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1. Introduction

A family of surfaces M; CR? moves by mean-curvature flow if the normal velocity at each

point is given by the mean-curvature vector,(!)
(D) =H(z), x€M;. (1.1)

Given any smooth initial surface M CR3, say closed and embedded, by classical
theory [Hul], [HP] there exists a unique smooth solution M={M;},c[o,r) With initial
condition M defined on a maximal time interval [0,7). The first singular time T <oo is

characterized by the fact that the curvature blows up, i.e.

lim max |A|(x,t) = oo,

t /T €M,
where |A| denotes the norm of the second fundamental form. The main task in the study
of mean-curvature flow, both from the theoretical point of view and also in order to
facilitate the most striking applications, is then to understand the structure of singular-
ities, to find ways to continue the flow beyond the first singular time, and to analyze its
properties.

In the mean-convex case, i.e. when the mean-curvature vector at every point on
the surface points inwards, there is a highly developed theory. On the one hand, the
flow can be continued smoothly as a surgical solution as constructed by Brendle-Huisken
[BH] and Haslhofer—Kleiner [HK2]. This in turn facilitates topological and geometric

(1) The equation of course also makes sense in higher dimension and co-dimension and in other
ambient manifolds. In this paper, however, we focus on evolving surfaces in R3.
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applications; see e.g. [BHH], [HKe]. On the other hand, the flow can also be continued
uniquely as a weak (generalized) solution. Weak solutions can be described either as level
set solutions as in Evans—Spruck [ES] and Chen—-Giga—Goto [CGG], or in the framework
of geometric measure theory using Brakke solutions [Bra].(?) By the deep structure
theory of White [W3], [W5] (see also [HK1]) the space-time dimension of the singular
set is at most one, and all blowup limits are smooth and convex. In fact, by a result
of Colding—Minicozzi [CM3], the space-time singular set is contained in finitely many
compact embedded Lipschitz curves together with a countable set of point singularities.
Moreover, the recent work of Brendle-Choi [BC] and Angenent—Daskalopoulos—Sesum
[ADS2] provides a short list of all potential blowup limits (singularity models) in the
flow of mean-convex surfaces: the round shrinking sphere, the round shrinking cylinder,
the translating bowl soliton [AW], and the ancient ovals [W3], [HH].

In stark contrast to the above, when the initial surface is not mean convex, the
theory is much more rudimentary. This is, to some extent, an unavoidable feature of the
equation. In particular, as already pointed out in the pioneering work of Brakke [Bra] and
Evans—Spruck [ES], there is the phenomenon of non-uniqueness or fattening. Angenent—
Imanen—Chopp [AIC] and Ilmanen—-White [W4] gave examples of smooth embedded
surfaces M CR? whose level set flow F}(M) develops a non-empty interior at some positive
time. In particular, F;(M) does not look at all like a 2-dimensional evolving surface.
These examples also illustrate, in a striking way, the non-uniqueness of (enhanced) Brakke
flows.

In the present paper, we make some progress towards decreasing the gap between
the theory in the mean-convex case and the theory in the general case without curvature
assumptions. Most importantly, in Theorem 1.7 (see also Theorem 1.6), we prove the
mean-convex neighborhood conjecture. As an application, we prove the non-fattening
conjecture for mean-curvature flow through cylindrical or spherical singularities (see The-
orem 1.9). In particular, assuming Ilmanen’s multiplicity-1 conjecture, we conclude that
for embedded 2-spheres the mean-curvature flow through singularities is well-posed (see
Theorem 1.12). The mean-convex neighborhood conjecture is in turn a consequence of
a general classification result (Theorem 1.2) for ancient low-entropy flows that arise as
potential limit flows near spherical or cylindrical singularities.

The rest of this introduction is organized as follows. In §1.1, we describe our general
classification result for ancient low-entropy flows. In §1.2, we state our results establishing
the mean-convex neighborhood conjecture and the uniqueness conjectures. In §1.3, we

give an outline of the proofs.

(?) In the mean-convex setting these notions of weak solutions are essentially equivalent [W3],
[MS].
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1.1. Classification of ancient low-entropy flows

Let M CR? be a surface. The entropy, introduced by Colding—Minicozzi [CM1], is defined

as the supremum of the Gaussian area over all centers and all scales, namely

1 )

Ent[M] = —— el /AN g A (). 1.2

nt[M] félnfs y P (z) (1.2)
A>0

The entropy measures, in a certain sense, the complexity of the surface. For example,

the values for a plane, sphere and cylinder are
9 9 4 1 27
Ent[R“]=1, Ent[S*]=-~1.47, and Ent[S'xR]=4/— ~1.52.
e e

If M={M,}+cs evolves by mean-curvature flow, then ¢—Ent[M;] is non-increasing by

Husiken’s monotonicity formula [Hu2], and hence

Ent[M]:=supEnt[M;]= lim Ent[M].
tel t—inf (1)
For example, the entropy of a flat plane P, a round shrinking sphere S, a round shrinking

cylinder Z, a translating bowl soliton B, and an ancient oval O, are given by
4
Ent[P]=1, Ent[S]=-~1.47
e

Ent[Z] = Ent[B] =Ent[O] = \/?N 1.52.

By a beautiful classification result of Bernstein-Wang [BW] any self-similarly shrink-
ing mean-curvature flow in R? with entropy at most \/m is either a flat plane, round
shrinking sphere, or round shrinking cylinder. By a recent uniqueness result of Her-
shkovits [He] any self-similarly translating flow in R® with entropy at most \/m is a
bowl soliton. These results in turn build on a pioneering paper by Colding—Ilmanen—
Minicozzi-White [CIMW] that was the genesis of the study of low-entropy flows.

For the study of singularities, it is important that these concepts are also available in
the non-smooth setting. Singular surfaces in Euclidean space are described most easily by
2-rectifiable Radon measures, which generalize the area measure of smooth 2-dimensional
surfaces; see e.g. [Si], [I1]. Recall that a 2-rectifiable Radon measure x in R3 is a Radon
measure that has a 2-dimensional tangent plane of positive multiplicity at almost every

point. The entropy of u is defined as

1 2
Ent[u] = sup /—eﬂ“*y‘ I dp(z).
v yers A>0.) 4TA (=)
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As in [Bral, [I1] we consider Brakke flows M={p;}tc; that are given by a family of
Radon measures in R3 that is 2-rectifiable for almost all times and satisfies

d
G [odu< [(or4 (Vo) Hydu (13)

for all non-negative test functions ¢; see §2.1 for details. The class of all Brakke flows, as
originally defined in [Bra], is too large for most practical purposes. For example, by the
very nature of the definition via the inequality (1.3), Brakke flows can suddenly vanish
without any cause. Also, given that the initial surface is embedded, it is useful to keep
track of its inside and outside. For these and other reasons the definition of Brakke flows
has been refined over the years by Ilmanen [I1], White [W6], [W7], and their collaborators.
For our purpose it is most appropriate to consider only Brakke flows that are integral
(which prevents non-integer multiplicity ), unit-regular (which to a certain extent prevents
sudden vanishing), and cyclic (which partly keeps track of the inside and outside); see
§2.1 for definitions and details. In particular, all Brakke flows starting at any closed
embedded surface M CR? that are constructed via Ilmanen’s elliptic regularization [I1]
are integral, unit regular, and cyclic, and all these properties are preserved under passing
to limits of sequences of Brakke flows. The entropy of a Brakke flow is defined by
Ent[M)] =sup Ent[x,].
tel

Finally, let us recall that an ancient solution of a parabolic PDE, such as the mean-
curvature flow, is a solution that is defined for all t€(—o00,T), where T'<co. Ancient
solutions are on the one hand some of the most interesting solutions by themselves, and
on the other hand crucial for the analysis of singularities. In particular, every blowup
limit is an ancient solution. A systematic study of ancient solutions of geometric flows
has been pursued over the last decade by Daskalopoulos, Sesum, and their collaborators;
see [D] for a nice overview of the main problems and key results.

We consider the following class of Brakke flows.

Definition 1.1. (Ancient low-entropy flows) The class of ancient low-entropy flows

consists of all ancient, unit-regular, cyclic, integral Brakke flows

M ={ it }te(— o0, (M)]

Ent[M] <4/ 21,
e

where T (M) < oo denotes the extinction time.

in R? with

Our main theorem provides a complete classification.
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THEOREM 1.2. (Classification of ancient low-entropy flows) Any ancient low-entropy
flow in R3 is either

e q flat plane, or

a round shrinking sphere, or

a round shrinking cylinder, or

a translating bowl soliton, or

e an ancient oval.

To explain the scope of our main classification result (Theorem 1.2), let us start by
pointing out that the assumptions are essentially sharp.(®) If one removes the assumption
of being unit-regular the flow can suddenly disappear, e.g. one could have a solution that
looks like a translating bowl soliton until some time, but is not eternal. If one removes
the assumption of being cyclic, then one can have a static or quasistatic configuration of
three half-planes meeting at 120-degree angles, which have entropy % If one increases
the entropy too much, then one can get other ancient solutions, e.g. the self-similarly
shrinking Angenent torus [An2] has entropy bigger than W but less than 2. Finally,
removing the integer multipicity assumption would give rise to a zoo of solutions, in
particular the infinite collection of shrinkers constructed by Kapouleas—Kleene—Moller
and Nguyen [KKM], [N].

Let us discuss some of the most important prior classification results for solutions of
the mean-curvature flow of surfaces. Wang proved uniqueness of the bowl soliton among
entire convex translating graphs [WXJ]. This was improved recently by Spruck—Xiao
[SX], who showed that every entire mean-convex translating graph is in fact convex.(*)
Without assuming that the translator is graphical, Martin, Savas-Halilaj, and Smoczyk
proved a uniqueness result for the bowl soliton under rather strong asymptotic assump-
tions [MSHS]. This was improved by Haslhofer [Has], who showed uniqueness of the
bowl among translators that are convex and non-collapsed, and more recently by Her-
shkovits [He|, who proved uniqueness among translators, not necessarily convex, that
are asymptotic to a cylinder. Most closely related to the present article are the recent
result by Brendle-Choi [BC], which proves uniqueness of the bowl among non-compact
ancient solutions that are non-collapsed and convex, and the recent result by Angenent—
Daskalopoulos—Sesum [ADS2], which proves uniqueness of the ancient ovals among com-
pact ancient solutions that are non-collapsed and convex. Other highly important results
that play a direct role in the present paper are the classification of low-entropy shrinkers

by Bernstein-Wang [BW], and the classification of genus-zero shrinkers by Brendle [Bre2].

(3) The entropy assumption can be relaxed; see Corollary 1.4 below.
(%) In the setting of non-collapsed solutions it was known before that every ancient non-collapsed
mean-convex solution of the mean-curvature flow is in fact convex [HK1].



ANCIENT LOW-ENTROPY FLOWS 223

All prior classification results assume either convexity or self-similarity (or both),
and the story is similar for other equations such as the Ricci flow; see e.g. [Brel]. Our
classification result seems to be the first one which assumes neither self-similarity nor

convexity. To wit, convexity is not an assumption but a consequence:
COROLLARY 1.3. (Convexity) Any ancient low-entropy flow in R3 is convez.

More generally, a key feature of our classification theorem (Theorem 1.2) is that
besides the entropy bound we assume almost nothing, essentially only that the solution
is ancient. In particular, a priori, an ancient low-entropy flow could be quite singular
and could have pathological behaviour caused by spatial infinity, e.g. there could be
topological changes caused by “neckpinches at infinity”, or there could be “contracting
cusps” (see e.g. [T]), or the flow could “escape to spatial infinity” (see e.g. [IW]).

The entropy assumption in our main classification result (Theorem 1.2) can be re-

laxed. To state the sharp result, let
T :=inf{Ent[S]: S is a smooth embedded shrinker in R3,
which is not a plane, sphere of cylinder}.
By Bernstein-Wang [BW], the difference §:=Y—1/27/e>0 is strictly positive. Theo-
rem 1.2 immediately implies the following corollary.

COROLLARY 1.4. (Sharp ancient low-entropy classification) Any ancient, cyclic,
unit-regqular, integral Brakke flow M in R3 with

Ent(M]<T

1s either a flat plane, a round shrinking sphere, a round shrinking cylinder, a translating

bowl soliton, or an ancient oval.

The proof of Theorem 1.2 involves, not surprisingly, many steps. For an overview of

the main steps and ideas, please see §1.3.

1.2. Mean-convex neighborhoods and uniqueness

The main conjecture towards reducing the gap between the theory in the mean-convex

case and the general case, is the following.

Congecture 1.5. (Mean-convex neighborhood conjecture(®)) If the mean-curvature
flow of closed embedded surfaces has a spherical or cylindrical singularity at (x,t), then

there is a space-time neighborhood of (z,t) in which the flow is mean convex.

(%) See e.g. Problem 4 on Ilmanen’s problem list [4], Conjecture 10.2 in the survey of Colding—
Minicozzi—Pedersen [CMP], and the paragraph between Theorem 3.5 and Remark 3.6 in Hershkovits—
White [HW].
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Let us explain some background. Let M={M;} be a Brakke flow starting at a
closed embedded surface M CR3, say constructed via Ilmanen’s elliptic regularization [I1].
Given any space-time point X =(z,t)eM and any factor A>0, we denote by M x » the
Brakke flow which is obtained from M by translating X to the space-time origin and
parabolically rescaling by A~!. By Huisken’s monotonicity formula [Hu2] and Ilmanen’s
compactness theorem [I1], for any sequence A; —0, one can find a subsequence \;; such
that Mx \, converges in the sense of Brakke flows to a limit M x, called a tangent
flow at X, and any tangent flow is backwardly self-similar. The only backwardly self-
similar solutions of positive mean curvature are the round shrinking sphere and the round
shrinking cylinder [Hu3], [W5], [CM1]. One precise formulation of the conjecture says
that if some (and thus every [CIM]) tangent flow My is either a round shrinking sphere
or a round shrinking cylinder of multiplicity 1, then there exists some e=¢(X)>0 such
that the flow M is, possibly after flipping the orientation, mean convex in the parabolic
ball

P(X,e)={(a/,t') eER*xR: |2’ —x|<e and t—&? <t' <t}.

The major challenge in proving the mean-convex neighborhood conjecture is to up-
grade the infinitesimal information about the mean-convex tangent flow to a conclusion
at some macroscopic scale € >0. Specifically, there are certain singularities that are not
fully captured by just looking at the tangent flows. Indeed, it has been clear since the
work of White [W3], [W5], and reinforced in the work of Perelman [P1], [P2], Bamler—
Kleiner [BK] and Hershkovits—White [HW], that in order to fully capture all singularities
and regions of high curvature one needs to understand all limit flows and not just all
tangent flows. Given X €M, a limit flow is any subsequential limit of M, »,, where
X;—X and \;—0. For example, in the case of the degenerate neckpinch [AV], one needs
to carefully choose a varying sequence of space-time points X; that “follow the tip”, in
order to see the translating bowl soliton in the limit; see [Ham]. Potentially there could
be very complex limit flows that are not self-similar; see e.g. [14, Problem 6] or [W5,
Conjecture 3.

The mean-convex neighborhood conjecture (Conjecture 1.5) has been known to be
true in some important special cases. In the rotationally symmetric setting this is by the
attracting axis theorem of Altschuler—Angenent—Giga [AAG]. More recently, Colding—
Ilmanen—Minicozzi [CIM] proved the conjecture in the case of self-similarly shrinking limit
flows, and Hershkovits [He| proved the conjecture in the case of self-similarly translating
limit flows. Without assuming self-similarity, in a very interesting recent paper based on
hard PDE techniques, Gang Zhou [G] verified the mean-convex neighborhood conjecture
in certain regimes. However, these regimes exclude by assumption some of the main

challenges of the conjecture, e.g. the potential scenario of a degenerate neckpinch with a
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non-convex cap.
In Theorem 1.7, we establish the mean-convex neighborhood conjecture for the
mean-curvature flow of surfaces in R? at all times.(°) Since it is somewhat easier to

state, let us first give the result at the first singular time.

THEOREM 1.6. (Mean-convex neighborhoods at the first singular time) Let

M={M;}iep,1)

be a mean-curvature flow of closed embedded surfaces in R>, where T is the first singular
time. If some tangent flow at X =(x,T) is a sphere or cylinder with multilicity one, then
there exists an e=e(X)>0 such that, possibly after flipping the orientation, the flow M
is mean convex in the parabolic ball P(X,e). Moreover, any limit flow at X is either a

round shrinking sphere, a round shrinking cylinder, or a translating bowl soliton.(")

Theorem 1.6 follows, via a short argument by contradiction, from our classification
of ancient low-entropy flows (Theorem 1.2).

Before stating the solution of the mean-convex neighborhoods conjecture at subse-
quent singularities, let us explain better what it actually means to continue the mean-
curvature flow through singularities. We start by recalling some facts that are explained
in more detail in [[3], [HW]. For any closed set K CR3, its level set flow F;(K) is the
maximal family of closed sets starting at K that satisfies the avoidance principle. Now,
given any closed embedded surface M CRR? there are at least three quite reasonable ways
to evolve it through singularities, namely the level set flow Fy(M), the outer flow M;
and the inner flow M. The latter two are defined as follows. Let K be the compact
domain bounded by M, and let K’ ::W. Denote the corresponding level set flows by

K;=F,(K) and K[=F(K').
Let K and K’ be their space-time tracks, namely
K={(z,t) ER*xR, : 2 € K},
K'={(z,t) eR*xR, :x € K/}
The outer flow and inner flow are then defined by
M; ={zxeR?: (z,t) €K},
M| ={zecR?: (z,t)c0K'}.

(6) Of course our results carry over immediately to other ambient manifolds.

(7) Tt is easy to see that ancient ovals cannot arise as limit flows at the first singular time. It is
unknown whether or not ancient ovals can arise as limit flows at subsequent singularities. This is related
to potential accumulations of neckpinches; see e.g. [CM4].
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As long as the evolution is smooth, all three flows are of course the same.

Let T be the first singular time, and for x€ M7 and A>0, denote by Kx » and IC’X’/\
the flows that are obained from K and K', respectively, by shifting X=(z,T) to the
origin, and parabolically rescaling by A~!. Observe that the assumption of Theorem 1.6
is equivalent to the assumption that for A—0 either Kx » or IC’X’ , converges smoothly
with multiplicity 1 to a round shrinking solid cylinder or round shrinking solid ball. Also

observe that the conclusion of Theorem 1.6 is equivalent to the assertion that either
Ki,NB(x,e) C Ky, \M;, or Kf; NB(xz,e) C Kél \Mt/1

for all T—e?<ty<ty<T. This reformulation has the advantage that it generalizes not
just beyond the first singular time, but even beyond any potential fattening-time (see

equation (1.4) below). We prove the following.

THEOREM 1.7. (Mean-convex neighborhoods at all times) Assume that X =(z,t) is
a space-time point such that Kx x converges for A—0 smoothly with multiplicity 1 to
a round shrinking solid cylinder or a round shrinking solid ball. Then, there exists an
e=¢e(X)>0 such that
K;,NB(x,e) C Ky, \ My,

for all T—e%<t;<ty<T+e?. Similarly, if IC'X7/\ converges for A—0 smoothly with mul-
tiplicity 1 to a round shrinking solid cylinder or a round shrinking solid ball, then for
some e=e(X)>0 we have

K;,NB(z,e) C K{ \M],

for all T—e?<ty<to<T+e2. Furthermore, in both cases, any limit flow at X is either
a round shrinking sphere, a round shrinking cylinder, a translating bowl soliton, or an

ancient oval.

Note that Theorem 1.7 establishes the strongest version of the mean-convex neigh-
borhood conjecture, where the parabolic neighborhood is backward and forward in time.
The proof of Theorem 1.7 is again based on our classification of ancient low-entropy flows
(Theorem 1.2). During the course of the proof, we also construct a unit-regular, cyclic,
integral Brakke flow whose support is M; or M/, respectively, and which has density less
than 2 in P(X,d), for some 6>0. This highlights another advantage of our formulation of
Theorem 1.7: its applicability even without assuming a priori that a Brakke flow starting
from M has multiplicity 1 almost everywhere.

Let us now discuss the applications concerning uniqueness of mean-curvature flow
through singularities. We recall from Ilmanen—White [W4] that there are examples of

singularities with curvature of mixed signs, which cause non-uniqueness, i.e. fattening.
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The main conjecture regarding uniqueness at cylindrical or spherical singularities can be

phrased as follows.

Conjecture 1.8. (Non-fattening conjecture(®)) If all singularities of the level set flow

are either cylindrical or spherical then the level set flow does not fatten.

We recall that the fattening time is defined by
Ttay =inf{t > 0: F;(M) has non-empty interior}, (1.4)
and the discrepancy time is defined by
Taisc = inf{t >0: My, M/, and F;(M) are not all equal},
see [HW]. It follows directly from the definitions that
Tat 2 Taise-

It is unknown whether or not Tt.s=Tgisc holds; see [HW, Example 2.5]. In any case, if
one proves the (potentially) stronger result that there is no discrepancy, then one obtains

non-fattening as a consequence. We prove:

THEOREM 1.9. (Non-fattening) Suppose that 0<T <T4;sc, and suppose that all the
backward singularities of the outer flow {M;} at time T are cylindrical or spherical. Then
T <Tyisc. In particular, the level set flow does not fatten as long as all singularities are

cylindrical or spherical.

Theorem 1.9 follows immediately by combining the main theorem of Hershkovits—
White [HW], which establishes non-discrepancy assuming the existence of mean-convex
neighborhoods around all singularities a priori, and Theorem 1.7, which proves the exis-
tence of such mean-convex neighborhoods.

Our final application in this paper concerns the well-posedness problem for the mean-
curvature flow of embedded 2-spheres through singularities. The main conjecture in this

regard is the following.

Congjecture 1.10. (Evolution of embedded 2-spheres(?)) The mean-curvature flow of

embedded 2-spheres through singularities is unique.

(®) The conjecture has been indicated first in White’s ICM lecture [W4]; see also the discussion
in the recent work of Hershkovits—White [HW] (indeed, the non-fattening conjecture is a combination
of [HW, Conjecture 1.2] and the “very interesting open problem” described in the paragraph between
Theorem 3.5 and Remark 3.6 in [HW]).

(°) See e.g. White’s ICM lecture [W4], and the introduction of Bamler—Kleiner [BK].
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One reason why Conjecture 1.10 is highly intriguing, is that the mean-curvature
flow of embedded 2-spheres can be viewed as (somewhat more approachable) cousin
of the Ricci flow of 4-spheres, whose analysis seems to be out of reach with current
technology.(1?) A solution of Conjecture 1.10 would also facilitate several topological
and geometric applications. E.g. there is a proposal of Yau for a flow proof of the
Smale conjecture [R] (see also the work of Bamler—Kleiner [BK] and Buzano-Haslhofer—
Hershkovits [BHH]). Moreover, a well-posed flow of embedded-2 spheres would also be
useful for the Lusternik-Schnirelman problem of finding four embedded minimal 2-spheres
in 3-spheres equipped with an arbitrary Riemannian metric (the first such minimal 2-
spheres has been found by Simon-Smith [Sm] in 1983, and a second one has been found
recently by Haslhofer-Ketover [HKe| using combined efforts of mean-curvature flow and
min-max theory).

Some very important recent progress towards Conjecture 1.10 has been made by
Brendle [Bre2], who proved that the only non-trivial shrinkers of genus zero are the round
shrinking sphere and the round shrinking cylinder. Combining Brendle’s uniqueness
result with our solution of the non-fattening conjecture (Theorem 1.9), we can prove

Conjecture 1.10 modulo (a special case of) Ilmanen’s multiplicity-1 conjecture.

Conjecture 1.11. (Multiplicity-1 conjecture for 2-spheres(!!)) For mean-curvature

flow starting at any closed embedded 2-sphere M ,(1?) all tangent flows have multiplicity 1.

THEOREM 1.12. (Evolution of embedded 2-spheres) Assuming the multiplicity-1
conjecture (Conjecture 1.11), mean-curvature flow of embedded 2-spheres through sin-

gularities is unique.

Let us conclude this section by sketching a heuristic picture for the mean-curvature
flow of embedded surfaces of higher genus: By [lmanen’s strict genus-reduction conjecture
[I4, Conjecture 13] one expects only a controlled number (bounded by the genus of the
initial surface) of singularities modelled on asymptotically conical shrinkers of higher

genus; see in particular the important work of Brendle [Bre2] and Wang [WL2]. At these

(%) When comparing mean-curvature flow and Ricci flow one has to multiply the dimension by 2.
For example, convergence to a round limit holds for curve-shortening flow and 2-dimensional Ricci flow,
respectively. Also, Huisken’s monotonicity formula combined with Gauss—Bonnet gives local bounds for
the L2-norm of the second fundamental form, see [12], which is scale invariant in dimension 2, while on
the other hand Perelman’s monotonicity formula combined with Gauss—Bonnet gives local bounds for
the L2-norm of the Riemann tensor, see [HM], which is scale invariant in dimension 4.

(*1) Multiplicity-1 was called an hypothesis in Brakke’s pioneering monograph [Bra], and promoted
to a conjecture in Ilmanen’s paper [I2], where he proved that for surfaces one can always find smooth
tangent flows; see also the approach by Ecker [E].

(2) To be concrete, we mean by that a unit-regular, cyclic, integral Brakke flow, whose support
is the outer flow, and whose initial data is H™|M. A posteriori, this will turn out to imply that the
(non-fattening) matching motion has only multiplicity-1 tangents.
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singularities the evolution can be non-unique, and one has to decide how to flow out
of the conical singularities, either by hand or via stability or via a stochastic selection
principle. Our solution of the non-fattening conjecture (Theorem 1.9) suggests that the

evolution is determined completely by these finitely many choices.

1.3. Outline of the proofs

For the outline of the proof of the classification theorem for ancient low-entropy flows
(Theorem 1.2), let M be an ancient low-entropy flow (see Definition 1.1) which is not
a flat plane, round shrinking sphere, or round shrinking cylinder. The task is to prove
that M is either a translating bowl soliton or an ancient oval.

In §3, we start by establishing several coarse properties:

First, we prove a partial regularity result (Theorem 3.2), which shows that M is
smooth except for at most countably many spherical singularities. This is mostly based
on ideas from Bernstein-Wang [BW], and uses the assumptions that our Brakke flow is
integral, unit-regular and cyclic.

Next, given any space-time point X =(z,t)€M we consider the flow on backwards
parabolic annuli around X with radii rj:2j. We prove a rough neck theorem (Theo-
rem 3.5), which shows that there exists a scale Z(X)=27(X) the cylindrical scale, at
which the flow starts to look e-cylindrical, and a controlled number N =N (¢)<oo, such
that the flow looks e-cylindrical at all scales j>J(X)+N. The proof uses the Bernstein—
Wang classification of low-entropy shrinkers [BW], Huisken’s monotonicity formula [Hu2],
and ideas from quantitative differentiation; see e.g. [CHN].

Third, we prove the vanishing asymptotic slope theorem (Theorem 3.9), which shows
that at spatial infinity, the surfaces M; open up slower than any cone of positive angle.
The proof is based on a blowdown argument, which shows that the cylindrical scale grows
sublinearly. The result facilitates barrier arguments in later sections.

In §4, which is the longest section of the proof, we carry out a fine neck analysis.

Given any point X =(xg,to) €M, we consider the rescaled flow
MX =e™2(M_ - —1xy),

where 7=—log(to—t). The surfaces MX can be written as the graph of a function
ux (+,7) with small norm over a cylindrical domain of length p(7), where p(7)— o0 as
7——00. By Colding—Minicozzi [CM2]|, we may assume that the axis of each cylinder is

in z-direction. The goal is to derive very sharp asymptotic estimates for the function

ux (-, 7).
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To get started, in §4.1 we set up the fine neck analysis similarly as in Angenent—
Daskalopoulos—Sesum [ADSI1] and Brendle-Choi [BC]. The analysis is governed by the
linear operator

L=A—12""V+1

on the round cylinder. The L-operator already played a fundamental role in the work on
generic mean-curvature flow by Colding—Minicozzi [CM1]. It has four positive eigenfunc-
tions (1,z,sinf,cosf), three zero-eigenfunctions (2%2—2,zcosf,zsinf), and countably
many negative eigenfunctions. Using the ODE-lemma from Merle-Zaag [MZ], we see
that for 7— —o0 either the plus mode is dominant or the neutral mode is dominant.

In §4.2, we analyze the case where the plus mode is dominant. Our key result in
that section is the fine neck theorem (Theorem 4.15). It says that there exists a constant
a=a(M)#0, independent of the base point X, such that, after re-centering, we have the
asymptotic expansion

ux (z,7) =aze™?+o(e7/?), (1.5)

whenever |2/<100 and 7<log Z(X). Assuming a=1/v/2 without loss of generality, the
estimate (1.5) says that the area of the cross sections of the fine necks increases at unit
rate if one moves in positive z-direction.(!*) To prove the fine neck theorem, we first use
barrier arguments and the results from §3 to show that the cylindrical radius p(7) grows
exponentially as 7——oco. We then project onto the plus mode (after multiplying by a

cutoff function) and consider the evolution equations for the coefficients of
P ux =axz+bx cosf+cx sinf+dx.

Carefully analyzing these evolution equations and estimating all the error terms, after
re-centering, we obtain the estimate (1.5).

In §4.3, we analyze the case where the neutral mode is dominant. Our main result
in that section is the inwards quadratic neck theorem (Theorem 4.28), which gives an
inwards quadratic bending of the central neck. The result is related to the main result of
Angenent—Daskalopoulos—Sesum [ADS1], but we assume neither convexity nor rotational
symmetry. Roughly speaking, the method of our proof of the inwards quadratic neck

theorem is as follows. We consider the expansion
tx = a1 (22 —2)+agz cos f+azzsin f+o(|dl).

We show that oy and as are rapidly decaying, by using the Lojasiewicz inequality from

Colding-Minicozzi and the Brendle-Choi neck improvement theorem. We then derive a

(*3) It is an instructive exercise to check that the translating bowl soliton indeed satisfies the fine

neck estimate, where a is proportional to the reciprocal of the speed of the translating soliton.
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differential inequality for «;. Analyzing this differential inequality we show that there is
some positive constant A>0 such that for 7— —oo we have

al(T)z_A;r(l).

The proof is quite technical, since we have to estimate the optimal graphical radius,
estimate the error terms, and analyze the differential inequality, and all those steps are
interrelated. Finally, combining the inwards quadratic neck theorem with a barrier argu-
ment, we see that in the neutral mode case the solution must be compact (Corollary 4.30).

In §5, we assume that the plus mode is dominant. In §5.1, we prove a global
curvature estimate (Theorem 5.6), which says that the flow is eternal with uniformly
bounded curvature. In particular, this rules out potential pathologies caused by spatial
infinity. Roughly speaking, the idea is that by the fine neck estimate (1.5), the necks
open up at spatial infinity, and thus the curvature decays to zero at spatial infinity. The
actual proof is somewhat more involved, since we have to relate the cylindrical scale and
the regularity scale. This gives a curvature bound on compact time intervals. Together
with a local type-I estimate, which follows from a simple blowdown argument, this can
be upgraded to a global curvature bound. In particular, the solution is eternal.

In §5.2, we estimate the cap size and analyze the asymptotics. To begin with, we
consider the “height of the tip” function

Y(t):= J;1611]5[{’ z3.

This is a strictly increasing function and the infimum is attained at some point p; € M;.
In the cap size control theorem (Theorem 5.9), we prove that there is a uniform constant
C=C(M)<oo such that every point in M;\Bec(p:) lies on a fine neck. We also show
that M;\ Bc(p:) is the graph of a function r in cylindrical coordinates around the z-axis

satisfying

r(t, 2,0) = /2(z =9 (1) +o(V/z=1(t)), (1.6)

and that the height of the tip function ¢ satisfies

(1) =t+o(]t]).

Roughly speaking, the idea is that the fine neck estimate (1.5) can be integrated to get the
shape of a parabola. In order to do this, we first prove, via a blowdown argument, that
the tip does not slow down too much, which gives us enough “fast points” in space-time
around which the fine neck estimate can be applied.

In §6, we still assume that the plus mode is dominant.



232 K. CHOI, R. HASLHOFER AND O. HERSHKOVITS

First, in the fine asymptotics theorem (Theorem 6.6) we prove that, after shifting
M in space-time, the function r from (1.6) becomes rotationally symmetric at a very

fast rate, namely

|9pr| = O(1/r1%)

uniformly in time. The proof is based on the Brendle-Choi neck improvement theorem
[BC] and some careful estimates controlling how the fine necks align with each other.
In particular, the estimate uniformly bounds the motion of the tip in the zy-plane.
Combining the fine asymptotics theorem with a parabolic version of the moving plane
method, we show that the solution is rotationally symmetric (Theorem 6.14).

In §7, we complete the classification of ancient low-entropy flows.

In Theorem 7.1, we show that if the plus mode is dominant, then the solution must
be a bowl soliton. To this end, we analyze the rotationally symmetric solution from
§6. Using elementary geometric arguments, we show that the height function z: M; —R
does not have local maxima, and similarly that the radius function r=r(z,t) does not
have local maxima. Thus, the function f=(v,es) is positive. Together with the fine
asymptotic theorem and the maximum principle, we conclude that H=f. Hence, the
solution is a mean-convex non-collapsed translating soliton, which by the uniqueness
result for translators from Haslhofer [Has] yields that the solution is a bowl soliton.

Finally, in Theorem 7.3 we show that if the neutral mode is dominant, then the
solution must be an ancient oval. The idea is that, via blowup around the tips, we can
find eternal low-entropy flows, which by the above must be bowl solitons. We also have
a central cylinder. Using the maximum principle, we show that the solution is mean-
convex and non-collapsed also in the region in between. Using the result of Angenent—
Daskalopoulos—Sesum [ADS2], we can then conclude that the solution is an ancient oval.

Finally, let us outline the proof of the mean-convex neighborhood conjecture (The-
orem 1.7). Under the assumptions of Theorem 1.7, we first construct a unit-regular,
cyclic, integral Brakke flow M={p;}+>t,—s whose support is equal to the outer flow
{M;}i>1,—s. Moreover, we can arrange that M has a multiplicity-1 cylindrical tangent
flow at Xy, and that M is smooth in P(Xj,J) at almost every time, with only spherical
and cylindrical singularities. The latter properties follow from upper semicontinuity of
Huisken’s density and the basic regularity theory from §3.

We then show that, possibly after decreasing d, the mean curvature does not vanish
at any regular point in P(Xy,d). If this did not hold, then we could pass to a limit flow
which on the one hand had a point with vanishing mean curvature, but on the other hand
had strictly positive mean curvature by our classification result of ancient low-entropy
flows (Theorem 1.2).

Next, we show that, after decreasing ¢ again, the space-time connected component
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that reaches X has positive mean curvature at all regular points. The proof is based on
a continuity argument in time and uses that the singular set is small.

Finally, arguing as in [HW] we show that the mean curvature is positive also on the
non-smooth points, in the sense that the surface moves everywhere strictly inwards. This

concludes the outline of the proof.
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2. Preliminaries
2.1. Brakke flows

As in Ilmanen [I1, Definitions 6.2 and 6.3] a 2-dimensional Brakke flow in R? is a family of

Radon measures M={j; }sc; in R? that is 2-rectifiable for almost all times and satisfies

d

G [odn< [or (Vo) -Hdu

for all test functions € C}(R3,R,). Here, d/dt denotes the limsup of difference quo-
tients, L denotes the normal projection, and H denotes the mean-curvature vector of the
associated varifold V,,,, which is defined via the first variation formula and exists almost
everywhere at almost all times. The integral on the right-hand side is interpreted as —oo
whenever it does not make sense literally.

All Brakke flows M={p}+cs that we encounter in the present paper have the fol-
lowing three additional good properties of being:

e integral (cf. [Bra], [I1]): w; is integer 2-rectifiable for almost all ¢;

o unit-reqular (cf. [W6], [SW]): every spacetime point of Gaussian density one is a
regular point, i.e. for all X =(z,t)eM with © x =1, there exists an e=¢(X)>0 such that

t' > spt(py )N B(z, )

is a smooth mean-curvature flow for t'€[t—e2, t+£2|;
o cyclic (cf. [WT]): for almost all ¢, the associated Zs flat chain [V,,,] is cyclic. Here,
the Zs flat chain [V] associated with an integral varifold V' is called cyclic if 9[V]=0.
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By Allard’s closure theorem [Al, Theorem 6.4] and a result of White [W7, Theo-
rem 3.3], respectively, being integral and cyclic is preserved under varifold convergence
with locally bounded first variation. Limits of sequences of Brakke flows can be taken
via Ilmanen’s compactness theorem [I1, §7]. As a consequence of the above quoted re-
sults (see also White [W7, Theorem 4.2 and Remark 4.4]), being integral and cyclic is
preserved under limits of Brakke flows. By the local regularity theorem [W6] (see also
Schulze-White [SW, Theorem 4.2]), being unit-regular is also preserved under limits of
Brakke flows. In particular, Brakke flows starting at any closed embedded surface M CR3
that are constructed via Ilmanen’s elliptic regularization [I1] are integral, unit-regular,
and cyclic. We also recall from Ilmanen [I1, §10] that M;:=spt(u.) satisfies the avoidance

principle.

2.2. Monotonicity formula and tangent flows

Let M={u}ter be a 2-dimensional unit-regular, integral Brakke flow in R3, say with

bounded area ratios.(1*) Given a space-time point Xo=(x,to) €M, let

1 —|z—x0|? —
pXo(xat):me el /4o =0 g <.

By Huisken’s monotonicity formula [Hu2] (see also [I2]), we have

(x—x0)* 2

St—ty) | X dpu. (2.1)

d
pn Pxodﬂté—/’H—

The Gaussian density of M at X is defined by

Oxy(M) = lim [ px (2 1) dpa).

It follows from the monotonicity formula that the Gaussian density is a well-defined real

number >1 and that the map
(z,t) — O (5,1 (M)

is upper-semicontinous. Moreover, by the local regularity theorem for the mean-curvature
flow [Bra], [W6], there exists a universal constant €9 >0 such that any X € M with © x <
1+¢p is a regular point.

Given X€M and \;—0, let M? be the Brakke flow which is obtained from M
by translating X to the space-time origin and parabolically rescaling by )\i_l. By the

(14) In particular, any flow with finite entropy has bounded area ratios.
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compactness theorem for Brakke flows [I1], one can pass to a subsequential limit M X,
which is called a tangent flow at X. By the monotonicity formula every tangent flow is

backwardly self-similar, i.e. M xN{t<0} is invariant under parabolic dilation
Dy (z,t) = (Az, \%t).

If M is ancient, then for any A\;—o00 one can also pass along a subsequence to a back-

wardly self-similar limit M, which is called a tangent flow at infinity.

3. Coarse properties of ancient low-entropy flows
3.1. Partial regularity

The goal of this section is to prove a partial regularity result for ancient low-entropy

flows. To this end, we start with the following lemma.

LEMMA 3.1. (Low-entropy cyclic minimal cones) Let p be an integer 2-rectifiable
Radon measure in R® with Ent[u]<2. If the associated varifold V,, is a cyclic minimal

cone, then u=H?| P for some flat plane P.

Proof. The proof is along the lines of [BW, Lemma 4.1]. Let o be the vertex of the
cone. If xe€spt(u)\{o}, since being cyclic is preserved under weak limits, any tangent
cone C at z is a cyclic minimal cone which splits off a line. Such a minimal cone consists
of a static configuration of even number of half-planes meeting along a common line.
The entropy assumption implies that there are only two of those half-planes, and since
the configuration is static, it follows that C' is a multiplicity-1 plane. Hence, by Allard’s
regularity theorem [Al], z is a regular point, and so the only potential singularity is at
the vertex o. As the link of spt(u) is a smooth multiplicity-1 geodesic in S?, it is a great

circle, and so p is indeed the Hausdorff measure of a flat multiplicity-1 plane. O

THEOREM 3.2. (Partial regularity) Let M be an ancient low-entropy flow. Then
there is either (1) a cylindrical singularity in which case M must be a round shrinking
cylinder, or (2) no singularity, or (3) an at most countable number of spherical singu-

larities.(1°)

Proof. Let M be a tangent flow at infinity (see §2.2). By preservation under weak
limits, M is integral, unit regular, and cyclic. Using Lemma 3.1 it follows that any tan-

gent cone to M _; is a flat multiplicity-1 plane. Thus, by Allard’s regularity theorem [Al],

(13) At this point of the paper we cannot exclude the possibility of more than one spherical singu-
larity, since we cannot exclude yet the potential scenario that several compact connected components
form via “neckpinches at infinity” and “contracting cusps at infinity”.
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M _; is smooth. Hence, by the classification of low-entropy shrinkers by Bernstein-Wang
[BW], M is either a flat plane, a round shrinking sphere, or a round shrinking cylin-
der (all of multiplicity 1). The same reasoning implies that any tangent flow M x at
any space-time point X € M is either a flat plane, a round shrinking sphere, or a round
shrinking cylinder (all of multiplicity 1). If a tangent flow at X is a flat multiplicity-1
plane, then X is a smooth point by the local regularity theorem [Bra], [W6]. If there is
some X € M with a cylindrical tangent flow, then M is a round shrinking cylinder by
the equality case of Huisken’s monotonicity formula (see §2.2). Finally, spherical tangent
flows can happen at most countably many times since the set of strict local maxima of
the map X—0©x (M) is countable; see e.g. [W2]. This proves the theorem. O

By Theorem 3.2, any ancient low-entropy flow M={p}+e(—co,75(Mm)) I8 smooth,
except for at most countably many spherical singularities until it becomes extinct. Hence,
recalling also that higher multiplicities are ruled out by the low-entropy assumption, it
is safe from now on to conflate the compact sets M;=spt(u;) and the Radon-measures

¢ in the notation.

COROLLARY 3.3. (Extinction time) If M is an ancient low-entropy flow then exactly
one of the following happens:(1©)

(1) Te(M)=00, i.e. the flow M is eternal, or

(ii) Te(M)<oo and M is a round shrinking cylinder, or

(iii) Tg(M)<oo and M becomes extinct in at most countably many round points,
or

(iv) Tg(M)<oo and for every R<oo there exist T(R)<Tg(M) such that

B(0,R)NM;=2 for every t€ (T(R), Tg(M)].

Proof. Assume Tg(M)<oo, and suppose (iv) does not hold. Then, by upper semi-
continuity of Huisken’s density (see §2.2), there exist a point X =(xq, Tr(M)) such that
Ox >1. If the tangent flow at X is a plane, then this contradicts the definition of Tx (M)
by unit regularity. If the tangent flow at X is a cylinder, then we are in case (ii). If the
tangent flow at X is a round shrinking sphere, then we are in case (iii). This proves the
corollary. O

(16) At this stage of the paper we cannot yet exclude the scenarios that the solution “becomes

extinct in more than one point” or that the solution “escapes to infinity”.
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3.2. Finding necks back in time

Let M be an ancient low-entropy flow. Given a point X =(z,t)€M and a scale r>0, we
consider the flow

MX,T :Dl/r(M_X)7

which is obtained from M by translating X to the space-time origin and parabolically
rescaling by 1/r. Here, Dy(x,t)=(Az, A\%t).

Definition 3.4. Fix e>0. We say that M is e-cylindrical around X at scale r, if
Mx is e-close in C1V/el in B(0,1/¢)x[~1,~2] to the evolution of a round shrinking
cylinder with radius r(t)=+/—2t and axis through the origin. The notions e-planar and
e-spherical are defined similarly.

Given any point X =(z,t) € M, we analyze the solution around X at the diadic scales
r;=27, where j€Z.

THEOREM 3.5. For any small enough >0, there is a positive integer N=N(g)<oo
with the following significance. If M is an ancient low-entropy flow, which is not a
round shrinking sphere, round shrinking cylinder or a flat plane, then for every X eM
there exists an integer J(X)€EZ such that

M is not e-cylindrical around X at scale r; for all j < J(X), (3.1)

and
M is fe-cylindrical around X at scale r; for all j > J(X)+N. (3.2)

Proof. In the following argument we will frequently use the local regularity theorem
for the mean-curvature flow (see [Bra], [W6]) without explicitly mentioning it. Given
>0, for any X =(z,t)€M we define

J(X):=inf{j € Z: M is e-cylindrical around X at scale r;}. (3.3)

Recall that, by Huisken’s monotonicity formula [Hu2|, [I2], the quantity

2 2
Ouwn)= [ e aat)
is monotone, with equality only in the self-similarly shrinking case. Recall also that by
Bernstein-Wang [BW], the only self-similarly shrinking solutions with low entropy are
the flat plane, the round shrinking sphere and the round shrinking cylinder.

Since M is non-flat and not a round shrinking sphere, its tangent flow at infinity M
(see §2.2) must be a round shrinking cylinder. Hence, J(X)<oo. Similarly, if M had a
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cylindrical tangent flow M x, then by the equality case of Huisken’s monotonicity formula
M would be a round shrinking cylinder. Hence, J(X)>—oc0. Therefore, J(X)€Z and
the statement (3.1) holds true by the definition from equation (3.3).

To prove (3.2), note first that (recalling that our fixed € is small) we have

@X(TJ(X))>EHt[Sl]—ﬁ7 (34)
and
lim ©x(r;) =Ent[S']. (3.5)
J—00

Next, observe that by the equality case of Huisken’s monotonicity formula, if
Ox(rj+1)—Ox(rj-1) =0,

then M is zero-self-similar around X at scale r;. This can be made quantitative (cf.
Cheeger—Haslhofer—-Naber [CHN]). Namely, there exists a §=04(g) >0 such that, if

Ox(rj4+1)—Ox(rj—1) <9, (3.6)

then

M is %5-self—similar around X at scale r;.

For j>J(X) in our context %5—se1f—similar simply means %E—cylindrical.
Finally, using again monotonicity and quantitative rigidity we see that after going
from scale J(X) to scale J(X)+ N, where N=N(g)<oo, we have

Ox (ry(x)+n(e)) = Ent[S']—4. (3.7)

Combining the above facts, we conclude that (3.2) holds. This finishes the proof of the

theorem. 0

We fix a small enough parameter £>0 quantifying the quality of the necks for the
rest of the paper.

Definition 3.6. The cylindrical scale of X € M is defined by
Z(X)=2"%,

Remark 3.7. Recall that the regularity scale R(X) is defined as the maximal radius
r such that |A|<1/r in the parabolic ball P(X,r). It follows from the definition of
regularity scale and the low-entropy assumption that there exists a positive integer N=
N (g)<oo such that

M is e-planar around X at scale r; for all j <logy R(X)—N. (3.8)
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3.3. Asymptotic slope

Let M be an ancient low-entropy flow, which is not a round shrinking sphere, round
shrinking cylinder or a flat plane. Recall from above that M has an asymptotic cylin-
der M for t——o0. By Colding-Minicozzi [CM2], the axis is unique. We may assume

without loss of generality that the axis is in x3-direction.

PROPOSITION 3.8. (Asymptotic cylindrical scale) For every 6>0 there exists
A=A(S) <0

such that if (po,to) €M then
Z(p,to) < 6|p—pol

for all pe My, with [p—po|=AZ(po, to).

Proof. Assume without loss of generality that (po,t0)=(0,0) and Z(0,0)=1. If the

assertion fails, then there is a sequence p; € My with |p;| >4, but
Z(pi, 0) = d|pi] (3.9)

for some §>0. Let M be the flow which is obtained by parabolically rescaling by 1/|p;|
around (0,0) and pass to a limit M. The limit M is an ancient low-entropy flow,
which has a cylindrical singularity at (0,0). Hence, by the equality case of Huisken’s
monotonicity formula M is a round shrinking cylinder that becomes extinct at time

T=0, in contradiction with (3.9). This proves the proposition. O
We normalize M such that Xy=(0,0)e M and Z(X,)<1.

THEOREM 3.9. (Asymptotic slope) For every 6>0 there exists A=A(d)<oo such
that
sup{v/z?+23|(z1, x2, x3) € My}

<é
|3

whenever t<—10 and |(z1, x2, x3)| = AV —t.

Proof. We first claim that for every §>0 there exist
A1:A1(5)<OO and T} :T1(5)>*OO
such that every (p,t)eM with t<T} and |p|//—t>A; satisfies

z}+13 < $6%23. (3.10)
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Indeed, if (p,t)€M is any point with t<—10 and |p|/v/—t>>1, then by Proposition 3.8 it

has cylindrical scale Z(p,t)<|p|. If (3.10) was violated, then going back further in time

this neck would intersect the central neck of our asymptotic cylinder; a contradiction.
Consequently, for every 6>0 there exist To=T5(d)>—o00 and L(d)<oo such that

1

N

for all t<T5. Using suitable large spheres as barriers, this implies the assertion. O

M; c{|z] <L7x%+x§ <3}U{|x3| > Lw%—&—x% < %62:105}

COROLLARY 3.10. (Barrier for the rescaled flow) There exists an even smooth func-
tion o:R—R, with
lim ¢'(2)=0

z—+too

such that the rescaled mean-curvature flow

MX :eT/Q(M_GfT —330),

:
where T=—log(tg—t), satisfies
M C {af+a] < p(s)?}

for T<T(Z(X)).

By the corollary, any potential ends must be in direction zg—4o0.

4. Fine neck analysis
4.1. Setting up the fine neck analysis

Let M be a non-compact ancient low-entropy flow in R3, which is not a round shrinking
sphere, round shrinking cylinder or a flat plane. Given any point Xo=(zg,to) EM, we
consider the rescaled flow

MXo=e™/2(M_,—r —0),

where 7=—log(to—t). By Theorem 3.5 and Colding-Minicozzi [CM2], the rescaled flow
converges for 7——o0 to the cylinder ¥={x?+x3=2}. Moreover, the convergence is
uniform in Xy once we normalize such that Z(Xy)<1. Hence, we can find universal
functions o(7)>0 and p(7)>0 with

lim o(r)=0, lim p(r)=o00, and —p(1)<p'(1)<0, (4.1)

T——00 T—+—00
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such that M;X° is the graph of a function u(-,7) over £N By, (0), namely
{z+u(z, T)vs(2) 12 € ENBop(r) (0)} C M,
where vy denotes the outward pointing unit normal to 3, and

[u(-, )0t (2nBapry (o)) < o(T) p(T) 7" (4.2)

We will now set up a fine neck analysis following [ADS1] and [BC].

We denote by C'<oo and 7 >—o0 constants that can change from line to line and
can depend on various other quantities (such as the function p from above, the neck
parameter € from §3.2, etc.), but are independent of the point Xy with Z(Xy)<1. We
also fix a non-negative smooth cutoff function ¢ satisfying ¢(z)=1 for |z|<3 and ¢(2)=0
for |z|>1, and set

. T3
Wz, 7) =u(z, 7)) (,0(7‘)) .
We recall from Angenent—Daskalopoulos—Sesum that there are shrinkers

Y, = {surface of revolution with profile r =u,(z), 0< z<a},

3, = {surface of revolution with profile r = Uy(z), 0< z < 00},

as illustrated in [ADS1, Figure 1]; see also [KM]. We will refer to these shrinkers as
ADS-shrinkers and KM-shrinkers, respectively. The parameter a captures where the
curves u, meet the z-axis, namely wu,(a)=0, and the parameter b is the asymptotic slope
of the curves wup, namely lim, . ug(z):b. A detailed description of these shrinkers can
be found in [ADSI1, §8]. In particular, the shrinkers can be used for barrier arguments
as well as for calibration arguments. To describe the latter, we fix suitable parameters
ag, bo, Lo<oo and consider the region F'* CR? bounded by %,,, ¥, and {z=Lo}. The
region F'* is foliated by {¥,}e>a,, &, and {ib}bgbo. Denoting by v, the outward unit
normal of this family, by [ADS1, Lemma 4.10] we have that

div(e™™ 4u40)) =0, (4.3)

i.e. the shrinker family forms a calibration for the Gaussian area. Similarly, the region
F~={(z1, %2, —x3):x€F"} is calibrated. Let F=F UF™.

PROPOSITION 4.1. There exists T >—oc independent of Xo such that('")
M,0{|z3|> Lo} CF

for all T<T.

(17) Recall that we assume that Z(Xo)<1.
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Proof. By Corollary 3.10 (barrier for the rescaled flow), M, N{x3> Lo} is contained
in the region bounded by ibo and {z3=Lo} for sufficiently negative 7. Moreover, since
M, is a graph with small norm over a long cylinder, it can not cross ¥,,N{x3>Lo}. This

implies the assertion. O
Denote by A, the region bounded by M, and X.

PRrROPOSITION 4.2. (Cf. [BC, Proposition 2.2]) For all L€[Lg, p(T)] and 7<T we

have the Gaussian area estimate

/ e—lw\2/4_/ e—lx\2/4>_/ e/ N g
M, 0{jas|>L} SNzl >L} A jasl=L})

Proof. Consider the region A,N{|x3z|>L}N{|z|<R}. Integrating (4.3) over this re-

gion, and using the divergence theorem and Proposition 4.1, we obtain

/ e—lz\’-’/4_/ o l2l?/a
M-n{|z3|>L} Zn{|zs|>L}

—|z|?/4 —|z|?/4
2_/ o122/ ‘N.Vfoﬂ_/ eI/ | N g,
A, {lzs|=L} An{lz|=R}

where N denotes the unit normal of the boundary. By the entropy bound, we have that
A-n{|z|=R}

and passing R— o0 the assertion follows. O

The next proposition shows that closeness to the cylinder in the region {|z3|<3L}

implies closeness to the cylinder in the larger region {|z3|<L}.

PRrOPOSITION 4.3. (Cf. [BC, Proposition 2.3], [ADS1, Lemma 4.7]) The graph func-

tion u satisfies the integral estimates

/ eflx‘2/4|Vu(x,T)|2<C/ €7|I|2/4U(IL',T)2
BN{|es|<L} S{lzs|< 5}

and

67|x|2/4u(a:,7')2 SC’LiZ/ 67|x|2/4u(:1:,7')2

/zm{L/zsmsL} =n{lzs|<L/2}

for all L€[Lo, p(1)] and 7<T, where C<oo is a numerical constant.

Proof. By the low-entropy assumption, we have

/ e—|m|2/4</e—\z\2/4_
M, =

Using this and Proposition 4.2, the rest is as in the proof of [BC, Proposition 2.3]. [
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Recall that M; is expressed as graph of a function u(xz, 7) over ©N By, () (0) satisfying

the estimate (4.2). Using that M, moves by rescaled mean-curvature flow one obtains

the following result.

LEMMA 4.4. (Cf. [BC, Lemma 2.4]) The function u(x,T) satisfies
Oru=Lu+FE,
where L is the linear operator on X defined by
Lf=Af—5(@™ Vf)+f,
and where the error term can be estimated by
B < Co(r)p™ (1) (lu| +|Vul)

for <T.
Proof. The proof is similar to that of [BC, Lemma 2.4].

Denote by H the Hilbert space of all functions f on ¥ such that
I91= [ e/ 2 < oo
H » 47 '

LEMMA 4.5. (Cf. [BC, Lemma 2.5]) The function

z3
(z,T) u(x,T)go(m)
satisfies
Oru=Lu+E,
where
1Bl < Cp" |it]|
for T<T.

Proof. As in [BC, p. 8], we compute

E:Egp(:g))— (2)8u /(pfi)) p(i)zwﬁ(pa(:i))
T3

1 T3 x3 /(T) /
TG (pm) G (<>)'

(4.4)
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If |z3|<3p(7), then Lemma 4.4 gives
|E|=|E| < Co(r)p™ " (7)(|Jul+|Vul).
If 1p(7)<|z3/<p(7), then using equation (4.1) we obtain
|E|< Clul+Cp™!(7)|Vul.

Using also Proposition 4.3 and equation (4.1), we infer that

2
/e—\fﬂ|2/4‘E|2<C%/ o l7l?/4,2
S P Jsn(izs<o(n/2}

+C e lzl?/4,,2
2n{p(r)/2<]z3]<p(7)}

c
+—2/ e 1714 7y 2
P™ Jen{|zs|<p(m)}
c

2
< el e lel7/4,,2
=n{jes| <22}

7/6\“/42

for 7<T. Thus, we obtain the desired result. O

Let us recall some facts from [BC] about the operator £ defined in (4.4). In cylin-
drical coordinates this operator takes the form

82 1 92 1 0
o2 P! T

Analysing the spectrum of £, the Hilbert space H from (4.6) can be decomposed as
H=H . OHoDH_,

where H, is spanned by the four positive eigenmodes 1, z, sin @, cos 6, and H, is spanned

by the three zero-modes 22 —2, zcos#, and zsind. We have
(Lf, )n sz“H for feH.,
(Lf, lu= for feH,,
(Lf, flm< %Ilflly for feH._.

Consider the functions
Uy (r):=|Pra(-, 7)1,
Uo(7) : = || Poa(-, )3,
U_(7):=|P-a(-,7)|l3,



ANCIENT LOW-ENTROPY FLOWS 245

where P, , Py, and P_ denote the orthogonal projections to H., Ho, and H_, respectively.

Using Lemma 4.5, we obtain

0. (5)2 U (7) = Cp™ (UL (1) Un(r) +U- (7)),
L Uy(r)| < 0™ (UL () +Un(r) +U- (7)) (4.7)
d

U (1) < =U(7)+Cp (U () +Uo(r) + U (7)),

To proceed, we need the following ODE-lemma.
LEMMA 4.6. (Merle-Zaag [MZ]) Let z(7), y(7), 2(7) be non-negative absolutely con-
tinuous functions satisfying (x+y—+2z)(7)>0 and

liminf y(7) =0.

T——00

Moreover, suppose for each 66(0, 1(1)—0], there exists a To=T10(€) such that for <ty the

following holds:
|z | <e(z+y+2),
Yr < _y+5(1'+z)a
zr 2 z—e(x+y).
Then, we have y<2e(x+z) for T<79, and either x is dominant in the sense that
y+z=o(x)
as T——00, or z is dominant in the more precise sense that

4y < 100ez

for all 7<7o(g).

Remark 4.7. The statement in [MZ] is slightly different, but a careful inspection of
their proof gives the variant of the lemma that we stated; see also [CMa, Appendix B]
for a detailed proof.

If (U; +Ug+U-)(7)=0 for some 7, then Lemma 4.5 implies that (U, +Uy+U_)(7)=0
for all 7<7, and by analytic continuation it follows that M is a round shrinking cylinder;
a contradiction. We can thus apply the Merle-Zaag lemma (Lemma 4.6) to conclude that

either the neutral mode is dominant, i.e.

U, +U_ =o(Up),
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or the plus mode is dominant, i.e.
U +Us<CptU,.

We will analyze these two cases in turn in the following two sections. Recall also that our
analysis above depends on a choice of Xy and p. However, the following proposition shows

that either the neutral mode is always dominant or the plus mode is always dominant.

PROPOSITION 4.8. If a neck centered at some point Xg satisfies U, +U_=0(Uy) for
some admissible choice of pg, then any other neck centered at any point X also satisfy
U, +U_=0(Uy) for any admissible choice of p.

Proof. Any two necks converge to the same neck after rescaling as 7— —oo0. Thus,

the above statement is obvious. O

4.2. Fine analysis in the plus mode

In this section, we assume that the plus mode is dominant. We recall from above this
means that after fixing a center XoeM with Z(Xy)<1, and a graphical scale function p,
we have that

U_+Uy<Cp U, (4.8)

for all 7<7T. As before, C'<oo and T >—o0 denote constants that can change from line
to line and are independent of the point XoeM with Z(Xy)<1. The main goal of this

section is to prove Theorem 4.15.

4.2.1. Graphical radius
Using (4.7) and (4.8), we obtain

4

U, >U,-Cp 'U,.
dr

By integrating this differential inequality, for every ;>0 we can find a constant
T (n)>—o0

such that
U, (1) <Celt =17,

for all 7<T (1). Recalling that U, =||P, 4|3, and using (4.8) we infer that

lallz < Cel=m772,
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By standard interpolation inequalities, this implies

A-—pwr
2

[u-s T)llca(=1020,1050] x[0,27]) < Ce (4.9)

for all <7 (u). The estimate (4.9) is not sharp. To improve it to a sharp estimates (i.e.

to remove the p), we start with the following C%-estimate.

PROPOSITION 4.9. The rescaled mean-curvature flow M, satisfies the estimate

sup |x%+x372| <em/10 (4.10)
M-0{|zs|<e~7/10}

for all T<T.

Proof. Fix p sufficiently small, e.g. yu= 100 Recall from §4.1 that there are shrinkers
¥, and Zb with profile functions u, and Ub

As preparation for the barrier argument, observe that (4.9) implies that

sup (22 4+22) <24+ Cet—W7/2) (4.11)
M-n{|zs|<Lo}

and
_inf (@2 4ad)>2-CeltmmT/2, (4.12)
M-0{|zs|<Lo}
To prove an upper bound, we will use the shrinkers ib as outer barriers. To this
end, we first observe that, for 2>24/2, the profile function U’b satisfies the estimate
+e 10222 < Uy(2)? <2422, (4.13)

Indeed, [ADS1, Lemma 4.11] and [ADS1, §8.12] tell us that U, satisfies the differential

equation

~ w ~
Ul=—=(U?-2), 4.14
= 5 (T2 (414
for 2>21/2, where w=w(z) is a function that satisfies
16
2<w(z)<2—|—z—2. (4.15)
Combining (4.14) and (4.15), we see that
d Up(2)2—2\ _ 16
< — — | < —. .
0< - 10g< > <3 (4.16)

Integrating (4.16) from z to oo and using that the asymptotic slope of (71, equals b, we

infer that ~
Up(2)?—2 16
Oélogb2—10g<b(z)2> </ — dz=1,
z vz &3
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which proves (4.13).

Now, fixing 7<7, we consider the shrinker f)b with parameter
b=2VeCLy el=m7/4,

Using (4.11) and (4.13), we see that S,N{zs=Lo} is outside of M,N{z3=Ly} for all
7<7. Moreover, recalling that U, has asymptotic slope b and that M, has vanishing
asymptotic slope (see Corollary 3.10) we also see that $,N{z3=h} is outside of

M, N{z3=h}
for h>ho(7) large enough, and for all 7<7. Finally, ibm{Logxggh} is outside of
M,N{Lo<x3<h}
for —7 large enough. Hence, by the avoidance principle, ibl N{x3>Lo} is outside of
M N{z3> Lo}

for all 7<7. Repeating the same argument for x3 replaced by —z3, and using (4.13), we
conclude that

sup (22 +22) <2+4¢e7/10 (4.17)
M. {Jws|<e—7/10}

for 7<T.
Similarly, considering the shrinkers ¥, as inner barriers as in [BC, pp.10-11] and

using (4.12), we obtain

_ inf (22 422)>2—e7/10
M-{|zs|<e=7/10}

for 7<T. Together with (4.17), this proves the assertion. O

We will now use the C%-estimate to prove that the rescaled flow M, is cylindrical

over an exponentially expanding region for 7— —oo.

PROPOSITION 4.10. For 7<T the rescaled mean-curvature flow M, can be written
as graph of a function v(-, ) over the cylinder Eﬂ{|x3|<%e_7/10} with the estimate

||v||CG(Eﬂ{|mg|<e*7/10/2}) <Ce™0,
Proof. We first observe that, for 7<T, every point X =(X,7), where

X e M.n{|zs| < %677—/10},
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has regularity scale comparable to 1, namely
CP'<R(X)<C (4.18)

for some uniform C'<oo, where R(X) denotes the regularity scale of the rescaled flow.
Indeed, if R(X)>>1, then we could parameterize M, as a graph graph with small
norm over a disk of radius 2 centered at X, contradicting Proposition 4.9. If on the
other hand R(X)<1, then by the argument from §3.2 for some 7/ <7 the rescaled flow
would be e-close to a cylinder or sphere with center X and radius ﬁ, contradicting
again Proposition 4.9.
To continue, note that the geometric meaning of Proposition 4.9 is that our surface

M. is trapped between two cylinders of almost equal radii. Combining this with the

regularity scale bound (4.18), we see that at every point
X e M n{|zs| < %e‘T/w}

the tangent plane must be almost parallel to the one of the cylinder ¥ at m(X), where 7
denotes the nearest neighbor projection. It follows that

M N{|zs| < %677/10}

can be written as graph of a function v(-,7) over the cylinder ¥ with small C''-norm.
It is clear by looking at the middle region, that there is one single layer. Moreover, the

C'-norm bound and the regularity scale bound (4.18) imply
V20| ¢2 (g | <3e—r 10 /2y < C,

and thus v is the solution of a linear uniformly parabolic equation(®) with coefficients
of uniformly small C'-norm. Hence, using standard interior estimates, the assertion
follows. O

We now repeat the process from §4.1 with improved functions p and o. Namely, by

Proposition 4.10, we can now choose
p(r)=e" 7/ and o(r)=Ce™/?.

With this new choice of p and o, we can write M, as graph of a function u(-,7) defined
over the exponentially large domain XN By, ;) such that it satisfies the estimate (4.2) for
T7<T.

(18) Namely, vy =a;;v;;j +b;v;+cv, where a=a(Vv,v), b=b(Vv,v), c=c(Vv,v). cf. (??).
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PROPOSITION 4.11. For 7<T the function

Wz, 1) =u(z, 7')90(6_?;20)

satisfies the estimate

il < Ce™/?.
In particular, we have

sup 22422 —-2| < Ce™/2.
MTQBIOLO (O)

Proof. We define U, Uy, and U_ by the formulas from (??), where now
N Zs3
a(z, 7) =u(z, T)(p(m).
Using Lemma 4.5 and Proposition 4.8, we then get the inequalities
Up+U- <Ce™/?U,

and
d
—U, >U,—Ce™?U,.
dr

Rewriting the latter inequality as

% log(e™"U,) > —Ce™/?

and integrating from 7 to 7 yields the estimate
Ui(r)<Ce,

which together with (4.19) implies that

il < Ce™/2.

Using standard interior estimates, we conclude that

sup 22422 —2| < Ce™/2.
M,— mBlOLO (0)

This proves the proposition.

(4.19)

(4.20)
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4.2.2. Constant functions cannot be dominant

To obtain refined information, it is useful to decompose
Py =P )5+Py,

where P 5 is the projection to the span of z, cos 6, and sin 6, whereas P is the projection

to the span of the constant function 1. Accordingly, we can decompose
Uy := || Pral|, = || Prjottl| 3+ Prill3, =: Ur jo +Us.

Using this decomposition, Lemma 4.5, and the assumption (4.8) that the plus mode is

dominant,(1?) we obtain

d _
‘drUl/2U1/2 <Cp ' (Urp+Uh),

d -1
%Ul—QUl éC’p (U1/2+U1).

Applying the Merle-Zaag lemma (Lemma 4.6) with x=e~"U 5, y=0, and z=e~"Uy, we

infer that either the U, /5 is dominant, i.e.
Ui =0(Uy/2), (4.21)
or the constant function 1 is dominant, i.e.
U2 <Cp UL (4.22)

The next proposition shows that U; cannot be dominant.
PROPOSITION 4.12. [t must be the case that Uy=0(U, 2).

Proof. Assume towards a contradiction that the estimate Uy =0(Uj /2) does not hold.

By the above discussion, we then have
U_+Up+U, 2 < Ce™/ U, (4.23)
for all 7<7T. Using Lemma 4.5, it follows that

d
‘dTU1—2U1 <Ce™/U;. (4.24)

(1) By Proposition 4.8, we can indeed use this inequality with p(1)=e~7/20,
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These two inequalities imply that
l[al[2 < CeT,
(see the proof of Proposition 4.11), and thus in particular

lu(-s T)lles(~10L0,10L0)x[0,20]) < C€T

for all 7<7T.
Moreover, integrating (4.24) and using (4.23) yields that e=27U; converges to some
positive limit Ko>0 for 7— —oo with the estimate

|e—27'U1_K02| < 067/20

for 7<T.
We will now argue similarly as in [ADS1, proof of Lemma 5.11]: By the above

estimates, there exists a constant K such that the rescaled flow M, satisfies
22422 =2(1+Ke™)+0(e?7/20)

uniformly on the bounded interval [—100,100], and more precisely

Ko=|K]| /z (8%)1/4$6—\w|2/4 K| (216)1/4.

Hence, recalling that 7=—log(—t), the original flow satisfies
i+ as = (=20 (1+ K (=) )+ O[] ~1/2°) = 2(K —t) +-O(|t| /%)

for |x3]<100y/—t, where we assume for ease of notation that Xo=(0,0). Now, if we
instead rescale with respect to the new center Xo=(0, K), i.e. if we set 7=— log(K —t),

then the corresponding rescaled flow M - satisfies

22422 =2+40(e27/20). (4.25)
Write M as the graph of a function U(-,7) over

E0{—p(r) <z3<p(7)}

with p(7)=e~7/?% and consider the spectrum. Arguing as in the proof of Proposition 4.8,
we see that Uy is dominant. Hence,

e=27U, — K| < Ce™/?° (4.26)
for some K >0. However, using (4.25), we can directly compute

7 ~ (€ 1al o2 < (p217/10
Ux ‘/gpu (27r) ar’ SCe ’

This contradicts (4.26), and finishes the proof of the proposition. O
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4.2.3. The fine neck theorem

By Propositions 4.11 and 4.12, we may now assume that

U_+U,<Cp~tU,, (4.27)
and
Ui =0(U2), (4.28)
where p(T):677/20. Recall in particular that Proposition 4.11 gives

[[@]|7 < Ce™/2. (4.29)

Moreover, using in addition equation (4.28) and the assumption that our solution is not

the round shrinking cylinder, we see that

lim e~ "U; )5 >0. (4.30)

T——00

Furthermore, by using (4.29), we establish the following coarse estimate in a compact
region.

LEMMA 4.13. For sufficiently large —7, we have

(-, T le2(mnBror, (0)) < CeT/5 (4.31)

Proof. Given a fixed sufficiently large —7g, we define parabolic regions @), in 3 xR

by
Qr={(0,2,7):0€(0,27], |2| <100Lgr, —(100Lor)? < 79—7 < 0}.

Let ¢ :(%)1/ 8 and consider a smooth non-negative cutoff function 7; (6, z, 7) satis-

fying 71 =0 on 0@ and mn;=1 in Qs. Then, the function @; =un; satisfies
07y = LUy +g1,

where |g1|<C(|u|+|Vul), due to Lemma 4.4. Using Proposition 4.3, this implies

/ mP<C / 3+ Vul® < Cllul 2oy luller@n) < Ce™.

1 Q1

Therefore, [WL1, Theorem 3.14] yields
lull o (@s) < Nl |l e (1) < O™/,

Hence, the standard interior regularity implies ||ul/c2(q,.) <Ce™/3,
Next, we consider a new cutoff 1y satisfying 7o=0 on 0Qs2 and 72=1 in Qgs. Then,

Ug=uns satisfies O tia=Lis+gs, where

/ |92\3<C/ (P +[Vul’) < Cllullizq,u lullor i) < Cet™.
Qs2 Q52

Hence, we have |ul|c2(q,4) <Ce*/9 We repeat this process twice more, so that we can

obtain the desired result. O
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We will now express P,u€H, as linear combination of the four eigenfunctions z,

€ 1/4 1 2
= —lz|*/4
87r) / )47Te ’

cosd, sinf, and 1. Namely, let

(4.32)

™

where the superscript X is to remind us that all these coefficients depend (a priori) on

the choice of base point X. Then, we have
P =aX 240" cos O +cX sinf+d~. (4.33)
Moreover, UX =| P, |3, is given by a sum of coefficients squared:
UX =271271 26712 (40X 2+ 0% 2+ |cX 2 4-2|d% 2). (4.34)
PROPOSITION 4.14. There coefficients defined in (4.32) satisfy the estimates
|dX (1) < Celt/20, (4.35)
and
le™ /20X (1) —aX |+ e 720X (1) = BX |+ e /2K (1) — X | < Cem/ (4.36)

for some numbers aX, BX, and ¢X that might depend on X.

Proof. Using Lemma 4.5 and £1=1, we compute
d e \l/4 1
4 gx (7) / B —|x|?/4
dr (r)= 2m (Lat )4 ¢
e \1/4 . .
(= i e ll?/4
(QW) /(U+E)47re

eNl/4 [ F -
=+ () [ e

Hence,

d N
(770 ()| < O Bl < e e < O
:
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Integrating from 7 to 7, this implies (4.35).

In a similar manner, we compute

d, _. d, _. d _. o pe
e )|+ ST )| e )] < el
<067/20.
Integrating from —oo to 7 this implies (4.36). O

We are now ready to prove the main theorem of this section.

THEOREM 4.15. Let M be an ancient low-entropy flow which is not the round
shrinking sphere, round shrinking cylinder or flat plane. If the plus mode is domi-
nant, then there are constants a=a(M)#0 and C=C(M)<oo, and a decreasing function
T:Ry—R_ (depending on M) with the following significance.

For every X €M the graph function uX(-,7) of the rescaled flow MX satisfies the

estimates

le= /24X (2, 7) —az—b™ cos §—cX sin 0|3 < Ce™/40, (4.37)
and
sup e 2uX (z,7)—az—b¥ cos§—&¥ sin 0] < Ce™/ 10 (4.38)
|23|<10Lo

for T<T(Z(X)). Here, the constant a is independent of X, and bX and &% are numbers

that may depend on X and satisfy
X+ < C. (4.39)

Proof. By scaling, we may pretend without essential loss of generality that we only
work with center points X satisfying Z(X)<1 (this condition is only used to figure out
more easily which constants are uniform in X).

Consider the difference
DX =0 —e/?(@X 24+ BX cos 0+~ sinb).
Using equation (4.33) and Proposition 4.14, we see that
|DX| <X — PyaX |+ C(14]|2])et /2.
Since by (4.27) and (4.29) we have

U_+Uy < Ce?'7/20,
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it follows that
DX |3 < Ce*17/40, (4.40)

which proves (4.37) modulo the claim about the coefficients.
Combining the equations (4.29) and (4.34) and Proposition 4.14, we see that

|BY|+[e¥[<C, (4.41)

which proves (4.39).

We recall that e~7/2u corresponds to the original scale. Hence, if instead of
X = (21, 22, 23,1)
we consider the new origin
X' = (2, —b% cos 0, x3—E" sinb, z3, 1), (4.42)
then the estimate (4.40) simplifies to
0% (@, 7)—e™/2a¥ 2|5 < Ce* /40, (4.43)

i.e. the estimate (4.37) holds with aX =aX, bX'=0, and &X' =0. If aX=0, then (4.43)
implies that || |2, <Ce?'7/20, contradicting (4.30). Here, we have used Proposition 4.8,
as well as Proposition 4.12, to show that, even after re-centering, the %—mode dominates.
Hence, aX #0. Since the estimate (4.43) holds for any X, and since aX does not vanish
for any X, we see that a*X =:a is independent of X.

It remains to prove the pointwise estimate (4.38). To this end, we start with
DX || L2 ({1l <10L01) < CI DX [l < Ce17/40.

Next, using the inequality (4.41) and Lemma 4.13, we estimate
VDX || L2 snz1<10z01) + I VEDX (| L2 (50 21<10201) < CEX |02 (50 21<1000}) +CET/2
< 66407/81.

Applying Agmon’s inequality, we conclude that

sup  |DX| < CeBIT/160,
|z3|<10Lo

This finishes the proof of the theorem. O
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After a change of coordinates, we may assume without loss of generality that our
ancient low-entropy flow M satisfies a=a(M)=1/v/2. Then, after recentering as in
(4.42), Theorem 4.15 tells us that the graph u”X (-, 7) of the rescaled flow MX satisfies

1
—7/2, X 7/160
sup | Fu” (z,7)——=2| < Ce (4.44)
|3|<10Lo V2

for 7<T(Z(X)).

COROLLARY 4.16. If the rescaled flow MX satisfies (4.44), then we have the esti-

mates

sup (x%—i—x%)g?,
{zs<—Lo}

inf (22422)>2
il ) 22,

and

inf 3 < —pe”7/?

MX
for T<T(Z(X)), where u>0 is a numeric constant. In particular, the unrescaled mean-
curvature flow M={M,} satisfies

inf x3(p)>—00 and sup z3(p)=o0.
pEM; pEM,

Proof. The first two estimates follow easily by using the KM-shrinkers f]b as outer
barriers (using also Corollary 3.10) and the ADS-shrinkers ¥, as inner barriers; since Xg
is arbitrary, the latter also implies that sup,,c,;, ¥3(p)=0c.

The third estimate follows from the improved barrier argument (where the surfaces
¥, are shifted along the z-axis) from [BC, §3].

Finally, for any Xo=(z0,to) €M, after recentering in space, the estimates tells us
that MXon{x3<—Lo} is contained inside the cylinder ¥ of radius v/2 for 7<7. Hence,
by comparison My, N{z3<—Lo} is compact (see also Corollary 4.30 and its proof). Since
Xy is arbitrary, this yields

inf —00. 0
i x3(p) > —00

4.3. Fine analysis in the neutral mode

In this section, we assume that the neutral mode is dominant. The goal is to prove Corol-
lary 4.30, which show that the solution is compact. This will follow from Theorem 4.28,

which gives a precise inwards quadratic expansion, and a barrier argument.
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Given any center Xo€M, there exists some functions o and p satisfying (4.1) such
that (4.2) holds, and we have
U7+U+:O(U0), |87—U0‘ <0(U0) (445)

for 7<T. In this section, C'<oo and T >—o0 denote constants that can change from line

to line and may also depend on Xge M. To distinguish the initial choice of p, we set

po(z) = p(2). (4.46)

We will later use improved scale functions, but pg will never change.

4.3.1. Graphical radius

The first goal is to prove a lower bound for the optimal graphical radius. To begin with,

we consider the positive function

2 L )
= —e " . 4.4
a(T) (/leKLO U (x,s)47re ) (4.47)

LEMMA 4.17. For L&[Lo, p(7)], we have the estimate

1
a('r)zg/ uz(x,'r)4—67m2/4§004(7)2.
=n{lzs|<L} T

Proof. By Proposition 4.3, we have

1zl2 Co
/ W2e-7l /4<ﬁ/
£N{2*8 -1 Lo< w5 <25 Lo} 4°L§ Jon{les|<2-1Lo}

where C is a constant. Hence,

1 2 C C
2~ =zl /4< (1+0) ( 2< <0> 2
u e RS al(T)” s exp alT)™,
/Eﬂ{ac3<2Lo} 47 4Lg ) 4L(2) ( )

1 2 C
2~ —|z| /4<<1+ 0 ) <C0) ()2
u e < exp alr
/zm{pcggz%o} am 42L3 AL§
1 1\C,
<6Xp(<4+42) Lg)OC(T)Q.

Thus, if 2111, gp(7)<21L0 then we inductively obtain

I
1 2 1C 2C
2 7‘$| /4 < 0 2 < 0 2
Ut e \exp< E Yo Lg)a(T) < exp T2 a(T)“.

i=1

2
w2elel?/a,

and

/Eﬁ{|933|§/)(7')}

This completes the proof. O
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Now, define an increasing continuous function by

a(r)=sup a(o). (4.48)

o<r
By standard interior estimates, we have

|ul(z, ) < Ca(r) (4.49)
for |x5|<Lo and 7<T.

For technical reasons, it will be best to work with a monotone function £, which

simultaneously has controlled derivatives. To this end, we define

_ 2 o w3 \ 1 )
s =sw( [0 (o))

where we recall that pg is defined in (4.46) to be the original graphical scale function,

which is the input to this section. Clearly, 3 is a locally Lipschitz, increasing function.

By equation (4.45), we have 8'=o0(3) at almost every time,(*) so in particular
0<B'(r) < 3B(7). (4.50)

Moreover, by Lemma 4.17 we have

a(r) <pB(r)= ([2 u?(z,0)p? (p(i?;)) 417re"1"2/4)1/2 <Ca(o) <Ca(r),

where ¢ is chosen such that the second equality holds. To recapitulate, we have obtained

a(r) < B(r) < Ca(r). (4.51)

We now prove a CY-estimate in terms of 5(7).

PROPOSITION 4.18. There are constants ¢>0 and C'<oo such that
jul(z,7) <CB(r)"/?

holds whenever |x3|<cB(T)~Y* and 7<T.

(29) If one prefers thinking about smooth objects, one could further regularize 8 to be C', main-
taining similar properties.



260 K. CHOI, R. HASLHOFER AND O. HERSHKOVITS

Proof. By the estimates (4.49) and (4.51), there is a constant K <oco such that
[ul(z, ) < KB(7) (4.52)

whenever |z3|<Lo and 7<7T.

Fixing 7<7, we consider the ADS-shrinker ¥, with parameter
a=c(KB(#) ', (4.53)

where ¢>0 is a numerical constant depending on Lg. Then, by [ADS1, Lemma 4.4}, the
profile function u, satisfies
uq(Lo) <V2—KB(7). (4.54)

Comparing (4.52) and (4.54), we infer that M, N{z3=Lo} lies outside of
Eaﬂ{l‘g = Lo}

for 7<7.

On the other hand, similarly as in (4.16), we have

d 2—1u4(2)? 16
<=1 ——F | < —=.
0 dz 0g< 22 ) 23

Integration from +/a to a yields
2 2—uy, 2
a

a2

and hence 5
ua(\/a)Q 22_5 (455)
Since M:N{x3>Lo} lies outside of X,N{x3> Lo}, comparing the inequalities (4.53) and
(4.55) yields
u(z,7) = —Cp(+)/? (4.56)

for {Lo<z3<+/a} (and similarly for negative x3). Hence, (4.52) implies that (4.56) holds
for
s < Va=Co*(KA(#) 7M1,

Next, we establish the upper bound. By using (4.16), we have

e W2 L2 U (Lo)—2 <4(Uy(Lo)—V2),
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for sufficiently small b. Therefore, if we choose
b’ =4eLy 2K B(7),

then we have )
KB(7) = @Lgb‘l < Up(Lo)—V2.

Hence, (4.52) implies that M,N{x3>Lo} lies inside of ibﬂ{x:),}Lo} for 7<7. Then,

(4.16) implies that
~ 1
U? (> <2+4b.
"\Vb

Thus, we can complete the proof by arguing similarly with the KM-shrinkers f]b as outer

barriers. O

Similarly as in Proposition 4.10, the C%-estimate from Proposition 4.18 can be up-
graded to a C*-estimate. Hence, we can now repeat the process from §4.1 with better

functions p and o. Namely, we can now choose
p(r)=B(r)~° and o(r)=p(1)"", (4.57)
and write M, as a graph of a function u over YN By,(r) such that

[u(-, ) llca=nBa,0 0) < p(r)~? (4.58)

for 7<T. Note that, by equation (4.50), the derivative p’ indeed satisfies
—p(1) <p'(7) <0, (4.59)

as required by condition (4.1). From now on, we work with the function

(e, ) = ne( 5 ).

where p is the improved graphical radius from (4.57).

The following gives a lower bound for the improved graphical radius.

PROPOSITION 4.19. There exists constants v>0 and ¢>0 such that
p(1) = || (4.60)

holds for T<T.
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Proof. By Colding—Minicozzi [CM2, Theorem 6.1], there exist ne (%, 1) and K <oo
such that

(F(Z)_F(MT))H_"<K(F(MT71)_F(MT+1))

for 7<T. Using the discrete Lojasiewicz lemma [CM2, Lemma 6.9] and also [CM2,
formulas (6.19) and (6.20)], this yields

(F(2)-F(L)) < Clr|~/7,

and

SR 1)~ F(TT_ )2 <C()T (161)

=7
1 1

Thus, as in the proof of [CM2, Theorem 0.2], we obtain

[ L,

for 7<T. Using also [CM2, Lemma A.48], this yields

for every

Tt

H+ 5 emlol?/4 dp, dr' < C|r|™"

/ i, 7)|e =A< Ol
S msl<p(r)/2)

Together with (4.58), this implies
a(r) < Clr| /2.
Taking also into account (4.51), we infer that
B(r)<C|r|~/2. (4.62)

Recalling (4.57), we conclude that (4.60) holds with y=1{5v. O

4.3.2. Estimates for some error terms

In the following lemma we Taylor expand the rescaled mean-curvature flow to second

order.



ANCIENT LOW-ENTROPY FLOWS 263

LEMMA 4.20. The function

T3
(e, ) =u(w e )
satisfies
1 1
Oyt = Lit— —=i? — —— 3 L,
u u 2\@“ 2\[ \[uugg

where the error term can be estimated by
| B < Coo(Jul+]Vul)(Jul+ [Vl +V?ul)
+Cl¢'|p (| Vul+]zul) +Cle" [p~2ul (4.63)
+Cp(1—)(|uf* +|Vul* +|V?ul?).
Proof. The rescaled mean-curvature flow for graphs over the cylinder is given by
(H— u2 )u B u2ugy  2upusuzg u2
(V2+4u)? (V24+u)!  (V24u)?  (V24u)?
1+u2+u§(\/§+u)‘2

Oru=

(r) 1
+ V2+u—zu,
(VZ+u)?  V2+u ( )
cf. [GKS, Appendix A]. Hence,
ug Ugo 1

Orth = Uy, — (\[—&—u zuy)+En,

(ﬂ+u)3+(\/§+u) Vatu 2

where
|EL| < C|Vul*(|Vu|+|V2ul).

This implies

Oru=Lu+Q(u)+Es, (4.64)
where
Ou) = —L ! —uu
2\/§ 2[ \/» 00,
and

|Es| < C|\Vul*(Ju|+|Vu|+|Vu|) +C|ul?| V2u|+Clul?.

We now want to see what this computation translates to in terms of @. For the

linear term, using (4.59) we get
|07t Lia—p(0ru—Lu)| < p~ 2" | [ul+ 207 ' [(|Vul +|2ul). (4.65)
For the quadratic term, using that p is f-independent, we get
1Q(2) —pQ(u)| = |¥*Q(u) —pQ(u)| = ¢(1-¢)|Q(u)|. (4.66)

Putting everything together, this implies the assertion. O
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For our function

(e, =u(w (5 ).

where p is the improved graphical scale from (4.57), we let
U. =Pl Uo=|Poilll, and U =|P a3,
By assumption (4.45) and Proposition 4.8, we still have
Us+U_=0(Uy). (4.67)
Therefore, we can now expand
=191+ +asps+o(|dl), (4.68)

where
a(r) = (o (1), az(1), as(7))
are time-dependent coefficients, and where 1, ¥, and 13 are the three zero eigenfunc-

tions satisfying Li; =0, explicitly

Wy =273/2 (i)1/4(22 -2),

21
e \1/4
Yo = (—) zcos b,
2
e \1/4
s = (—) 2sind.
21

Moreover, Lemma 4.17 and equation (4.67) yield that
C~a(r) <d|(t) < Cafr) (4.69)

for 7<T, where «(7) is the function defined in equation (4.47).

PROPOSITION 4.21. The error term E from Lemma 4.20 satisfies the estimate
(B, i) < CB(7)*F1/5

for T<T.

Proof. Using equation (4.58) and Lemma 4.20, we see that

|E|<Cp(r) 2.
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Together with [1;|<Cp(7)? on the support of E, this yields the coarse estimate

|E|¢:] < C.
Using this, we compute
/ Evie /4 < C P/ /4
EN{lzs|Zp(r)t/10} En{p(r)/10<]zs|<p ()}
<CB(7)?

for 7<T.
On the other hand, if |z3|<3p(7), we have
(p/Z(pH=1—<p=O.

1/10

Therefore, for |z3|<p(T) we can estimate

B[] < C(22+2)(|u| +[Vu])* (Jul + ] Vu|+ | Vul)
<Cp* M2 ([uf +|Vul?)
<CpH(Ju+|Vul?).

Thus, using also Proposition 4.3 and Lemma 4.17, we infer that

gi/ (u2+|vu‘2)eflwl2/4
P(7) Jenjesi<o(n)}

<Cp(r)"a(r)?
<CB(r)* o,

Eype—lal*/4

/Eﬁ{zslép(ﬂl/w}

This proves the proposition. O

4.3.3. Axis tilt decay

Our next objective is to show that rotations, captured by the coefficients as and ag in
the expansion (4.68), are decaying rapidly.
Given a point ¢€R3 and a direction we S?, we denote by K the normalized rotation

vector field that corresponds to a rotation by %ﬂ' around the axis W={g+wt:teR},

namely
0 -1 0
K(x):SJS_l(x—q), where J=(1 0 0],
0 0 O

and S€S0j3 is any rotation matrix with Sez=w.(*!)

(?1) S is only determined up to a 1-parameter choice, but K is well-defined.
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Definition 4.22. (Cf. [BC, Definition 4.3]) A point X e M with H(X)>0 is called

d-symmetric if there exists a normalized rotation vector field K such that
|(K,v)H|<d in the parabolic ball P(X,10H !(X)).

LEMMA 4.23. There exists some 19>0 such that all points X € M that correspond
to points in M,N{|z3|<p(1)} are 270 symmetric for T<T.

Proof. Fix some time 7o<7T and set R:=2p(7p). Let £9>0 and L <oco be the constant
from the neck-improvement theorem [BC, Theorem 4.4].
Let X €M, be a point with |z3|<R—L and 7<7, and denote by X € M the corre-

sponding point in the unrescaled flow. Using (4.58) we see that every
X' e P(X,LH ' (X))NM

lies on an eg-neck and is eg-symmetric. Hence, by the neck improvement theorem, X is
2~ lgp-symmetric.

Similarly, for any X € M, with |z3|<R—2L and 7<7y, the arguments above show
that the corresponding point X € M is 2~ 2cg-symmetric. Iterating this k times, until

2R—(k+1)L <R, (4.70)

we get that for all Xe€M, with |z3|<3R and 7<79, the corresponding point X €M
is 27 Feg-symmetric. Since from (4.70), we get k>R/L—1, choosing ny=1/L gives the

desires result. O

PROPOSITION 4.24. (Axis tilt decay) There exists a constant n>0 such that for all
7<T we have

Jug(z,7)| < e
for all zeXn{|zs|<c|T|"}.

Proof. For each 7<T, consider a point X,€M,N{r3=0}, and let w,€S? be a di-
rection (close to e3) in which the corresponding point X, €M in the unrescaled flow is
2-°(T)_symmetric. Since each X,_; is C2~ (") _symmetric with respect to both w;, and
wr_1, We get

|w7_ —Wr_1 | < CQ*WOP("’) .

Hence, using also that w,;—e3 as 7— —oo and Proposition 4.19, we obtain

|w7-763| < C Z 2*7100(7*7”) < C Z 2*0770\7*7”“_

m=0 m=0
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Note that this can be safely estimated by Ce~"I"I" | where n:z%no.
As any x€ M, with |z3|<c|7|7 is also C27"(")-symmetric with direction w(z, ), we
get that
w(z, 7)—w,| < C|r[727 (),

which, again, can be safely estimated by Ce~I7I". Thus, all such points are also Ce="7I"-
symmetric with respect to the z3-axis. Considering the normalized rotation vector field

K:=x10,, —220;, around the x3-axis, we conclude that
Sluol H|(K,v)| < CeI"

Slightly decreasing 7, this proves the proposition. O

COROLLARY 4.25. The coefficients as and asz from the expansion (4.68) satisfy
g | +]as| < e (4.71)

for T<T.

Proof. Using 1o =0y13 and Proposition 4.24, we obtain
|ca| = [(@1, Dptis)| = [ (Do, 3)| < || Dptt]| 3 < Ce I

Similarly, we can estimate |ag| to complete the proof. O

4.3.4. The inwards quadratic neck theorem
The next proposition gives an ODE for the coefficient ay from the expansion (4.68).

PROPOSITION 4.26. The coefficient o from the expansion (4.68) satisfies

d e \/4 —le

o= —(%) a2 +o(B%)+0(e). (4.72)
Proof. Using Lemma 4.20 and the identities £ =0 and 0g1b; =0, we compute

d .
Eal = <a‘ru7 1/)1>

:<£11— ! 0] —|——u9 ( 0)o+E, w1>

g

= 2\/>a1<1/)17w1>+0(6 )+O( il )’
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where in the last step we used Propositions 4.21 and 4.24 and Corollary 4.25 to estimate

the error terms. Together with

1 2 e \l/4
3.1 —|x?/4 _ 3/2(7)
/¢147re 2 or/)

this implies the assertion. O

Recall that by (4.62) the quantity 5(7) decays at some definite rate as 7——o0. The
following lemma shows that 5(7) does not decay rapidly.

LEMMA 4.27. We have

limsup |7|'°B(7) = cc.
T——00

Proof. Suppose towards a contradiction, there is some C'<oo such that
B(r)<Clr|71Y forall 7<T.

Then, p(7)>c|7|?, and equation (4.7), together with the assumption that the neutral

mode is dominant, implies

<O

d
— log U,
'dT o8 o
Hence, |log Up|<C for all 7<T, which contradicts

lim Up(r)=0. O

T——00
THEOREM 4.28. The coefficients aq, as, and as from the expansion (4.68) satisfy

B —21/47T1/46_1/4—|—0(1)

a1 (T) (4.73)
||
and
|az|+|s| =o(|ax]) (4.74)
for T<T.
Proof. To keep track of the errors, we consider the monotone quantity
o ()= sup |y (0)]. (4.75)
By Proposition 4.26, inequality (4.69), and Corollary 4.25, for every £>0 we get
d e /4, ~2 —1000
—ar()+(52) " ed(n)| <ead(r)+Ir] (4.76)
dr 27
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for 7<T =T (¢). Moreover, taking also into account Lemma 4.27, we have

limsup | 7] (1) = oo. (4.77)

T+—00
Consider the sets

Li={r<T:a(r)=|aa(7)[},

Ji={r <Tia(n) > |70,
Due to @1 (7)—0 and (4.77), the set INJ contains a sequence of numbers going to —oo.

Clearly, INJC(—o0,T] is closed.
Let ioeINJ. Then, by (4.76), we have

d 1/ e\l/4 1/7eN/4 1
= <——(— 2 g—2(—) —— .
dTm(T) ST5 (271_) ai(r) < 4 (277) 7100 (4.78)

at 7=7p. In particular, remembering (4.75), we see that «y(79)<0. In fact, we can find
a 0>0 such that (4.78) and «a;(7)<0 hold for |7—79|<d. Moreover, if there is some 7€
with 7€ (—o00,79] and o'(7)=0, then (4.76) yields

03 (7)) < 207|719 < 2] 19 < gl (o).

Hence, if
1011 (10)| < e (1)] < et (10)],
then 7€1. Thus, possibly after decreasing 0, we get (70—3,79]CI. Then, (4.76) implies
(t0—9,70]CJ.
Summing up, we can find a; by solving the ODE

e ()

for 7<T (¢). This yields (4.73). Since as and ag are rapidly decaying, we also get (4.74).

<ea? ()4 || 71000 (4.79)

This concludes the proof of the theorem. O

COROLLARY 4.29. For 7<T the rescaled flow MXoN{|z|>Lo} is contained inside
the cylinder ¥ of radius /2.

Proof. Theorem 4.28 implies that MXo satisfies
u(Lo,7) <0
for <T. Hence, given arbitrarily small >0, the KM-barrier 3, lies outside of
MXon{zs =Ly}

Using also Corollary 3.10 and the avoidance principle we infer that ib lies outside of
MXo on {x3>Lo}. Namely, MX0 satisfies 22 +22<2 for x3>Lo. In the same manner,
MXo satisfies 22 +22<2 for 23< L. This proves the corollary. O
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COROLLARY 4.30. For an ancient low-entropy solution, if the neutral mode is dom-

inant, then the solution is compact.

Proof. Denote the rescaled flow by M,=MX and the original flow by M={M,}.
Then, by the above corollary, there exists some 1 € (—00,tg) and L<oo such that

My, 0{lz| = L}

is contained inside the cylinder of radius 1/2(tp—t1). The lemma below implies that M;

is compact for all t>ty. Since X was arbitrary, this proves the corollary. O

LEMMA 4.31. Let MyCR? be a complete embedded surface such that

for some L<oo, where ¥ denotes the cylinder of radius /2. Then the mean-curvature
flow {M} of My is compact for all t>1.

Proof. Let M be the mean-curvature flow with initial condition My. For z;—+oo
consider the shifted flows M?=M —(z;,0). For i—oc the flows M® converge to a limit
M, whose initial time slice is ¥. By uniqueness, M must be a round shrinking
cylinder that becomes extinct at time 1. We conclude that M; is compact (this includes
the possibility that M is non-compact, but M; becomes compact via a contracting cusp

singularity at spatial infinity) for all ¢>1. O

5. Curvature bound and cap size control

Throughout this section, M will always be an ancient low-entropy flow where the plus
mode is dominant. We will frequently use the fine neck theorem (Theorem 4.15) and its
corollary (Corollary 4.16). By an affine change of coordinates, we may assume without

loss of generality that
1

ﬁ»

that the axis of the asymptotic cylinder is the x3 axis, and that

a=

)0
2, )

is attained at the origin.
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5.1. Global curvature bound

We will prove a global in space-time curvature bound. To this end, we start with the

following proposition.

PROPOSITION 5.1. For every A<oo there exists a p=p(M, A)<oo with the following
significance. If po,p€ My, are points such that Z(po,to) <A and

d:=z3(p)—x3(po) > p,

then
Z(p7 tO) > A.

Proof. Let C=C(M)<oo and T (A)>—00 be the constants from the fine neck theo-
rem (Theorem 4.15) applied at any point with cylindrical scale at most A. We will show
that if pg, p€ My, are points with Z(po, to) <A and Z(p,to) <A, then d:=x3(p)—xz3(po) is
bounded from above.

Let t; =ty —d?, and let 7 be the corresponding rescaled time, namely
7=—log(tp—t1) = —2logd. (5.1)

Observe that if d is sufficiently large, at time 7 we will see necks around py and p. Those
two necks have to align with each other, else looking further back in time they would
intersect. Moreover, if d is sufficiently large, then 7<7 (A), as required for applying the
fine neck theorem.

Letting 7o and r be (representitives of) the radii of the fine necks around py and p
at time ¢1, applying the fine neck theorem (Theorem 4.15) at time 7 with z=0 twice,

once centered at (po,to) and once centered at (p,tg), we obtain
|r—ro| < 2Ce™/160, (5.2)

On the other hand, applying the fine neck theorem (Theorem 4.15) centered at (pg,to)

at time 7 with z=1, we obtain

1
[r—ro| > —= —Ce™/160, (5.3)

V2
Comparing (5.2) and (5.3), we conclude that —7 is bounded; hence d is bounded above.
This finishes the proof of the proposition. O

COROLLARY 5.2. For every compact interval I C(—o0,Tr(M)) there exist constants
0>0, A<oo and C<oo (possibly depending on M and I) such that for every pe M, with
tel and z3(p)=A either

R(p,t) >,

or

(p,t) is e-spherical at scale CR(p,t).
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Proof. Suppose that there exists a sequence of points p, € M;, with t; €l such that
x3(pr)—o00 and R(p,tr)—0. Recall that, by §3.2, there are constants 0 C<C’' <00
such that if (pg, ) is not e-spherical at scale CR(py, tx), then

Z(pr,ti) < C'R(p, tr).

For k large, the latter option is impossible by Proposition 5.1, and so the assertion
follows. 0

LEMMA 5.3. The surface My, has no compact connected components for any
to € (—OO7 TE(M))

Proof. Suppose towards a contradiction that there is a compact connected compo-
nent Ny, at some time ¢;. Let A be the space-time connected component of N, and
denote its time-t slice by N;. By Corollary 4.16, there is some t; <tg such that Ny, is
non-compact.

Let 0, A, and C be the constants from Corollary 5.2, corresponding to the interval
I=[t1,to]. Using Corollary 4.16 and spherical barriers, we see that there is a constant
A €(A, 00) such that

N:C B(0,A)U{zs > A"} (5.4)

for all tel. After possibly increasing the A’, we may assume that

A > sup |p|+10v/t; —to+10C5.

PENtO

Now, if NV} is compact at any given t€[ty, to], then it must be the case that R(p,t)>4
for every pe N; with xz3(p)>A’. Otherwise, Corollary 5.2 would imply that (p,t) is e-

spherical at a scale <C4¢, and N; could not reach N, at time ¢;,. Hence,

d
—— sup z3(p) <267* (5.5)
dt peNt

whenever N; is compact and sup,¢ v, #3(p)=A’. Combining (5.4) and (5.5), we conclude

that N is compact for all t€[t1,to]; a contradiction. O

COROLLARY 5.4. There exist a constant C=C(M)<oo such that
Z(p,t) <CR(p,1)
for all (p,t)e M. In particular,

lim  R(p,t)=o0.

z3(p)—+o0
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Proof. By Lemma 5.3, the flow cannot be e-spherical at any scale. Thus, by §3.2,
the regularity scale and the cylindrical scale must be comparable. Together with Propo-
sition 5.1, this yields

lim R(p,t)=oc. O

z3(p)—o0
Lemma 5.3 also quickly implies a local type-I curvature estimate.

PROPOSITION 5.5. For all A<oco there is a C(A)<oo with the following significance.

If M reaches a point py at time ty, then we have the curvature bound

C

At <
—

i

for all pe B(po, AVito—1) at all t<ty.

Proof. Suppose towards a contradiction that for some A<oo there is a sequence of
points (p;, t;) €M such that the estimate fails for C;=i.

After shifting (p;,t;) to (0,0) and rescaling, we get a sequence of flows M? which
reach the point zero at time zero, such that there are points ¢;€ M*;NB(0, A) with

|Al(g;, —1) > 1.

Moreover, the time slices of M have no compact connected components, by Lemma 5.3.

By the entropy assumption, we may pass to a subsequential limit M?— M, which
is an ancient low-entropy flow. By Brakke’s clearing-out lemma [Bral, the limit flow
M reaches the origin at time zero. Moreover, the limit M cannot have any compact
connected component at any ¢ <0.

Thus, M has no spherical singularities when t<0, and so MN{t<0} is smooth. In
particular, M satisfies |A|<C on B(0,2A) x [72, f%} for some C < oo; for i large enough,
this contradicts |A|(g;, —1)>1. O

Combining the above results, we now get a global curvature bound:

THEOREM b5.6. (Global curvature bound) Let M be an ancient low-entropy flow
such that the plus mode is dominant. Then M is eternal with globally bounded curvature,
namely

TE(M) =00,

and there is a constant C=C(M)<oo such that

sup |A|(p,t) <C.
(p,t)eM
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Proof. By Corollary 5.4 the flow is eternal, i.e. Tg(M)=00, and by Lemma 5.3
the time slices have no compact connected components. If (p,t)€M is any point with
R(p, t)<%7 then by Proposition 5.1 and Corollary 5.4 there exists a point (g,t) with
0<z3(g)—z3(p)<Cp such that R(q,t)=1. But then, by unit regularity there is a point
(¢',t+0) with |¢'—q|<1 and R(q',t+6)<2, where >0 is a uniform constant. Using the

fine neck theorem (Theorem 4.15), we see that

lz1(p) —21(q)|+|22(p) —22(9)|

is bounded. Applying the local type-I curvature estimate (Proposition 5.5) centered at
(¢',t+0) we conclude that |A(p,t)|<C. O

5.2. Cap size control and asymptotics

The goal of this section is to prove Theorem 5.9, which states that our surfaces M; have
a cap of uniformly controlled size and open up like a parabola. To begin with, let us

consider the “height of the tip” function

Y(t):= inf xs.

T€EM,

LEMMA 5.7. The function v is strictly increasing and satisfies

Proof. Applying Corollary 4.16 we see that 1(t)>—oco for every t€R, and that the
infimum is actually a minimum (using also Corollary 3.10). By the comparison with
planes / the strong maximum principle, the function 1 is strictly increasing. Applying

Corollary 4.16 again, we infer that

lim ¢(t) = —o0.

t——o0

Finally, by comparison with conical expanders (using also Corollary 3.10), we have

lim ¢ (t) = oco. O

t—o0

PROPOSITION 5.8. (Fast tip points) There exists a constant Q=Q(M)<oco such
that every p€ My with x3(p)=1(t) satisfies R(p,t)<Q.
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Proof. If the assertion fails, we can find a sequence (pj,t;) €M with x3(p;)=1(t;)
such that

Qj = R(pj,tj) — OQ.

Let M7 be the flow that is obtained by parabolically rescaling by Qj_l around

lg—0.

Note that M7 has expansion parameter @’ :Q;

Up to a subsequence, we can pass to a limit M. The limit M is itself a non-
compact ancient low-entropy flow. Since its zero-time slice is contained in a half space,
M cannot be the cylinder. Hence, by the fine neck theorem (Theorem 4.15) it has
an expansion parameter a®°#0. However, it follows from the fine neck theorem and its

proof that @’ —a*, contradicting @’ —0. This finishes the proof of the proposition. [J
For each time, select a point p; € M; such that x3(p;)=1(t).

THEOREM 5.9. (Cap size control) Let M be an ancient low-entropy flow such that
the plus mode is dominant. Then there exists a C=C(M)<oo such that, for tER, every
point in M\ Bc(p:) lies on a fine neck. In particular, the surface My has exactly one
end.

Moreover, Mi\ Be(pt) is the graph of a function r in cylindrical coordinates around

the z-azis satisfying

r(t2,0) = /2(z =9 (1) +o(v/z—4(t)) (5.6)

for z=2¢(t)+C, and the height of the tip function 1 satisfies
P(t) =t+o([t]).

Proof. Let pe My, and let ¢, be the time in which 9 (t.)=z3(p). By Proposition 5.8
(fast tip points), we have R(p:, ) <@, and by the global curvature bound (Theorem 5.6),
we have t, —t>c(z3(p) —1(t)). Thus, applying the fine neck theorem (Theorem 4.15) and
Proposition 4.9 at (p:,,t«), we see that if x3(p)—1(t) is sufficiently large, then p lies on
a fine neck. Together with Corollaries 3.10 and 4.16, this proves that we have a cap of
controlled size C=C(M)< oo, and exactly one end.

Fix t. For z2¢(t)+C, let r(z) be (a representitive of) the radius of the fine neck of
M, at z3(x)=z. By the above and the fine neck theorem (Theorem 4.15), we have

r(z+r(2)) =r(2)+1+o((z = (t)) /1)), (5.7)
This can be iterated to

r(zHhr(2) + L+ o((z = (1) /1)) 5k(k—1)) =r(2)+h[L+o((z = (1)) /1)),



276 K. CHOI, R. HASLHOFER AND O. HERSHKOVITS

Setting h=z—1(t) we get

r(z+kr(z)+[1+o(h /160 1k(k—1)) =r(z)+k[1+o(h~1/150)).

The argument of r in the left-hand side of (5.8) is
s :=z—l—k;r(z)—l—[1—|—0(h_1/160)]%k:(k—1),

and solving for k, we get

~(r(2)= 1)+ VBT o] (5=2)

k= 1+o(h—1/160)

Combining (5.8) and (5.9), and taking h very large, we obtain
r(h) = V2h+o(Vh).

This proves (5.6).

(5.8)

(5.10)

Finally, in light of (5.10), one can put a a bowl with tip curvature 1+¢ inside the

domain bounded by M;,, and a bowl with tip curvature 1—¢ outside that domain. By

the avoidance principle, this implies
(1—28)t <(t) < (1428)t

for large enough t, and hence

P(t) =t+o(t)

for positive t. In fact, the above steps are uniform in the original time ty: For every ¢

there exist a uniform s such that
(1=26)(t—to) < (t) =t (to) < (1426)(t—to),
whenever t—tg>s. Thus, for every t<0, we have
(1=20)[t] < —9(t) < (1+29)]¢],

and so
¥(t) =t+o([t])

holds for all . This finishes the proof of the theorem.
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6. Rotational symmetry
6.1. Fine expansion away from the cap

Let M be as in the previous section. The goal of this section is to prove Theorem 6.6,
which shows that the cylindrical end becomes rotationally symmetric at very fast rate,
and also controls the position of the cap in the xy-plane uniformly in time.

Given a point ¢€R3 and a direction we S?, we denote by K the normalized rotation

vector field that corresponds to a rotation by %7‘(‘ around the axis W={g+wt:teR},

namely
0 -1 0
K(z)=S8JS Y(x—q), whereJ=|1 0 0|,
0 0 0

and S€S0; is any rotation matrix with Ses=w.(*?)

Definition 6.1. (Cf. [BC, Definition 4.3]) A point XeM with H(X)>0 is called
d-symmetric if there exists a normalized rotation vector field K such that

|(K,v)H| <4 in the parabolic ball P(X,10H 1(X)).

The following proposition shows that M becomes §-symmetric at a very fast rate if
one moves away from the cap.

PROPOSITION 6.2. There exist a constant C=C(M)<oo with the following signifi-
cance. If X=(x,t)eM is any point with

€3 7¢(t) 2 Ca
then
X is (w3—p(t)) 73 -symmetric.

Proof. We recall from Theorem 5.9 (cap size control) that there exists a constant
Cp< oo such that every point z€ M;\ B¢, (p:) lies on the center of a fine neck. In partic-
ular, every point X =(z,t) with

r3—1(t) = Co
satisfies the a-priori assumptions of the neck-improvement theorem from Brendle-Choi
[BC, Theorem 4.4]. Hence, if X=(z,t)eM is a point with

x3—(t) > 27/1900,

then we can iteratively apply the neck-improvement theorem [BC, Theorem 4.4] to con-

clude that X is 27 7e-symmetric. This implies the assertion. O

(?2) The matrix S is only determined up to a 1-parameter choice, but K is well-defined.
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COROLLARY 6.3. (Strong symmetry) There exist a constant C=C(M)<oo with the
following significance. If X =(z,t)eEM is any point with x3—(t)=C, then there exist
a direction wx €S? and a point qx €R? with

lwx —e3| <155 and  (gx,e3) =3,

such that the normalized rotation vector field

Kx(y)=SxJSx (y—ax),
where Sx €SO3 with Sxes=wx, satisfies the estimate

sup (Ko, v) H| < (w3 — (1) 7
P(X,10H-1(X))

Proof. Since fine necks are very close to the asymptotic cylinder, we always have
|lwx —es| < 1—(1)0. In addition, by moving ¢x along the axis W, we can always arrange that
(gx,e3)=ux3. Hence, the corollary follows from the proposition. O

Definition 6.4. We call any triple (X, wx,gx) that satisfies the conclusion of Corol-

lary 6.3 a strongly symmetric triple.

The following lemma shows that nearby strongly symmetric triples at the same time

align well with each other.

LEMMA 6.5. (Alignment) There exists a constant C=C(M)<oo with the following
significance. If (X,wx,qx) and (Y,wy,qy) are strongly symmetric triples with X=
(z,t), Y=(y,t), and |x—y|H(X)<1, then

lwx —wy | < C(z5—1p(t) >, (6.1)
and

[{ax —av, en)|+|{ax —av, e2)| < Clas— (1)) >/, (6.2)

Proof. Without loss of generality, after suitable rotations and translations, we may

assume that t=0, z3=0, wx=ez, gx =0, and

1 0 0
Sy=[0 cosp —sing |,
0 sing cosep

where ¢ is a fixed angle with 0<p< %.
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We express MNP(X,10H (X)) in cylindrical coordinates over the z-axis, namely

we parameterize as
(0,2,t) — (r(0,2,t) cos 0, (0, z,t)sin b, z).

In these coordinates, one can directly compute that

(cos O+r~trgsinf,sin—r~1rycosd, —r,) 63)
v= )
VI TP

and
7o

B \/1+r—2|r9|2+|rz|2.

Since X is the center of a (fine) neck, we have

|(Ex, )]

2 re2 4|72 < 14-10g, (6.4)

and ) )
S cHX) <=
T T

Combining these equations with Corollary 6.3 (strong symmetry) we infer that

ol < ooy 0,

Together with Theorem 5.9, this yields the estimate
|rg| < Cr—5% (6.5)

in the parabolic ball P(X,10H ~*(X)).
Now, for the normalized rotation vector with center ¢y =(q1, g2, ¢3) and axis wy =

(0, —sin p, cos ), we compute

(z2—q2) cos p+(z3—qs3) sin
Ky(x):SyJS;l(x—qy): —(z1—q1) cos ¢ :
—(z1—q1)sinep

and

(Ky,v) v/ 1+r=2[ro2+|r.[?
=r g2 —21q2) cos p+rt oy (w3 —g3) sin 41, (1 —q1) sinp (6.6)
477 2rg[za (22 —q2) cos o+ o (23— q3) sin o+ (21 —q1) cos ).
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Arguing as above, using Theorem 5.9 and Corollary 6.3, we obtain
(Ky,v)| < Cr=59 (6.7)
in the parabolic ball P(X,8H1(X)). In addition, we have the rough estimate
|11+ 1g2] +lgs| < 10r- (6.8)

Now, from equation (6.6), using the estimates (6.4), (6.5), (6.7) and (6.8), we infer that

To—x x . . -
NT27IG2 o 90+71($3—(J3) sinp+r. (21 —q1) sinp < Cr=>%. (6.9)

At time ¢=0, we consider the points with #=0. Then, (z1,2z2)=(r,0) and equation (6.9)
yields

—go cos o+ (x3—qs+7.(r—q1)) sinp < Cr—99,

In the case g2 <0, we consider the points with x3=20r. Then, using also |g3|<10r and
cos > %, we obtain

%\qﬂ—i—(lOr—i—rZ(r—ql)) sin p < Cr=599,

Moreover, since X lies on a (fine) neck, we have |r,|<e. Hence,

Llga|+57sinp < Or—%. (6.10)
Since sin ¢ >0, we infer that
|q2| <Cr—>% (6.11)
and
|sin | < Cr60, (6.12)

In the case g2 >0, we obtain the same estimates by considering points with x3=—20r.

Similarly, considering points with 9:%#, we obtain
lq1| < Cr—5%. (6.13)

Since |wx —wy |<C|sin ¢l, these inequalities prove the lemma. O

We are now ready to prove the main theorem of this section.
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THEOREM 6.6. (Fine asymptotics) There ezist a fived vector q=(q1, q2,0)ER? and
a large constant C'<oo (both depending on M) such that, for all tER, the surface

(M —q)n{zs—1(t) > C}
can be expressed in cylindrical coordinates over the z-axis with the estimate
|0p7|(0, 2,t) <1(6, 2,t) 7190, (6.14)
Proof. Given any time t€R, we choose a sequence of points y; € M, satisfying
(yj e3) =¥ (t)+].

By Corollary 6.3 (strong symmetry), for j large enough (which we will always assume
from now omn), these points are part of strongly symmetric triples (Y;,w;,q;), where

Y;=(y;,t). Lemma 6.5 gives the estimates
|wjt1—w;| < Cj~>%° (6.15)

and
(git1— i 1) |+ [{giy1 — i, e2)| < Cj 2%, (6.16)
Since w; converges to es, using (6.15) we get
o0
‘wj*€3| < CZ k*SOO < Cj7299'
k=3
Similarly, equation (6.16) implies that
<qj7 61>61 + <qj7 62>62
converges to a limit g€R? x {0} with the estimate
oo
g5 —a, e1)|+1(gj—q,e2)| SC D k™2 <Cj 7%,
k=

By translating M, we may assume g=0. Then, we have

—~

6.17)
6.18)

lw;—es| <Cj~%%,

—~

(a5, e1)|+1{az, e2)| < Cj 7.

By Theorem 5.9 and Corollary 6.3 (strong symmetry), this yields the assertion. O
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6.2. Moving plane method

The goal of this section is to prove Theorem 6.14, which says that M is rotationally
symmetric.

Let us start with some preliminaries about the Hopf lemma and the strong maximum
principle for graphical mean-curvature flow. Suppose that v and v are graphical solutions
of the mean-curvature flow in the parabolic ball P(0,d) around the origin of size §>0,

namely

5 Du
=+/1+|Dul| le(\/m) (6.19)

Wdlv(m) (6.20)
Then, their difference w=u—wv satisfies the linear equation
Wy = G;jW;; +b;w;, (6.21)
where
aij(w,t) =0;— 1—?'1‘;]' |2($7t)
and

Vi (u;+v;)
1+|Du]?

Vv (U +0;)

bi(z,t)=— (14| Dul?)(1+|Dv[?)

(z,t).

(z,t)+

Hence, standard results for linear parabolic equations (see e.g. [L]) yield the following

result.

LEMMA 6.7. (Hopf lemma) Let u and v be graphical solutions of the mean-curvature
flow in P(0,0)N{z1<0}. Suppose that u(0,0)=v(0,0), and that u<v in P(0,0)N{x1<

0}. Then,
ou ov

o1 —(0,0) > o2t —(0,0).

PROPOSITION 6.8. (Strong maximum principle) Let u and v be graphical solutions
of the mean-curvature flow in P(0,6). Suppose that u(0,0)=v(0,0), and that u<v in
P(0,0). Then, u=v in P(0,9).

Now, as in the previous section, let M={M;};cr be an ancient low-entropy flow
in R3, where the plus mode is dominant. By the global curvature bound (Theorem 5.6)
and the entropy assumption, there exists some uniform graphical scale do>0 at which
the Hopf lemma (Lemma 6.7) and the strong maximum principle (Proposition 6.8) can

be applied.
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To set up the (parabolic variant of the) moving plane method, given a constant 1 >0,

we consider the surfaces
Ml =M n{z1 < u}, (6.22)
M = M0 {zy > u}. (6.23)

Moreover, we set M{'=M;N{z1=pu}, and denote by M}~ the surface that is obtained
from M}'" by reflection about the plane {z;=p}, namely

M ={(2u—w1, 72, 23) 12 € M}I''}.

Similarly, denoting by K;CR? the closed domain bounded by M;, we consider the
regions
K!' = Kin{zy < pu},
K#Jr :Ktﬁ{l'l >,LL},
and
KIS ={(2u—z1,29,73): 2 € K[''}.

Definition 6.9. We say that the moving plane can reach p if for all i>p we have
the inclusion K/<CK for all teR.

The following proposition shows that the reflected domain cannot touch at spatial

infinity.

PROPOSITION 6.10. (No contact at infinity) For every pu>0, there exists a constant
h, <oo such that
K!'=n{zs>¢(t)+h,} Cnt(K!)

for every teR.
Proof. Denote the position vector of M;N{x3=1(t)+C} by

X(0,z,t)=(r(8,z,t)cos0,r(0,z,t)sinb, z).

Given (zp,t9) with zg—1(tg) >C, using Theorem 6.6 (fine asymptotics), we obtain

21

0,to)— 0o, t0)| € —————=755
|’I‘(Z()7 ) 0) T(ZO7 0, 0)|\7"(ZO,90,t0>100,

from which we directly infer that

K ~n{zs=z}n{z1 <ip} CInt(K})
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for sufficiently large zg—(to).
Let i>p. Using Theorem 6.6 (fine asymptotics), we see that if f¢ (—%7?7 0) is such
that

7“(97 205 tO) cosf € [%/17 %/1])
then, for sufficiently large zo—(¢g), we have
(Xg,e2) =rgsinf-+rcosf > —r % sin 6| +rcos 6 > 0.

Hence, we have a graph with positive slope that can be reflected. Repeating the same

argument for € (0, %7‘(‘), we conclude that
Kl'=n{xzz=2z0}N{x1 > 5p} CInt(K} )

for sufficiently large z9— (o). This proves the proposition. O

COROLLARY 6.11. (Start plane) There exists some p<oo such that the moving plane

can reach .

Proof. By Theorem 5.9 (cap size control) and Theorem 6.6 (fine asymptotics) there
exists a C'=C(M)<oo such that, whenever z3—1(t)<C, we have

3422 <100, (6.24)

namely we uniform control for the position of the cap. Together with Proposition 6.10

(no contact at infinity), this implies the assertion. O

Now, for h, as in the proposition and 6>0, we define
El'={z3 <o(t)+h,;s} and B ={zecE':d(z, M}")>d)}.

LEMMA 6.12. (Distance gap) Suppose that the moving plane can reach 1>0. Then,

there exists a positive increasing function a:(0,00) =R, such that
d(M!, K'<nE") > a(6) >0
for all teR.
Proof. We will first show that
K= CInt(K}'") (6.25)

for all teR. Indeed, by definition, we have K/'SCK}' . If (6.25) fails, then there must
be some t€R and some p€ M}'~NM}'"; this contradicts the strong maximum principle
(Proposition 6.8). This proves (6.25).
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Now, suppose towards a contradiction that, for some §>0, we have

; p— pp< K0y
%gﬂgd(Mt SKISNER)=0.

Choose a sequence of space-time points (z;,%;)€M such that ziEMt‘fﬂEt"t’é and

lim d(z;, K['™) =0.

1—00
By Proposition 6.10 (no contact at infinity), Theorem 6.6 (fine asymptotics), and the
uniform cap position control (6.24), the distance between x; and the point ¥(t;)es is
uniformly bounded. Hence, by Theorem 5.6 (global curvature bound) and Theorem 5.9
(cap size control), we can take subsequential limits M and X of the flows M — (1(¢;)es, t;)
and points z; —(t;)es. Applying the strong maximum principle (Proposition 6.8) for M

at the spacetime point (X, 0) gives a contradiction. This proves the lemma. O

LEMMA 6.13. (Angle gap) Suppose that the moving plane can reach p>0. Then,
there exists a positive constant 6,>0 such that |(v(x,t),e1)|>0,, holds on M{'NE}" for
all teR.

Proof. First, the Hopf lemma (Lemma 6.7) shows that

|<I/($,t),€1>| #O

Now, suppose towards a contradiction there is a sequence (z;,t;)€M such that
;e M{!NE} and
lim |(v(z;,t;),e1)| =0.

11— 00
Then, as in the proof of Lemma 6.12, we can take subsequential limits M and X of the
flows M —(9(t;)es, t;) and points x; —1(¢;)es. Applying the Hopf lemma (Lemma 6.7)

for M at the spacetime point (X, 0) gives a contradiction. This proves the lemma. [
THEOREM 6.14. M is rotationally symmetric.

Proof. Tt is enough to show that the moving plane can reach y=0. Consider the
interval

I'={u>0:the moving plane can reach p}

Note that I#2 by Corollary 6.11 (start plane). Let p:=inf I, and observe that pel.
Suppose towards a contradiction that p>0.

First, by Proposition 6.10 (no contact at infinity) we have

Kt(lt/2)<m(Et/;b)c g Kt(H/Q)_
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for all teR.
Next, by Lemma 6.13 (angle gap) there exists a d; € (0, min{do7 %,u}) such that, for
5€(0,071), we have
K" 9<AB!n{z; > p—26} CKP 9~

for all teR.
Finally, combining the above with Lemma 6.12 (distance gap), we conclude that for
every 6€ (0, min{dy, «(d1)}) we have

K#9< C g9~

for all t€R. Hence, the moving plane can reach p—d; a contradiction. This proves the

theorem. O

7. Classification of ancient low-entropy flows
7.1. The non-compact case

Let M be an ancient non-compact low-entropy flow that is not a round shrinking cylinder
or a flat plane. By Corollary 4.30, the plus mode is dominant. As before, we normalize
such that

a:a(./\/l)zﬁ.

THEOREM 7.1. M is the bowl soliton.

Proof. From §5 we know that M has a cap of controlled size and opens up like a
parabola. From §6 we know that M is rotationally symmetric. Thus, at each time M,
can be described by rotating a curve around the z-axis. The curve v;(s) (0<s<o0) is in
the zz-plane and satisfies z((0))=0 and 7/ (0)=(1, 0, 0).

We will first show that the height function z: M; —R does not have any local maxima.
Assume towards a contradiction that at some time ty there is a local maximum of the
height function. Denote its value by h(tg). Since the mean-curvature vector points
downward, h(t) is decreasing. On the other hand, the minimum of the height function
¥ (t) is an increasing function. In particular, h—1) is decreasing. Since local maxima of
z cannot disappear as we go back in time (cf. [Anl]), it follows that the height function

has a local maximum for all ¢<t¢y. Using Proposition 5.8, we see that
Jlim (b)) (1) =00

this contradicts the fact that the cap size is bounded. Thus, the height function z does

not have any local maxima, and the z-component of the vector +/(s) is non-zero for all

s#0.
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We can now describe M, by a function r(z,t), where 9 (t)<z<oo. To proceed, we

need the following lemma.

LEMMA 7.2. The radius function r=r(z,t) satisfies
rr, =1+0(1)
uniformly as z—(t)—oo. In particular, the radius function does not have critical points

outside a cap of controlled size.

Proof of Lemma 7.2. We recall from [BC, Lemma 6.5] that on e-necks one has the
estimate
[rr. | +|r?r..| < C,

in particular

02| < % (7.1)

Now, we consider a point (z9,tp) in a neck satisfying 9, (r?)(z0,t0)#2. Without loss
of generality, we assume 9,(r?)(20,to) —2=20>0. Then, we have 9, (r?)(z,ty)>2+46 for

|z—20|<5r0, where r9=7(z20, to) and gzmin{l, %C&lé}. Therefore, we obtain
7’2(20+(§7"0, to)*T’z(Zo, to) = (24’5)57’0

Since ((0,0, zp),to) is the center of a fine neck with rescaled time parameter 7 satisfying
e~7/?2=ry/y/2, using Theorem 5.9 we see that

|r(zo+5r0,t0)—r(zo,to)—5| < Cral/m.
Combining the above inequalities yields
Cri? 0L 0(1) = b6
Therefore, & :%CO_ 1§ for sufficiently large o, and thus & <Cry 1/80, Namely,
d,(r)—2=0(r"1/89).

This proves the lemma. O

Continuing the proof of the theorem, suppose towards a contradiction that r has a
local maximum at some time ¢y. The mean-curvature vector at such a maximum points
towards the z-axis and has size at least 1/r(z,t), hence

d 1
" (Fmaz (), 8) S =Ty
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Integrating this differential inequality from ¢y back to time —oco (again, using [Anl] to
conclude that the maximum point persists), we obtain that 72(zmax(t),t) grows at least
linearly in —¢. In particular, zmax(t) —%(t) =00 as t——o0, which, as r,(zmax(t),t)=0,
contradicts Lemma 7.2.

By the above, the (upwards) unit normal vector v of our surface can never be

horizontal or vertical (except at the tip). Thus,
fi={(v,e3)>0.

By Lemma 7.2, we have the asymptotics

flz,t)= 1+o(1) (7.2)

r

uniformly as z—1(t)—oco. In particular, there exists some universal hy<oo such that

1

fW(t)+h,t) > 0vh
for all h>hg. We claim that there exists some universal 6 >0, such that f(z,t)>0 when-
ever (1) <z<y(t)+ho. Otherwise, taking a sequence of (¢;,z;) with f(¢;,2,)—0 and
passing to a subsequential limit, we obtain a flow (low-entropy, with dominant plus
mode, rotationally symmetric, with a=1/+/2) with r.(z,0)=0 for some zy. By [Anl],
for all <0, the radius function r would have a local maximum, which was previously
seen to be impossible. Hence, we have established the existence of a positive function
g:[0,00) =R, such that

f(z,t) 2 g(z= (1)) (7.3)

Moreover, by Theorem 5.9, we have the asymptotics

H(zt) = 1+o0(1)

r

uniformly as z—1(t)—oo. Combining this with (7.2) and (7.3), we see that H/f con-
verges to 1 at spatial infinity uniformly for all ¢. In particular, there is some C'<oo such
that

H
7|<e
Suppose towards a contradiction that

H
c:=inf — < 1.

f
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Select X;=(x;,t;) €M such that
(Xl) — C.

Let M® be the flow that is obtained from M by shifting X; to the space-time origin, and
pass to a limit M. For the limit M the function H/f attains a minimum c¢<1 at the
space-time origin. Together with H/f—1 at spatial infinity, this contradicts the strong

maximum principle for the evolution equation

H H H
6t:A+2<Vlogf,V>.

f f f
Hence,
. H
inf —>1.
f
A similar argument shows that
H
sup — < 1.
f

Thus, H=f. Hence, M; is a mean-convex and non-collapsed (since the cap is compact)

translating soliton, and thus by [Has] must be the bowl soliton. O

7.2. The compact case
In this section, we treat the case where the neutral mode is dominant.
THEOREM 7.3. If the neutral mode is dominant, then M is an ancient oval.

Proof. From §4.3 we know that

M ={Mi}ie(—o0,Tm(M))

is compact. Hence, the flow becomes extinct in a point at T (M) <oo, and each time-slice
has the topology of a sphere.

Since the blowdown for t— —o0 is a cylinder, for <7 there is a central neck that
divides M, into two halves M;". We will show that M, is mean convex and a-non-
collapsed for t<7T.

Consider the “height of the tip” function

Yy (t)= max z3(p)-

Since the blowdown for t——oc is a cylinder, we have

Pilt)

t——o00 |t|
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Let t;——o0 be a sequence such that

w;(m\/@% 00

Then, we can find points p; € M, with ¢ (t;)=23(p;) and

Let M7 be the sequence of flows that is obtained from M by shifting (p;,¢;) to the origin
and parabolically rescaling by R(p;,t;)~!, and pass to a limit M. The limit M> is
an eternal low-entropy flow, which is non-flat. Hence, by Theorem 7.1 it is a translating
bowl soliton.

Therefore, for each j large enough M;; is an embedded disk which has the central
neck Z;, as a collar and also another neck Z;’j bounding a convex cap C’;rj that is a-non-
collapsed, say for azl—(l)o. Let N;; be the topological annulus with collars Z;; and Z;’j .
Let {NV;}e<¢, be the time-dependent topological annulus which is obtained from N, by
following the points backwards in time along the mean curvature evolution. By the
preservation of necks backwards in time (see §3.2), the annulus N; has two necks as
collars for all t<t;. Moreover, for t<t;, the entire domain IV; constitutes a single neck.
Hence, by the parabolic maximum principle (for H and |A|/H) applied with two collar
boundaries, the annulus IV, is mean convex and satisfies |A|/H <2 for all t<¢;.

Now, adding the cap C; , we infer that M, is mean convex and satisfies |A|/H <100.
Since t; ——o0, by applying the parabolic maximum principle again, but this time for
the disk M," which has only one collar boundary, the central neck Z;, we conclude that
M," is mean convex and satisfies |A|/H <100 for t<T.

The same argument applies to M, . Hence, M={M;};c(—c0,15(Mm)) IS mean convex

and satisfies |A|/H <100. Together with the entropy assumption, this implies that

M ={M;}i1e(—o0,Tn(M))

is a-non-collapsed for some a>0. Thus, by [ADS2] it is an ancient oval. O

8. Applications
8.1. Proof of the mean-convex neighborhood conjecture

The purpose of this section is to prove Theorem 1.7 (mean-convex neighborhoods at all
times). Since spherical singularities, by compactness, clearly have mean-convex neigh-

borhoods, it suffices to prove.
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THEOREM 8.1. (Mean-convex neighborhood theorem) Let Xo=(xo,%0) be a (back-
wardly) singular point of {My}i>0 and suppose that

lim A(Ky, ya-2:—70) = B*(v/2(to—t) ) xR, (8.1)

A—00

smoothly with multiplicity 1. Then there exist an e=e(Xo)>0 such that whenever
to—e <t <ty <tp+e
then
K;,NB(xg,e) C Ky, \ My, . (8.2)
The same result holds with M and K replaced by M' and K', respectively.

We recall that given a closed embedded surface M CR?, we denote by {M;};>0 the
outer flow. Observe that if z€M; is a regular point, then there exists a §>0 such that
M;NB(z,0) splits B(z,J) into two connected components: one in Int(K;) and the other
in R?\ K;.

Theorem 8.1 will be proved after the following two auxiliary results.

PROPOSITION 8.2. Under the assumptions of Theorem 8.1, there exists a constant
0=05(X0)>0 and a unit-reqular, cyclic, integral Brakke flow M={p;}t>1,—s whose sup-
port is {My}1>t,—s such that the following conditions hold.

(i) The tangent flow to M at Xg is a multiplicity-1 cylinder.

(ii) The flow M has only multiplicity-1 cylindrical and spherical singularities in

E(l‘o, 2(5) X [to—(s, to-i—(S].

(iii) M is smooth in B(xg,20) for a.e. tE€[to—0,to+6] and is smooth outside of a
set of Hausdorff dimension 1 for every t€[to—0J,to+0].
(iv) H#O0 for every regular point of M in

E(Io,Qd)X [to*é, t0+5]
(v) There exist A<oo and ¢>0 such that if X=(z,t) is a point of M in
E(x0,2(5)>< [to—(s, to—i—(S]

with R(X)<e¢, then M is smooth and connected in P(X, AR(X)) and there is a point
X'=(',t") e MNP(X, AR(x)) with R(X')>22R(X) and with

|2’ — 0] gmax{\x—xd—cR(X/), %5}
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We remark that condition (v) will be used below to show—via a connectedness
argument — that the mean curvature on the regular set does not change sign in a suitable

space-time neighborhood of Xj.

Proof. Tt follows from [HW, Theorem B3] that there exists an outer Brakke flow
starting from M, whose support is {M;}:>0. In particular, this, together with mono-
tonicity, implies that Ent[H"|M,] is uniformly bounded. Thus, (8.1) implies that there
exists t, <ty such that

1 T —x0|? n
i / exp (_Jl (to_ti)> aH" M, <2. (8.3)
Therefore, applying [HW, Theorem B3] once more, this time with the initial time t,, we
get a unit-regular, cyclic, integral Brakke flow M:={p;}¢>:, whose support is {M;}i>, .
Together with (8.1) and (8.3), it follows that M has a multiplicity-1 tangent cylinder at
(20,t0). This proves (i).

(ii) now follows from the upper semi-continuity of the density (see §2.2), the proof
of Theorem 3.2 (partial regularity), and the gap result from Bernstein-Wang [BW].

Condition (iii) follows from (ii) and standard stratification; see e.g. [W2].

Suppose towards a contradiction that (iv) does not hold. Then, there exists a se-
quence of smooth point

X = (4, t;) = Xo = (z0, o)

with H(X;)=0. Denoting by r;=R(X;) the regularity scale, since Xq is singular and
X;— Xg, we have r; —0.

Let M® be the flow that is obtained from M by shifting X; to the origin and
parabolically rescaling by 1/r;, and pass (using Ilmanen’s compactness theorem [I1]) to
a Brakke flow limit M.

By construction as a blowup limit, M is an ancient, integral Brakke flow. By the
local regularity theorem for the mean-curvature flow and [HW, Theorem B5], M is

unit regular. By a result of White [W7], the limit M is cyclic. Furthermore, we have
Ent[M>] < Ent[S* xR]. (8.4)

This entropy bound follows from the same reasoning as in the proof of [He, Theorem 1].
For the sake of completeness, we include it here as well. Since the M? have uniformly
bounded entropy (by monotonicity), and as M®— M it follows from the definition
of the entropy of M® that there exist a sequences of points (z},t)) in the original
space-time with (1} )— (2o, to) and scales r}, —0, such that for every >0, for k large
enough,

1 |£L'—.’E;€|2 0o
ﬂ/exp(—W d/,Lt;C_T.;CZ ZEH‘D[M ]_5.

4mry
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On the other hand, since (zo,to) is a cylindrical singularity, there exist >0 such that,

for every point in (p,t) € B(xo,r) X [to—7, to+7], we have

1 2
/exp(—'x rl )dutT2 < Ent[S* xR] 4.

42 4r2

By Huisken’s monotonicity formula and by the arbitrariness of e, this implies (8.4).
Hence, M is an ancient low-entropy flow.

Now, by Theorem 1.2 (classification of ancient low-entropy flows), the limit M is
either a flat plane, round shrinking sphere, round shrinking cylinder, a bowl soliton, or an
ancient oval. If the limit is non-flat, then for i large enough that contradicts H(X;)=0.
If the limit is a flat plane, then we obtain a contradiction with the fact X; has regularity
scale 1;—0, by the local regularity theorem. This proves (iv).

For (v), observe by inspection of the four non-planar ancient low-entropy flows that
there exist A, C'<oo such that if X=(z,t) is a point on such a flow M, then for every

unit vector v, there exists a point in
X' e P(X,AR(X)){y: (y—x)-v > R(X)}NM>
with
4R(X) < R(X')<CR(X).

Using this, (v) follows by a contradiction argument similarly as in the proof of (iv). This

finishes the proof of the proposition. O

By wiggling with the constant , we may assume that, in addition to (i)—(v) of
Proposition 8.2 we also have:

(vi) to—d is a smooth time for the flow in B(xq,26), and My, sNB(xg,2d) is eo-
cylindrical, where £¢>0 is fixed.

Let A the unique (space-time) connected component of
MN(B(z0,0) % [to—b,to+6])
which contains the point Xo=(x¢,%9).(**) In particular, there exist £>0 such that
MN(B(xzg,2¢) x [to—¢, to+e]) CN. (8.5)

We will show that B(zg, ) x [to—&,to+¢] is a mean-convex neighborhood.

For any smooth point
X = (z,t) € MN(B(x0,26) x [to—6,to+7]),

if H(X) points into Ky, we say that H(X)>0, and if H(X) points outside of K}, we say
that H(X)<0.

(?2) In this section B(z,r) always denotes an open ball, and B(z,r) a closed ball.
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LEMMA 8.3. We have H>0 for all reqular points in N

Proof. For every time s€[tg—d,to+3], let A® be the set of (space-time) connected
components of N'N(R3 x [tg—6, s]), and let A be the set of space-time connected com-
ponents of N'N(R3 x [tg—4, 5)). Set

I:={s€[to—0,tg+9]:For every F € A° and X7, Xo € RegNF,
Sign(H (X1)) = Sign(H (X2))}.

Note that to—d€l, by property (vi). Also note that, if s¢I, then s'¢1 for every
s'>s. Thus I is an interval containing to—d. The assertion of the lemma is therefore
equivalent to the assertion that to+d€I. Suppose towards a contradiction that to+d¢1,
and set

sp:=supl.
CramM 8.4. We have so¢1.

Proof of Claim 8.4. If so=tg+4 this is clear by assumption. Assume so<tg+§ were
in I. Since N'NB(xg, ) is compact, each two connected components of F; #F> in A% are
a positive distance apart. Moreover, there will be no new connected components entering
B(z0,6) for some time (again, since supports of Brakke flows are closed). Thus, there
exists an s>sg such that each connected components F°€ A® has a unique connected
component F%° € A% such that F*0 CF*.

We claim that, if s—s¢ is sufficiently small, every smooth point in F* can be con-
nected by a path of smooth points in B(zg,d) to a point in F*°. Indeed, by repeated
use of Proposition 8.2 (v), any regular point X =(z,t)€F* can be connected via regular
points to some (2/,¢)=X'€F* with R(X')>c and |2’ —z|<J—c?. Thus, if s—sq is suf-
ficiently small, X’ can be connected via smooth points to a point in F*° (this argument
is similar to [KL, Propsition 3.5]).

As H#0, this implies that H does not change sign on F*. This proves the claim. [

Thus, if tg+d¢1, then I°=[sq,tg+0] for some so>to—3. As sg€I°, there exists
some connected component F€.4% such that H does not have a fixed sign over regular
points in F. Since for each s<sg, we have s€I, there are three potential ways in which

this can happen for the first time at time sg. We will rule them all out.

Case 1. Appearance of a new connected component: FCIB(xo,d)x{so}, i.e. a new
connected component enters through the boundary. In this case, all points of F are
regular, as the tangent flows are contained in half-spaces. Since F is connected (by
definition), and as H#0, this implies that the sign of H is constant along F. Thus, this

case is excluded.
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Case 2. Merger of two connected components: There exist two distinct space-time
connected components Fi €A% such that H>0 (resp. H<0) on F. (resp. ) and such
that F, NF_#@. Since H#0 at regular points, the points of 7, NF_ are all singular (in

particular, sg is a singular time). Moreover, by avoidance,
F.NF_COB(xg,08)x{s0}-

CLAIM 8.5. There exists a time t<sg such that MyNB(xg,20) is smooth and some
spatial connected component of M;NB(xg,25) contains points both from F, and F_.

Proof of Claim 8.5. Counsider the spatial connected components of such Fy, F.(t),
and observe how they extend to B(x,24). If they never intersect on smooth times, then
via a density argument (or, indeed, by the maximum principle), we see that, at singular
times as well, if (2’,t’) is a point reached by both smooth flows, then ' €9B(z, 25). We
thus obtain two disjoint unit multiplicity Brakke flows in B (1:0, %6), which have a point
in F,NF_ as a joint point they reach at time sg, but this is again impossible since the
Huisken density near (zo,to) is less than 2. O

Since H#0 on M;NB(xg,2J), this gives a contradiction to the definitions of F.
Indeed, at time ¢, the signs of H on F. have to be the same. Thus, this case is excluded

as well.

Case 3. Merger of an existing component with a new boundary component: In
this case, we may assume without loss of generality that F contains F.UJFy, where on

F.eA%° we have H>0 on regular points and where
]:8 - FN (8B(m0, 5) X {So})

is connected, intersects F,, and contains at least one point which is not in

MN(B(z0,68) X [to—5, $0)),

and all such points have H<0 (note that, as in the first case, such points are always
regular). This case is excluded similarly to Case 2 above: Taking such a point, and
looking at the connected component of the point reaching it at a slightly earlier smooth
time ¢ in a slightly bigger ball, we see it intersects with the continuation of . (t) in that
ball, which cannot be.

We have thus excluded the existence of such an F, so I°=@. This concludes the

proof of the lemma. O
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Proof of Theorem 8.1. Having established Proposition 8.2 and Lemma 8.3, the final
step of the proof of the mean-convex neighborhood theorem is now similar to the final
step of the proof of [HW, Theorem 3.5]. For convenience of the reader, we include the

argument here as well.

CLAIM 8.6. If tg—e<t1<ta<tp+e, then
KtzﬂB(.’Eo,E) gKtl.

Proof of Claim 8.6. Suppose to the contrary that there is point y€ Ky, NB(zg,¢)
that is not in K3, for some t; <ty with t1,t2€[tg—e, to+¢]. Let

0< p <dist(y, K¢, UOB(xq,¢)).
Let t€(t1,t) be the first time >t; such that
dist(y, K) = p.

Let pe K; be a point such that dist(y, p)=dist(y, K;). Note that the tangent flow at (p, t)
lies in a half-space (more specifically the half-space {z:z-(y—p)<0}). Hence, (p,t) is a
regular point of the flow. By the previous lemma, the mean curvature at (p,t) is positive
and so, for s<t very close to t, we have dist(y, Ks)<p; a contradiction. This proves the

claim. 0

Continuing the proof of the theorem, it only remains to show that for ¢; <ty with
tl,tQE[to—E,to‘H’:‘], if
x € B(zo,e)NKy,,

then z is in the interior of Ky,. If = is the interior of K3,, then by Claim 8.6 it is in the
interior of K;,. Thus, we may assume that z is in the boundary of Ky,. For s€lt;,t2)
sufficiently close to t2, the point x is in the interior of K,. If (z,¢2) is a regular point,
this is because the mean curvature is positive. If (z,¢2) is a singular point, this is true by
condition (ii) of Proposition 8.2. Since z is in the interior of K, and since K;C Ky, we
conclude that x is in the interior of K;,. This completes the proof of the mean-convex

neighborhood theorem. O

8.2. Proof of the uniqueness conjectures for weak flows

In this final section, we prove the uniqueness results for mean-curvature flow through
singularities, namely Theorem 1.9 (non-fattening) and Theorem 1.12 (evolution of 2-

spheres).
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Proof of Theorem 1.9. Observe that if T'<Tyjsc then, by definition, the outer flow
{Mi}icpo,m) agrees with the level set flow of M and the inner flow of M. In particular,
if (zo,7T) is a multiplicity-1 cylindrical (resp. spherical) singularity of {M;} then either
Kx x or IC’X, 5 converges for A—0 smoothly with multiplicity 1 to a round shrinking solid
cylinder or a round shrinking solid ball (see also item (i) of Proposition 8.2 and its proof).

The result now follows from combining the main theorem of Hershkovits—White
[HW], which establishes that T'<Tyisc assuming the existence of mean-convex neighbor-
hoods a priori, and Theorem 1.7, which proves the existence of mean-convex neighbor-
hoods. O

Proof of Theorem 1.12. Let M CR? be an embedded 2-sphere, and let M={M;} be
the outer flow starting at M. By a result of White [W1], whenever M; is smooth, then
it has genus zero.

Suppose towards a contradiction that there is some singular point with a tangent
flow that is not spherical or cylindrical. Let T" be the first time when this happens (more
precisely, the infimum of times where this happens). Then T'<Tyisc (by Theorem 1.9)
and for a.e. t€[0,T] the flow is smooth. Hence, we can run the argument from Ilmanen
[I2], and get, assuming the multiplicity-1 conjecture, that at time T at every singular
point there exists a tangent flow that is smooth with multiplicity 1.

Such a tangent flow, by smoothness and unit-regularity, cannot be a non-trivial
static or quasistatic cone. Hence, it is a properly embedded shrinker. Suppose towards a
contradiction there are two loops in the shrinker N that have non-vanishing intersection
number modulo 2. Then, for some smooth time ¢ <T, we would see two loops in My
with non-vanishing intersection number modulo 2; a contradiction. Hence, by a result
of Brendle [Bre2], the shrinker N is a sphere, a cylinder or a plane. Thus, arguing as
in the first paragraph of the proof of Theorem 1.9, by the mean-convex neighborhood
theorem (Theorem 1.7) and compactness, there is some §>0 such that the flow has only
cylindrical and spherical singularities on [0,7+4); this contradicts the definition of T
Hence, the flow M has only spherical and cylindrical singularities. Thus, by Theorem 1.9

(non-fattening) the solution is unique. O
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