [58] was written. However, such bounds were subsequently

derived in [43] (using in part an argument of [58] itself), so we will next briefly explain

how to obtain Theorem A.1 by incorporating this input into [58].

Let {ht}t>0 and {pt}t>0 be the heat and Poisson kernels on R, respectively, i.e.,

ht(s)
def
=

1

2
√
πt
e−s

2/4t and pt(s)
def
=

t

π(s2+t2)
for all s> 0.

It will be convenient to denote the time derivatives ∂ht/∂t and ∂pt/∂t by ḣt and ṗt,

respectively, i.e.,

ḣt(s)=
s2−2t

8
√
πt5/2

e−s
2/4t and ṗt(s)=

s2−t2

π(s2+t2)2
for all s> 0.

By a straightforward evaluation of the integral in (A.3) below, one checks the following

standard identity (semigroup subordination; see e.g. [14, §4.4]):

ṗt(s)=
1√
π

ˆ ∞

0

e−t
2/4u

√
u

ḣu(s) du for all s> 0. (A.3)

Fix ϕ∈Lq(R;E) and p⩾1. The following bound holds for any t>0:

∥tṗt∗ϕ∥pLq(R,E) =2p
∥∥∥∥ˆ ∞

0

te−t
2/4u

2u
√
πu

uḣu∗ϕdu
∥∥∥∥p
Lq(R,E)

⩽
2p−1t√
π

ˆ ∞

0

u−3/2e−t
2/4u∥uḣu∗ϕ∥pLq(R;E) du.

(A.4)

The first step of (A.4) is the representation (A.3), and the second step of (A.4) is Jensen’s

inequality, because ˆ ∞

0

t exp
te−t

2/4u

2u
√
πu

du=1.
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Integration of (A.4) gives

ˆ ∞

0

∥tṗt∗ϕ∥pLq(R;E)

dt

t
⩽

2p−1

√
π

ˆ ∞

0

(ˆ ∞

0

e−t
2/4u dt

)
u−3/2∥uḣu∗ϕ∥pLq(R;E) du

=2p−1

ˆ ∞

0

∥uḣu∗ϕ∥pLq(R;E)

du

u
.

(A.5)

Now, if q⩾2 and Kq(E)<∞, then it was proved(8) in [43] that(ˆ ∞

0

∥tḣt∗ϕ∥qLq(R;E)

dt

t

)1/q
≲Kq(E)∥ϕ∥Lq(R;E). (A.6)

In combination with (A.5), we therefore see that also(ˆ ∞

0

∥tṗt∗ϕ∥qLq(R;E)

dt

t

)1/q
≲Kq(E)∥ϕ∥Lq(R;E). (A.7)

Remark A.2. The reason why we passed from the vector-valued Littlewood–Paley–

Stein inequality (A.6) for the heat semigroup to its counterpart (A.7) for the Poisson

semigroup is that at the time when [57] was written this was known (with Kq(E) in (A.7)

replaced by an unspecified constant factor) for the Poisson semigroup due to [70], while

the validity of (A.6) was an open question. For this reason, [57] worked with the Poisson

semigroup, so it is simplest to use (A.7) when we refer below to steps in [57]. However,

one could repeat the reasoning of [57] mutatis mutandis while working directly with the

heat semigroup and using (A.6). The above subordination argument is standard, but we

included the quick derivation to verify that the constants are universal.

(8) Paper [43] states (A.6) with the factor Kq(E) in the right-hand side replaced by a parameter
mq(E) that is called [99] the martingale cotype-q constant of E. There is no need to state the definition

of mq(E) here, because it will not have a role in the ensuing discussion; it suffices to recall that, by the

martingale inequality of [97], we have
mq(E)≲Kq(E).

So, (A.5) is a formal consequence of [43], but the above formulation is essentially (namely, up to O(1)-

renorming) equivalent to that of [43]. For the reverse direction, use the fact that there is a norm ||| · |||
on E that satisfies ∥x∥E≍|||x||| for all x∈E and such that

Kq(E, ||| · |||)≲mq(E).

This renorming statement is essentially due to the deep work [97], except that it is derived in [97] with

the weaker property
∥x∥E ⩽ |||x|||≲mq(E)∥x∥E .

The existence of such a norm which is O(1)-equivalent to ∥ · ∥E follows by combining [64] and [76],

though we checked (details omitted) that one could adapt the reasoning in [97], so as to obtain a proof
of this fact which avoids any reference to the non-linear considerations of [64] and [76]. Alternatively,

Gilles Pisier has recently showed us (private communication) a derivation of this O(1)-renorming result
from the statement of [97, Theorem 3.1].
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The case p=q of Theorem A.1 follows by substituting (A.7) into [58]. Specifically,

we are asserting that the implicit constant in [58, Theorem 2.1] is O(Kq(E)) when p=q.

To check this, note that in the proof of [58, Theorem 2.1] the only loss of a factor that

is not a universal constant occurs in [58, equation (18)], which is an instantiation of [58,

inequality (15)]; the latter inequality is the same as (A.7) when p=q, except that the

constant factor in the right-hand side is now specified to be O(Kq(E)).

The case p>q of Theorem A.1 follows from the case p=q. When p>q, we have

Kq(E)⩾Kp(E) (for justification of this monotonicity, see [8] or [78, §6.2]) and

(p−1)1−1/q ⩽ (p−1)1−1/p

(since p>q⩾2), so the constant on the right-hand side of (A.2) increases as q decreases.

We thus suppose from now that 1<p<q.

ForM>1, let βM :H![0, 1] be a smooth bump function that is O(1)-Lipschitz (with

respect to the Carnot–Carathéodory metric d), satisfies βM (h)=1 for all h∈BM , and has

supp(βM )⊆BM+1.

For a smooth compactly supported f :H!E, consider FM :H!Lp(H4;E) given by

FM (h)(g)
def
= βM (h)f(gh) for all g, h∈H. (A.8)

We have (q−1)1/q−1⩽1⩽Kq(E), so the case p=q of Theorem A.1 with E replaced

by Lp(H4;E) gives(ˆ ∞

0

∥Dt
vFM∥qLq(H4;Lp(H4;E))

dt

t

)1/q
≲Kq(Lp(H4;E))∥∇HFM∥Lq(H4;ℓ2q(Lp(H4;E)))

≲max{(p−1)1/q−1,Kq(E)}∥∇HFM∥Lq(H4;ℓ2q(Lp(H4;E))),

(A.9)

where the last step uses the fact that, by [83, inequality (4.4)],(9) we have

Kq(Lp(H4;E))≲max{(p−1)1/q−1,Kq(E)}. (A.10)

To bound the final term in (A.9) from above, note that by the left invariance of ∇H,

∇HFM (h)(g)= (XβM (h)f(gh),YβM (h)f(gh))+βM (h)∇Hf(gh).

Hence, for all h∈H,

∥∇HFM (h)∥ℓ2q(Lp(H4;E))

≲ ∥f∥L∞(H4;E)1BM+1(0)\BM (0)(h)+∥∇Hf∥Lp(H4;E)1BM+1(0)(h).

(9) Formally, [83, inequality (4.4)] is the dual of (A.10); see [8, Lemma 5] for the relevant duality.
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So,

∥∇HFM∥Lq(H4;ℓ2q(Lp(H4;E))) ≲M3/q∥f∥L∞(H4;E)+M
4/q∥∇Hf∥Lp(H4;E). (A.11)

In order to bound the left-hand side of (A.9) from below, note that, by (2.6), if

0<t< 1
16M

2 and h∈BM−4
√
t(0), then hZ

t∈BM , and therefore β(h)=β(hZt)=1. Hence,

∥Dt
vFM (h)∥Lp(H4;E) = ∥Dt

vf∥Lp(H4;E) for all h∈BM−4
√
t(0).

Consequently,

∥Dt
vFM∥Lq(H4;Lp(H4;E)) ⩾H4(BM−4

√
t(0))

1/q∥Dt
vf∥Lp(H4;E)

≍ (M−4
√
t)4/q∥Dt

vf∥Lp(H4;E).

Hence, for every 0<T< 1
4M , we have

(ˆ T 2

0

∥Dt
vFM∥qLq(H4;Lp(H4;E))

dt

t

)1/q
≳ (M−4T )4/q

(ˆ T 2

0

∥Dt
vf∥

q
Lp(H4;E)

dt

t

)1/q
.

Combining this with (A.9) and (A.11), letting M!∞ and then T!∞, gives Theo-

rem A.1.

Remark A.3. In the setting of the proof of Theorem A.1, the Hardy–Littlewood–

Stein (Poisson semigroup) G-function of a function ϕ∈Lq(R;E) is the function

Gq(ϕ):R−!R

that is defined by

Gq(ϕ)(x)
def
=

(ˆ ∞

0

∥tṗt∗ϕ(x)∥qE
dt

t

)1/q
for all x∈E. (A.12)

By [70], if Kq(E)<∞, then for every 1<p<∞,

∥Gq(ϕ)∥Lp(R) ≲p,q,Kq(E) ∥ϕ∥Lp(R;E). (A.13)

If the implicit constant in (A.13) were

O

(
max

{
Kq(E),

1

(p−1)1−1/q

})
for 1<p<q (this is so when p⩾q, by (A.7) and Jensen’s inequality), then Theorem A.1

would follow by direct substitution into [58] without the need to consider the above
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averaging argument using the auxiliary function FM in (A.8). However, it seems that

the interpolation argument [70] does not yield this dependence. Determining the optimal

dependence on p, q, and Kq(E) in the G-function bound (A.13) remains an interesting

open question.

The same question for the heat semigroup variant of (A.13), i.e., with ṗt replaced

by ḣt in (A.12), is a bigger mystery. That such an inequality for the vector-valued heat

semigroup Hardy–Littlewood–Stein G-function holds with any dependence on p, q, and

Kq(E) was established recently in [107], but as p!1+ the dependence of [107] seems sub-

optimal. Obtaining the analogue of (A.6) for the n-dimensional heat semigroup (in which

case ϕ is a mapping from Rn to E) would be very interesting. In [107], this is achieved

with a constant that is independent of n but has a much worse dependence on Kq(E).

A substitution of Theorem A.1 into the reasoning of [58] yields the following restate-

ment of the non-embedding result of [58], with explicit dependence on Kq(E).

Theorem A.4. For q⩾2, if E is a Banach space with Kq(E)<∞, then for every

n∈N, the word-ball in H of radius n has E-distortion

cE(Bn)≳
(log n)1/q

Kq(E)
.

Since by [8], the Schatten–von Neumann trace class Sr has K2(Sr)=
√
r−1 when

1<r⩽2, Theorem A.4 implies the lower bound on cSr (Bn) that we used in §1.1.3 (recall

that the behavior as r!1+ was important for that application). This also shows that

the following question about a possible strengthening of Theorem A.4 would imply the

distortion lower bound (1.24) that we asked about in §1.1.3. In fact, a positive answer

to this question would be a remarkable geometric result, which, as we explained in

§1.1.3, would have strong implications; at present, we do not have sufficient evidence to

conjecture that the answer is indeed positive in such great generality.

Question A.5. Can the conclusion of Theorem A.4 be improved to

cE(Bn)≳
(

log n

Kq(E)

)1/q
?

Added in proof

We recently learned from Q. Xu that he resolved many of the questions on the growth-

rate of the optimal constants in vector-valued Littlewood–Paley-–Stein inequalities that

we raised in Remark A.3. This will appear in Xu’s forthcoming work [108]. See also his

forthcoming work [109] for the evaluation of the order of magnitude of the constants in

the classical (real-valued) Littlewood–Paley inequalities.
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