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1. Introduction

1.1. Preamble

The main results of this paper involve general algebraic differentials on a general pencil

of algebraic curves with a fixed function x, provided all is defined over the field 
Q of

algebraic numbers. As an example, we show that there are at most finitely many complex

numbers t such that
dx

(x2−1)
√
x5+tx3+x

can be integrated in elementary terms. This is in accordance with a general conjecture

of Davenport from 1981. However, we show that his conjecture is false and we prove

a modified version, on the way determining all counterexamples (which are admittedly

rather rare). For more details, see §1.3, especially Theorem 1.3.

An important element of our proofs concerns generalised Jacobians, especially prod-

ucts of additive extensions of elliptic curves, for which we develop some independent

theory. Another key element consists of new results of relative Manin–Mumford type

allied to the Zilber–Pink conjectures. Namely, we characterise torsion points lying on a

general curve in a general abelian scheme of arbitrary relative dimension at least 2, again

provided all is defined over 
Q. As an example, we show that there are at most finitely

many complex numbers t such that a triple of points on

y2 =x(x−1)(x−t)(x−t2)(x−t4)(x−t5)(x−t8)
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with abscissae 2, 3 and 5 corresponds to a torsion point on the Jacobian. For more

details, see §1.4, especially Theorem 1.7.

We apply the latter results also to a rather general pencil of Pell’s equations in a

fixed variable x, once more provided all is defined over 
Q. As an example, consider

A2−(x8+x+t)B2 = 1, B 6= 0.

We show in principle how one could prove that there are at most finitely many complex

numbers t such that this is solvable for A and B in C[x] (which is practically certain to

be true). For more details, see §1.2, especially Theorem 1.1.

1.2. Pell’s equation

We now discuss Pell’s equation. In [51] and [10] we gave some applications to

A2−DB2 = 1, B 6= 0, (1.1)

over the polynomial ring C[x]. There, we handled only D of degree at most 6, and we

showed for example that there are at most finitely many complex t for which (1.1) is

solvable for A and B in C[x], with D=x6+x+t. There are some exceptional t, as the

formula

(2x5+1)2−(x6+x)(2x2)2 = 1 (1.2)

for t=0 shows. We also remarked that the natural “local-to-global” assertion is generally

false, with the examples D=x4+x+t or D=x6+x2+t, where Pell’s equation is not

solvable identically in t but still solvable for infinitely many values of t.

Now, we could treat x8+x+t, and so on; but we prefer to give a more general

assertion as follows, replacing the parameter t by a generic point c on a fixed base curve.

We fix a base curve C defined over 
Q. Then, we take D as a squarefree polynomial

in x of even degree 2g+2>6 (and even g=1 would do here) defined over the function

field 
Q(C). A complete smooth model (see §10) of the hyperelliptic curve HD defined by

y2=D(x) has genus g and two points ∞+ and ∞− at infinity. Their difference ∞+−∞−

gives a point PD on the Jacobian JD, itself of dimension g, of this model. It is classically

known that (1.1) is solvable if and only if PD is torsion.

For all but finitely many c in C(C) it is clear that we obtain a specialised polynomial

D(c) defined over C, also of degree 2g+2. We will be continually using such statements

in the course of this paper, sometimes in slightly less simple situations; but it is always

just a matter of elementary algebraic geometry to which we will refer without further

explanation as “reduction theory”.
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Theorem 1.1. (a) If PD is not torsion on JD and there is no elliptic curve in JD

containing a positive integer multiple of PD, then there are at most finitely many c in

C(C) such that Pell’s equation for D(c) is solvable.

(b) If there is an elliptic curve ED in JD containing nPD for a positive integer n,

then there are infinitely many c in C(C) such that Pell’s equation for D(c) is solvable;

unless there is an isogeny ι from ED to an elliptic curve E0 defined over 
Q with ι(nPD)

in E0(
Q) non-torsion, in which case there are no c at all.

(c) If PD is torsion, then for all but finitely many c in C(C), Pell’s equation for

D(c) is solvable.

Remark. We note that, if a squarefree D in 
Q(C)[x] is given, then we may effectively

determine which of (a)–(c) holds, and thereby establish whether the corresponding set

of c is finite or not (however, in case of finiteness, we do not yet know how to find the

set effectively—a deep problem to which the work [11] of Binyamini will certainly be

relevant).

Here, cases (a)–(c) can all occur; see just after the proof of Theorem 1.1 in §10.

This proof uses a new generalisation of Theorem 1.5 below.

It is probably possible to extend Theorem 1.1 to D which are not squarefree. One

would start from Proposition 2.5 of the second author’s paper [80]. Bertrand’s coun-

terexample yields among others the example

D=x2(x4+tx3−tx−1) =x2(x2−1)(x2+tx+1)

in [9], for which Pell’s equation is not identically solvable but there exist infinitely many

t with solvability (yet another type of failure for “local-to-global”). This arises from a

multiplicative extension of an elliptic scheme. On the other hand, there are at most

finitely many t such that Pell’s equation is solvable for

D=x3(x3+x+t).

This arises from an additive extension of an elliptic scheme. See the second author’s

article [79] and Schmidt [68].

1.3. Integration

We proceed now to a discussion of integration. The connection of Pell’s equation with

integration of algebraic functions in elementary terms (see later for some definitions) is

classically known since Abel [1] (and his functions) and Chebyshev [17], [18] (for elliptic

functions, with his “pseudo-elliptic integrals”). See also Halphen [34]. Thus, in [51],
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we remarked for the above example D=x6+x+t that it follows that there are at most

finitely many complex t for which there exists a non-zero E in C[x] of degree at most 4

such that E/
√
D is integrable in elementary terms (see just below for the definition). As

D′/
√
D integrates to 2

√
D, we cannot go up to degree 5 here. There are some exceptional

t, as the formula ∫
5x2 dx√
x6+x

= log

(
1

2
+x5+x2

√
x6+x

)
corresponding to (1.2) for t=0 shows.

For general degree, we can deduce the following rather quickly from Theorem 1.1.

Corollary 1.2. Suppose that D, PD and JD are as in Theorem 1.1 (a), so that

g>2. Then, there are at most finitely many c in C(C) such that there exists E 6=0 in

C[x] of degree at most 2g for which E/
√
D(c) is integrable in elementary terms.

Again, D′/
√
D shows that we cannot go up to degree 2g+1 here.

The result for g=1 would be false; for example, it is classical that there are infinitely

many τ in C such that there exists υ in C for which

x−υ√
x4+x+τ

(1.3)

is integrable in elementary terms.

Also in [51] we noted some similarities with an assertion in the book [21] of Daven-

port. His Theorem 7 (p. 90) says that if an algebraic function f(x, t) is not generically

integrable in elementary terms, then there are at most finitely many t at which the spe-

cialised function is integrable in elementary terms. Thus, there are no quantifiers about

any numerator E as above, and things like∫ √
x2+t dx=

1

2
x
√
x2+t+

t

2
log(x+

√
x2+t ) (1.4)

are ruled out. At that time, such finiteness statements were rather rare, so this is a

remarkable assertion of a “local-to-global” type (see the remarks later about results of

André, Hrushovski and the Grothendieck–Katz Conjecture).

Unfortunately his proof, summarised on the same page, cannot be rescued. Already

on the previous page, he lists five ways in which the specialised function can become

integrable in elementary terms, thus representing five possible obstacles to a proof (in fact,

there are many more obstacles, as will be clear from the discussion of our own arguments

later). He points out that the first and second of these can be easily eliminated through

what we called reduction theory above. The third obstacle he describes as “exceptionally

tricky” to eliminate. It involves residues and we address this problem in §14; if f is defined
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over 
Q, it naturally leads to a bound on the degree of t over Q, but this of course does

not suffice for finiteness.

The fourth obstacle presents a serious problem, and the treatment in [21] seems to

be based on a misunderstanding of Picard–Fuchs operators. It is somewhat classical that

integrability in elementary terms can lead to torsion properties for t (see also §14); for

example that Pt=(2,
√

2(2−t) ) is torsion on the Legendre curve Et defined by

y2 =x(x−1)(x−t)

as in (1.6) below. Now, this particular property can be disproved for generic t by applying

Picard–Fuchs, involving in this case the well-known hypergeometric expression

PF(z) = t(1−t)d
2z

dt2
+(1−2t)

dz

dt
− 1

4
z,

to a suitable point on the tangent space for example zt=
∫∞
2
dx/y. We find

PF(zt) =−
√

2(2−t)
2(2−t)2

,

and, as this is not identically zero, we may conclude (keyword: Manin) that Pt is not

identically torsion on Et (that is, for generic t). But from the fact that PF(zt) is non-

zero at all values t 6=2, we cannot conclude that Pt is non-torsion on Et at all values t 6=2.

Indeed, it was first observed in [48, p. 1677] that there are infinitely many values of t such

that Pt is torsion on Et. Thus, Picard–Fuchs arguments cannot be specialised. We will

see that one can say something about finiteness as in (1.6) below, but that requires the

full power of [48] and concerns Et×Et, not just Et (and, more generally, Theorems 1.6

and 1.7 below).

The fifth obstacle appears to be related to our §12.

We make further references to these obstacles later in this section, and also at

appropriate points in our proof.

The main aim of the present paper was originally to give a proof of Davenport’s

assertion, provided f is defined over 
Q (with eventual extension to C). But right at the

end of the investigation we found a counterexample, so here too “local-to-global” fails.

However, counterexamples seem to be extremely rare. The proof when these are excluded

uses the full power of Theorems 1.5 and 1.6 below, together with our new generalisation

of Theorem 1.5. It occupies the main part of this paper, and several additional features,

of possible interest in themselves, had to be developed.

The basic definition of integration in elementary terms involves a differential field F

with a derivation δ. An elementary extension F′ of F is a differential extension obtained
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as a finite tower of extensions F′0/F0 of intermediate differential fields F′0 and F0, where

F′0/F0 is algebraic, or F′0=F0(v) with either δv=δu/u (informally v=log u) or δv/v=δu

(informally v=expu) for some u in F0. One has, by abuse of adjectives, the following

standard definition.

Definition. An f in F is elementary integrable if f=δg for some g in some elementary

extension of F.

Abel [1] was the first to make a systematic treatment for algebraic functions, and

gave the example∫
(5x−1) dx√

x4+2x2−4x+1
= log

(
x3+x−2+x

√
x4+2x2−4x+1

x3+x−2−x
√
x4+2x2−4x+1

)
(which Maple 18 cannot verify by integration), even though the same thing with numera-

tor 5x−t is elliptic for any t 6=1. This shows that exceptional t exist also for Davenport’s

assertion. See also §21 for an amazing integral of Euler, which seems to have the same

spirit as one of our own counterexamples. Also, van der Poorten and Tran [61, p. 168]

have a hyperelliptic example corresponding to genus 2. For much higher genus, see some

formulae, apparently due to Greenhill, in §1.7.

It may have been examples like these that prompted Hardy [35, p. 11] in 1928 to

write

“... no general method has been devised by which we can always tell, after a finite

series of operations, whether any given integral is really elementary, or elliptic, or belongs

to a higher order of transcendents.”

And over a century later nothing much has changed, even for algebraic functions,

although for the elementary integration of these the connection with torsion on abelian

varieties is now much better understood, and algorithms for this torsion have been de-

veloped. In particular, Risch [64] gave an elegant formulation and sketched a method

which should decide if a given algebraic f(x) is elementary integrable. However, this

will not suffice for Davenport’s family f(x, t) with regard to the totality of its individual

members.

To deal with algebraic functions, we take a field K of characteristic zero and a curve

X, for convenience assumed to be irreducible and smooth, defined over K together with

a non-constant function x in K(X). Then, F=K(X) with δ=d/dx is a differential field.

In connection with counterexamples to Davenport’s assertion, we will give later in

§16 a full definition of “elusive” f in F; it is rather long, and at first sight appears so

restrictive that it may be found surprising that any actually exist, like Higgs bosons. For

the moment, we remark that when X has positive genus with Jacobian J containing no
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elliptic curve with complex multiplication CM, then no f in F is elusive. A more precise

definition involves residues.

To deal with specialisations, we take K as 
Q(C) for a base curve C as above, now

defined over 
Q. We then switch from X to “calligraphic” X ; this seems better to empha-

sise the particular nature of K. By reduction theory, for all but finitely many c in C(C),

we obtain a curve X (c), also irreducible and smooth, defined over C, and a differential

field F(c)=
Q(X (c)), also with δ=d/dx. For each f in F=
Q(C)(X ), we obtain f(c) in

F(c) (also a specialisation, and not to be confused with a value of the function f).

Theorem 1.3. (a) Suppose f in F is not elusive. Then, if f is not elementary

integrable, then there are at most finitely many c in C(C) such that f(c) in F(c) is

elementary integrable.

(b) Suppose f in F is elusive. Then, f is not elementary integrable, but there are

infinitely many c in C(C) such that f(c) in F(c) is elementary integrable.

Remark. It will be clear, as in the Pell discussions, that if f in 
Q(C)(X ) is given,

then we may effectively determine which of (a) and (b) holds.

We will see in §21 with several examples that both cases (a) and (b) actually turn

up. For the moment, we just quote our unexpected counterexample for (a): there are

infinitely many t=i, 15
√

5−10i, ... in C for which

x

(x2−t2)
√
x3−x

(1.5)

is elementary integrable. It is not identically so, and thus we are now in case (b) with

something elusive.

Now, in Davenport’s assertion, the fields Q(t) for the special values of t are not

specified. Possibly, they were intended to be contained in a fixed number field. We show

here that something a bit stronger follows relatively quickly, and with no exceptions.

Namely, we restrict c to C(
Q) (in itself harmless), and more crucially of bounded degree

[Q(c):Q]. This result was one of the reasons for our believing in unconditional finiteness.

Proposition 1.4. Suppose that f in F is not elementary integrable. Then, for any

D, there are at most finitely many c in C(
Q) with [Q(c):Q]6D such that f(c) in F(c)

is elementary integrable.

1.4. Relative Manin–Mumford

We consider first the following conjecture to be found in our article [48], for the moment

over C.
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Conjecture. Let S be a semiabelian scheme over a variety defined over C, and denote

by S [c] the union of its semiabelian subschemes of codimension at least c. Let V be an

irreducible closed subvariety of S. Then, V∩S [1+dimV] is contained in a finite union of

semiabelian subschemes of S of positive codimension.

This is a variant of that stated by Pink [60] in 2005, which generalised the Zilber

conjectures [82] of 2002 to schemes. In fact, the above conjecture is false (see below),

but the counterexamples do not contradict Pink’s more comprehensive statement. The

conjecture probably holds for abelian schemes (see, for example, Theorems 1.5 and 1.7

below), and possibly also for additive extensions (see, for example, Theorem 1.6 below).

The first result on this conjecture (for non-constant S) was in [48] (see also [47] for a

short version). There, we verified it when S is the fibred square of the standard Legendre

elliptic family, with coordinates (x1, y1) and (x2, y2), and V is the curve defined by x1=2

and x2=3. This amounted to the finiteness of the set of complex numbers t 6=0, 1 such

that the points

(2,
√

2(2−t) ) and (3,
√

6(3−t) ) (1.6)

both have finite order on Et.

The subsequent generalisations in [49]–[51], as well as [20] (with Corvaja), imply the

following.

Theorem 1.5. (Corvaja–Masser–Zannier) Let A be an abelian surface scheme over

a variety defined over C, and let V be an irreducible closed curve in A. Then, V∩A[2]

is contained in a finite union of abelian subschemes of A of positive codimension.

This established the above conjecture for abelian schemes of relative dimension 2,

when V is a curve.

In all these examples we are intersecting with the set S [2], which since S has relative

dimension 2 is the collection of all torsion points on the fibres. This is sometimes known

as the relative Manin–Mumford problem. Now, the work of Hindry [36] on the original

Manin–Mumford problem is not restricted to the abelian or even semiabelian situation,

and indeed it deals with arbitrary commutative group varieties, such as for example

extensions of an elliptic curve by the additive group Ga (for this example, see also the

paper [19] with Corvaja). A recent work [69] of Harry Schmidt treats such extensions of

elliptic schemes as follows.

Theorem 1.6. (Schmidt) Let G be an extension by Ga of an elliptic scheme over

a variety defined over C, and denote by G[c] the union of its flat group subschemes of

codimension at least c. Let V be an irreducible closed curve of G. Then, V∩G[2] is

contained in a finite union of group subschemes of G of positive codimension.
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However, Bertrand [8] discovered a counterexample when the surface scheme is an

extension of an elliptic scheme by the multiplicative group Gm. In a work [10] with

him and Pillay, we have also shown that his are essentially the only counterexamples for

semiabelian surfaces over 
Q. Therefore, this work completes the analysis of the above

conjecture for schemes of relative dimension 2 over 
Q. See also the second author’s book

[77, pp. 77–80].

Our proof of Theorem 1.3 uses Proposition 1.4, as well as Theorem 1.6 (over 
Q),

together with the following generalisation (also over 
Q) of Theorem 1.5.

Theorem 1.7. Let A be an abelian scheme of relative dimension g>2 over a variety

defined over 
Q, and let V be an irreducible closed curve in A. Then, V∩A[g] is contained

in a finite union of abelian subschemes of A of codimension at least g−1.

This is more in the style of relative Manin–Mumford, because of course A[g] is just

the set of torsion points on all the fibres. It also confirms a conjecture stated in 1998 by

Zhang [81].

As in our previous papers, we cian give simple examples of our theorem for base

curves in the style of (1.6). Thus, we get the finiteness of the set of complex numbers

t 6=0 with

t5 6= 1, t6 6= 1, t7 6= 1 and t8 6= 1, (1.7)

such that the triple of points

(2,
√

2(2−t)(2−t2)(2−t4)(2−t5)(2−t8) )

(3,
√

6(3−t)(3−t2)(3−t4)(3−t5)(3−t8) )

(5,
√

20(5−t)(5−t2)(5−t4)(5−t5)(5−t8) )

(1.8)

on the curve of genus 3 defined by

y2 =x(x−1)(x−t)(x−t2)(x−t4)(x−t5)(x−t8) (1.9)

give—via the unique point at infinity on (1.9)—a point of finite order on the Jacobian.

We will soon see that the base variety in Theorem 1.7 can be assumed to be irre-

ducible of dimension at most 1. In case it is a point, then A is constant, and we see the

classical result of Manin–Mumford type in the special situation under consideration. In

fact, we will appeal to the classical result to eliminate this case.

We have here V∩A[g]. A more difficult problem is to deal similarly with V∩A[2],

usually larger if g>3. Barroero and Capuano [5] have proved, for example, that there

are at most finitely many complex numbers t 6=0, 1 such that the points

(2,
√

2(2−t) ), (3,
√

6(3−t) ) and (5,
√

20(5−t) )
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satisfy two independent linear relations on Et (corresponding to the fibre cube). Very

recently [6] they have succeeded (using among other things the techniques of our §7) to

treat V∩A[2] in general (with V still a curve).

1.5. On the proofs

Let us now say something of our own proofs. That of our Theorem 1.7 follows the general

strategy of [47]–[51] and [59], but a couple of new issues arise. We have to study equations

z =x1f1+...+x2gf2g, (1.10)

where f1, ..., f2g are basis elements of the period lattice ofA, and z is an abelian logarithm.

Our coefficients x1, ..., x2g are real, and their locus S in R2g is subanalytic, of dimension

at most 2, because a complex curve has real dimension 2. When z corresponds to a

torsion point, say of order dividing some N , then we get a rational point in (1/N)Z2g

on S. The work of Pila [58] provides for any ε>0 an upper bound for their number

of order at most N ε, as N tends to infinity, provided we avoid connected semialgebraic

curves inside S.

If V itself is contained in an abelian subscheme of A of positive codimension, there is

nothing to prove. Otherwise, we are able to show that there are no connected semialge-

braic curves inside S. This follows from the algebraic independence of the g components

of z over the field generated by the components of f1 ..., f2g in (1.10). Here, the remark

of Bertrand mentioned in our previous papers (see, for example, [49, p. 455]) is especially

essential in circumventing the question of dependence relations already holding between

these components, which would presumably depend now on the Mumford–Tate group

of A. In [51] we had to appeal to more general work of André [3] (see also Bertrand’s

paper [7]); and this suffices here too.

We conclude the proof as in [51] by combining Silverman’s specialisation theorem

[74] with a result of David [23] on degrees of torsion points of the corresponding fibre of A.

If this fibre is itself simple, then we deduce by contrast that the number of rational points

in (1/N)Z2g is of order at least Nδ for some δ>0. But the fibre could well be non-simple.

Perhaps this situation could be controlled with the help of conjectures (or even theorems)

of André–Oort type. However, we can avoid such problems as in [51] by exploiting an

escape clause in [23], and using some comparatively elementary estimates from the first

author’s work [46] with Wüstholz. Now, we have to be careful about polarisations, but

by induction this leads to the desired Nδ. The resulting Proposition 7.1 should be useful

in other contexts (already in [20], for example). Comparison of the lower bound with the

above upper bound leads to an estimate for N which suffices to prove the theorem.
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The proof of Theorem 1.1 is then relatively short, following the arguments in [51]

now in higher dimension.

To deduce Corollary 1.2, the basic first step is the classical Liouville’s Theorem,

which enables to dispense with the unknown extension F′ in the definition of elementary

integrable. In general, this allows one to forget about exponentials, and use logarithms

in only a linear way. It implies in our situation that f is elementary integrable if and

only if there are g0, g1 6=0, ..., gm 6=0 in F and c1, ..., cm in C with

f = δg0+c1
δg1
g1

+...+cm
δgm
gm

(informally, f=δg for g=g0+c1 log g1+...+cm log gm a linear form in logarithms).

Then, an analysis of poles (of the associated differential) gives what we want.

As for the proof of Theorem 1.3 (see also [78] for an informal exposition), this too

relies heavily on Liouville. We start by reducing to the case of simple poles, which has

the effect of eliminating δg0. This appears to be related to Davenport’s fifth obstacle.

Then, we give the proof of Proposition 1.4. It works by bounding from above the

height h(c) using Silverman’s theorem about families of abelian varieties; however, this

result must be modified if there are non-zero isotrivial parts, and that causes extra

technicalities. For example, we have to go through estimates of the form

h(c)6C(log(h(c)+1)+1)

(more commonly seen in connection with isogeny estimates) for C independent of c.

We proceed further by looking at residues, which have to do with Davenport’s third

obstacle. If these specialise in a particular degenerate way, then we come back to bounded

degree as in Proposition 1.4. If not, then it is reasonably classical (through [64], for

example) that this leads to torsion points on specialised abelian varieties in the sense of

Theorem 1.5 or Theorem 1.7 above. Theorem 1.7 then suffices to prove Theorem 1.3 (a)

in case the Jacobian J of X is simple of dimension at least 2, also without exceptions.

This partly overcomes Davenport’s fourth and most problematic obstacle (without any

Picard–Fuchs operators, which do not seem to be useful here after all—but see the proof

of Lemma 5.1).

If the above dimension is 1, then we have to consider also a zero of f or rather the

corresponding differential $. That leads to torsion points on additive extensions in the

sense of Theorem 1.6, but this step seems no longer to be classical. It is crucial that

the extension is non-split. Furthermore, the argument breaks down if there is complex

multiplication. But if not, then again there are no exceptions.

It turns out that the main difficulties arise for non-simple J . In that case, we have

to introduce an “auxiliary differential” $\ and its zeros Z. For each Z we consider a
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suitable additive extension JrZ of J , and even the power (JrZ)m. If we cannot use

Theorem 1.5 or Theorem 1.7, then we can reduce to an additive extension FZ of an

elliptic curve, but of much higher dimension than that in Theorem 1.6. Furthermore, we

no longer obtain a point which is torsion on the specialised FZ , but only on a quotient by

a certain linear subspace. It now becomes a problem to check if this quotient is non-split;

such things are governed by what we call the “splitting line”, for which we could find no

explicit references in the literature (although its existence can be deduced from properties

of the “universal vectorial extension”). Here, it is necessary to take into account all the

zeros Z, together with their full multiplicities, and then apply a primitive sort of “zero

estimate” coming from Riemann–Roch. This completely overcomes Davenport’s fourth

obstacle.

But still the arguments break down, if there is complex multiplication. In that

case, we cannot prove non-split, but if the thing is split then we can exploit the full

additive part, which has no non-trivial torsion, to obtain finiteness. On this journey, all

the various parts of the definition of elusive turn up one by one, and this finally proves

Theorem 1.3 (a).

It is now relatively easy to reverse the arguments to prove Theorem 1.3 (b); here, the

same sort of zero estimate is used. Actually, this proof precedes that of Theorem 1.3 (a),

on grounds connected with the effectivity of the dichotomy between (a) and (b). Earlier,

we had a definition of elusive for which this effectivity was not clear, but we could change

it to overcome this problem.

1.6. Programme

Here is a brief section-by-section account of this paper.

In §2 we show how to reduce Theorem 1.7 to a statement, Proposition 2.1, involving

the special case of a curve C in a product PG×PG of projective spaces. Here, the second

factor contains a certain moduli space of abelian varieties with fixed level structure, so

that for each point there is an abelian variety, and this lies in the first factor. Then,

in §3 we recall the main result of [58] on subanalytic sets. Our own set is constructed

from abelian logarithms defined in §4. The relevant algebraic independence result is then

proved in §5. This then leads in §6 to the non-existence of Pila’s semialgebraic curves

in our set. Then, in §7 and §8, we record the consequences of the work of David and

Silverman for our purposes, and the proof of Proposition 2.1 is completed in §9.

Then, in §10, we check the example (1.8) and prove Theorem 1.1 using the Liouville

theorem. We also say a bit more about (10.1)–(10.3).

In a short §11 we introduce the concept of residue divisor which will be indispensable
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for the effectivity considerations.

Then, as preparation for the proof of Theorem 1.3 (a), we show in §12 that it suffices

to consider differentials of the third kind; by this, we mean that there are no poles of

order at least 2.

In §13 we prove Proposition 1.4. This enables us in §14 to reduce elementary inte-

grability to a problem of torsion points on abelian varieties, and to prove Theorem 1.3 (a)

with some additional simplicity condition on the Jacobian.

Then, in §15 we pause to explain the difficulties involved in removing this condition.

It is then timely in §16 to give the definition of elusive differential together with some

explanations and observations.

In §17 we prove Theorem 1.3 (b).

Then, in §18, we extend some of the considerations of §14 to torsion points on certain

quotients of products of generalised Jacobians, and in §19 we show that the property of

being elusive is invariant under adding something elementary integrable (as it should be

if Theorem 1.5 is true, but which was not obvious under our earlier definition); it is here

that Theorem 1.3 (b) is used, along with material from §11.

At last, in §20, we complete the proof of Theorem 1.3 (a).

Finally, in §21, we verify the examples above and give a self-contained proof for our

first counterexample (21.8), at the same time finding all exceptional values of t. We also

provide some more examples of elusive differentials.

In an appendix, so as not to interrupt too much the main exposition, we investigate

the splitting line, together with a related concept of “splitting map” for additive exten-

sions of an elliptic curve. Also, we hope that these may be of independent interest in the

theory of generalised Jacobians.

1.7. Further remarks

We now make some remarks about the broader context of our results, and we thank

Michael Singer for valuable discussions around the topic of integration. As examples of

recent work on elementary integration with parameters, we may cite that of Caviness,

Saunders and Singer [16], and also Singer [76], although these are mainly concerned with

transcendental functions (but see also Davenport and Singer [22], especially the closing

pages). Sometimes finiteness fails here; for example,

(log x)t

is elementary integrable precisely for t=0, 1, 2, ... (not difficult from Liouville).
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Also [16] extends the notion of “elementary integrability” to things like the error

function, and gives a corresponding extension of Liouville’s Theorem. It might be inter-

esting also to attempt this for elliptic functions (and their inverses?) in order to address

more thoroughly Hardy’s quotation. It seems that Abel [2] had made a start on this.

Or one could even try to treat genus 2 and so on; some of the classical literature was

concerned with expressing integrals of a given genus in terms of lower genus.

In this connection of “genus-dropping”, we may extract from Greenhill [33, pp. 156–

157] the example ∫
dx

6
√
x11+11x6−x

=
6

5

∫
dx̃√

4x̃3+6912
,

with

x̃=
x20−228x15+494x10+228x5+1

(x11+11x6−x)5/3
,

which is elliptic, even though the genus is now 25. In fact, a pull-back lies behind this

(not in [33], explicitly). Namely, there is a rational map φ from y6=x11+11x6−x to

ỹ2=4x̃3+6912 defined by

φ(x, y) = (x̃, ỹ) =

(
P

y10
,

2Q

y15

)
,

where P=P (x) is the polynomial of degree 20 above, and Q=Q(x) is the polynomial of

degree 30 below. Moreover,
dx

y
=

6

5
φ∗
(
dx̃

ỹ

)
.

In particular, a Jacobian of dimension 25 has an elliptic factor.

Similarly,∫
dx

15
√
x30+522x25−10005x20−10005x10−522x5+1

=

∫
dx̃

(1728x̃5−1)2/3

(for a different x̃), which drops from genus 196 to genus 4 (despite Greenhill’s assertion

that it too is elliptic—at any rate, it can be shown that the corresponding differential

is not a pull-back of a differential on an elliptic curve). See also Schwarz [70, p. 253].

These examples seem to be connected to the icosahedron: if R=R(x) is the polynomial

of degree 11 above, then

Q2 =P 3+1728R5

reflects the well-known syzygy as for example in Klein’s [40, p. 62].

Of course the more modern literature has focused more on differential Galois theory,

and Kaplansky [38] wrote
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“There is another attractive chapter of differential algebra that is not represented in

my book or in Kolchin’s: the integration of functions in ‘elementary’ terms (...). This

is a kind of ‘pre-Galois’ theory, in that only the basic properties of differential fields are

involved. (In the same way, the theory of ruler and compass constructions precedes Galois

theory in the study of ordinary fields).”
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But, despite this, it seems that differential Galois theory is not sensitive enough to

detect elementary integrability.

Nevertheless, replacing our dg/dx=f by their L(g)=0 leads to analogous problems,

even with several parameters, not just one (see Cassidy and Singer [15]). Thus, André [4]

and Hrushovski [37] have shown that the Galois group is unchanged under “almost all”

specialisations, and in particular the solvability in algebraic functions specialises similarly

(the solvability of dg/dx=f with algebraic g is essentially treated in our easy §12). But

the example

x
dg

dx
−tg= 0,

with algebraic solution g=xt when t is rational, shows that one cannot hope for finiteness

statements, as in our Theorem 1.3.

Finally, this work of [4], [37], at least for a single parameter t, is considered as a

function field analogue of the famous Grothendieck–Katz Conjecture on p-curvatures,

where values of t are replaced by primes p (here too one cannot hope for finiteness); see,

for example, Katz [39] and a general discussion in [78].

It would be interesting to know if the techniques of this paper can be applied to any

of the problems above.

We thank Detmar Welz for valuable correspondence about some of the integrals in

this paper, especially in §21. We thank also the referees for their careful reading and

suggestions for improvement.

2. Reduction to a fixed model

Clearly, Theorem 1.7 implies that V∩A[g] is contained in a finite union of abelian sub-

schemes of A of positive codimension. But this apparently weaker version of Theorem 1.7

actually directly implies Theorem 1.7 itself. Thus, at first, we see that V∩A[g] is con-

tained in finitely many B6=A in A. But then, applying to V∩B, we get V∩A[g] in finitely

many C 6=B in B; and so on by induction, until we reach an ambient abelian scheme of

codimension at least g−1.

We noted in [49, §2] that the above conjecture is isogeny invariant in the following

sense. Let S and S′ be semiabelian schemes defined over varieties over C, and suppose

that there is an isogeny ι from S to S ′. Then, the conjecture for S ′ implies the conjecture

for S. The same implication holds with C generalised to any algebraically closed field of

characteristic zero, and for possible later use, we maintain this generality for the present

short section.
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Now, the argument of [49] can be repeated to prove the analogous implication for

this weaker version of our Theorem 1.7 with A and A′ (say over 
Q). We need only change

S [1+d] there to A[g] (and it stays valid even for S [e] with any fixed e).

If the weaker version of Theorem 1.7 holds for an abelian scheme B over a variety,

and B̃ is another abelian scheme over the same variety, then it also holds for their fibre

product A=B×B̃. The argument is easy, but we give some details, especially as it breaks

down for the conjecture. The point is that the torsion A[g]=B[h]×B̃[h̃] for the respective

relative dimensions g, h and h̃. If V projects to W in B, then W∩B[h] is contained in

a finite union of abelian subschemes B0 of B of positive codimension, provided W is a

curve (and a fortiori otherwise). So, also V∩A[g] is contained in a finite union of abelian

subschemes B0×B̃ of A of positive codimension.

Now, every abelian scheme of relative dimension at least 2 has a factor (up to isogeny)

which is either of relative dimension 2, or simple of relative dimension at least 2. Thus, by

Theorem 1.5 and the above remarks, it suffices to prove the weaker version of Theorem 1.7

for simple A. This will be helpful when proving the functional algebraic independence

referred to in §1.

In [51], we reduced to Jacobians (of hyperelliptic curves), where the periods could

be given explicitly in terms of differentials. In fact, both our applications involve only

Jacobians, but the weaker version of Theorem 1.7 for these does not seem to imply

directly the weaker version of Theorem 1.7 in general. Fortunately, there is a very good

setting where the differentials arise in a natural analytic way, that of theta functions.

This has already been used by many writers, for example the first author [52], or David

[23], or Wüstholz and the first author [46]. Here, we follow [46] in using the (16, 32) level

structure, which lies between the full 16 structure and the full 32 structure. Then, the

moduli space is a quasi-projective variety M in PG for

G+1 = 16g,

defined over Q. For m=(m0 :...:mG) in M, we denote by A(m) the corresponding abelian

variety, also in PG with coordinates say x=(x0 :...:xG) and defined over Q(m). In fact,

the zero of A(m) is none other than m. See §4 for the explicit description by theta

functions, which have the advantage that they give smooth embeddings of both the

moduli space and the fibres.

Now, every abelian variety is isogenous (in the usual sense) to a principally polarised

one with such a level structure. Thus, we have an isogeny ι from the scheme A (now

assumed simple) of our Theorem 1.7 to some A′=A(m) as above, where now we are

thinking of A(m) as a subset of PG×PG with coordinates (x,m).
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Let V be a curve in A. Then, ι(V) in A(m) is a quasi-projective curve C in PG×PG

with coordinates say

(ξ0 : ... : ξG, µ0 : ... :µG). (2.1)

We will regard it as being parameterised by (2.1) with the components (projectively)

functions in 
Q(C).

If the point P=(ξ0 :...:ξG) satisfies NP=O for some positive integer N , then the

whole of ι(V) lies in the corresponding abelian subscheme of relative dimension zero, so

Theorem 1.7 is trivial for A′. Thus, we are entitled to assume NP 6=O for all such N .

If (µ0 :...:µG) is (projectively) constant on C, then the base variety can be considered

as a point and the theorem for A′ follows from Manin–Mumford, as mentioned in the

introduction.

From all these considerations, we see that our Theorem 1.7 for A is implied by the

following statement (so the base variety is indeed reduced to a curve).

Proposition 2.1. Let C in PG×PG be a curve defined over 
Q and parameterised

by the generic point

c = (ξ0 : ... : ξG, µ0 : ... :µG)

in PG(
Q(C))×PG(
Q(C)), such that T=(µ0 :...:µG) lies in M, the abelian variety A(T )

is simple and non-isotrivial, and P=(ξ0 :...:ξG) lies on A(T ). Then, if P is not iden-

tically torsion, there are at most finitely many specialisations c in C(C) such that the

point

P (c) = (ξ0(c) : ... : ξG(c))

is torsion on A(T (c))=A(µ0(c):...:µG(c)).

3. Rational points

In this section we record the basic result of Pila [58] that we shall use. We recall from

[48, §2] that a naive-m-subanalytic subset of Rs is a finite union of ψ(D), where each

D is a closed ball in Rm, and each ψ is real analytic from an open neighbourhood of D

to Rs. We refer also there for the definition of Strans.

Lemma 3.1. Suppose that S is a naive-2-subanalytic subset of Rs. Then, for any

ε>0, there is a c=c(S, ε) with the following property. For each positive integer N , there

are at most cN ε rational points of Strans in (1/N)Zs.

Proof. See [48, Lemma 2.1, p. 1680].
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4. Functions

We will construct our naive-2-subanalytic subset S by means of theta functions. Let Sg
be the Siegel upper half-space of degree g. For τ in Sg, and for row vectors u in Cg and

p in Rg we, use

θp(τ,u) =
∑
h

exp(πi(h+p)τ(h+p)t+2πi(h+p)ut),

with the sum over all row vectors h in Zg, where t denotes the transpose. Here, we may

regard p in the quotient (R/Z)g. We define Θ(τ,u) from Sg×Cg to CG+1, by arranging

the elements p of
(

1
16Z/Z

)g
in some order, and taking the coordinates of Θ(τ,u) to

be θp(16τ, 16u). This parameterises in terms of u an abelian variety Aτ isomorphic to

Cg/U(τ), where the lattice U(τ) is generated by the standard basis row vectors e1, ..., eg,

together with the rows t1, ..., tg of τ . See [46, p. 415].

Now, given any c in C(C), we can find τc in Sg with

Θ(τc, 0) = (µ0(c) : ... :µG(c)) (4.1)

the origin of Aτc , and then uc in Cg with

Θ(τc,uc) = (ξ0(c) : ... : ξG(c)), (4.2)

in Aτc , by smoothness both locally analytic on C.

So, now, we will consider these as functions e1, ..., eg, t1, ..., tg and u locally analytic

from C to Cg. They generalise the 1, g/f and z/f of the elliptic case [48, p. 1682]. To

recover the generalisation of f , g and z, we have to modify as follows. For any c we

can find a square submatrix ρ=ρc of the (affine) Jacobian matrix of Θ(τc,u) which is

non-singular at u=0. Then, we define

f1 = e1ρ
−1, ..., fg = egρ

−1, fg+1 = t1ρ
−1, ..., f2g = tgρ

−1, (4.3)

and

z = uρ−1. (4.4)

This looks like an analytic construction, but it is known that then the “Shimura differ-

ential” dz is defined over C(C) (see the calculations in [46, pp. 419–422] for example,

especially the differential equations in Lemmas 3.6 and 3.7). That will be crucial for the

functional algebraic independence result of the next section.
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5. Algebraic independence

For this section we fix some c∗ of C. Then, f1, ..., f2g and z are well defined on a small

neighbourhood N∗ of c∗. In order to prove Strans=S, we will need the following result.

Lemma 5.1. The coordinates of z are algebraically independent over C(f1, ..., f2g)

on N∗.

Proof. The remark on Shimura differentials above means that the de Rham basis

in Z [3, p. 15] is over C(C). Thus, we can use [3, Theorem 3, p. 16] (whose proof uses

among other things Picard–Fuchs), which actually specifies the transcendence degree of

K(z, z̃) over

K = C(C)(f1, ..., f2g, f̃1, ..., f̃2g),

where the extra functions are the corresponding integrals of the second kind. It is the

dimension of the Ũ appearing in [3, Proposition 1, p. 5], or at least its relative counterpart

in the context of [3, §4]. The E there is A(T ) over C, for which our simplicity hypothesis

implies that the only proper connected algebraic subgroup is O. The u there is from

Z to ZP (note that A(T ) has no non-zero isotrivial part because it is simple and non-

isotrivial). Also, because P is not identically torsion and A(T ) is simple, the E′ there

is also E, with rational homology isomorphic to Q2g. Further, because of simplicity, the

F there is a division algebra. So F.u(X ) is isomorphic to F . Thus, we find dimension

2g, which is the number of coordinates in z and z̃; and the present lemma follows on

throwing away all the extra functions.

6. A naive-2-subanalytic set

We describe here our naive-2-subanalytic subset S. First, we construct local functions

from C to R2g. Fix c∗ in C, choose c in C, and then a path from c∗ to c lying in C.

Using (4.1) and (4.2), we find no problem to continue e1, ..., eg, t1, ..., tg (the first g of

these are of course constant), and u to a neighbourhood Nc of c. For ρ we can stick to

a fixed submatrix, provided we remove finitely many points from C where it becomes

singular. This gives, via (4.3) and (4.4), also f1, ..., f2g, z on Nc. They do depend on c,

but only in a mild way, as this dependence is essentially locally constant, so we indicate

this also with a subscript as f1,c, ..., f2g,c, zc.

Write Ωc=U(τc)ρ−1c .

Lemma 6.1. The coordinates of zc are algebraically independent over

C(f1,c, ..., f2g,c)

on Nc. Further, we have Ωc=Zf1,c+...+Zf2g,c on Nc.
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Proof. We could continue an algebraic dependence relation backwards to get the

same relation between f1, ..., f2g, z on a neighbourhood of c∗; however, this would con-

tradict Lemma 5.1. The assertion about Ωc is clear from (4.3), and we are done.

It follows that we can define x1,c, ..., x2g,c on Nc by the equation

zc =x1,cf1,c+...+x2g,cf2g,c, (6.1)

and its complex conjugate

z̄c =x1,cf̄1,c+...+x2g,cf̄2g,c,

so that x1,c, ..., x2g,c are real-valued.

Now, we can define S. But first we make a compact set out of the quasi-projective

C in PN×PN . Let C0 be the finite set of points in the Zariski closure C0 of C but not

in C. Fix any norm on PN×PN . For small δ>0 (to be specified later) we define Cδ as

the set of c in C0 satisfying |c|61/δ and

|c−c0|> δ

for each c0 in C0. Thus, Cδ is a compact subset of C.

Shrinking Nc if necessary, we can choose a local analytic isomorphism ϕc from Nc

to an open subset of C (i.e. R2). Choose any closed disc Dc inside ϕc(Nc) centred at

ϕc(c), and define

ψc = (x1,c, ..., x2g,c)�ϕ−1c

from Dc to R2g. By compactness, there is a finite set Π=Πδ of c, such that the ϕ−1c (Dc)

cover Cδ. Then, our naive-2-subanalytic subset S=Sδ in R2g is defined as the union of

ψc(Dc) over Π.

Lemma 6.2. We have Strans=S.

Proof. Because every semialgebraic surface contains semialgebraic curves, it will

suffice to deduce a contradiction from the existence of a semialgebraic curve Bs lying

in S. Now, Bs is Zariski-dense in its Zariski-closure B, a real algebraic curve. Thus,

we can find a subset B̂ of B, also Zariski-dense in B, contained in some ψc(Dc). It will

suffice to know that B̂ is infinite. Then, B̂=ψc(E) for some infinite subset E of Dc.

Now, (6.1) shows that the components of zc lie in Φ=C(x1,c, ..., x2g,c, f1,c, ..., f2g,c).

But, if we restrict to ϕ−1c (E), then Φ has transcendence degree at most 1 over

Φ0 = C(f1,c, ..., f2g,c).
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It follows that the components of zc are algebraically dependent over Φ0 on ϕ−1c (E).

More precisely, with independent variables T1, ...,T2g, Tz, there exists a polynomial A

in C[T1, ...,T2g,Tz] such that the relation

A(f1,c, ..., f2g,c, zc) = 0

holds on ϕ−1c (E), and A(f1,c, ..., f2g,c,Tz) is not identically zero in Φ0[Tz]. By a standard

principle for analytic functions (“Identity Theorem” or [44, p. 85]), this relation persists

on all of Nc. Now, we have a contradiction with Lemma 6.1. Thus, the present lemma

is proved.

We are all set up for an efficient application of Lemma 3.1. It will turn out that

every c in Proposition 2.1 leads to many rational points on S, and of course we have to

estimate their denominator. This we do in the next section.

7. Orders of torsion

In [51] we used a result of David [23] about orders of torsion points on a principally po-

larised simple abelian variety of dimension say g. While our own A(T ) in Proposition 2.1

is generically simple, some specialisations A(T (c)) may well not be simple. Perhaps, cer-

tain conjectures of André–Oort type lead in that case to at most finitely many possibilities

for c, as required in our original Proposition 2.1. In [51] we avoided such considerations

by exploiting the “obstruction subgroup” B that [23] provides. There we had g=2, and

so, if B is an elliptic curve, we can reduce to the case g=1. But, for general g, our B

may well not be principally polarised. This sort of problem was already encountered in

[52] (where it was solved by doing another transcendence argument using lower bounds

for Hilbert functions) and [46]. Here, we use some relatively elementary lemmas in [46]

to obtain the following extension of David’s result to all principally polarised abelian

varieties, simple or not; this should be useful in other contexts (see [20], for example).

We have not troubled to obtain good dependence on g. Actually, a sharpening of Propo-

sition 7.1 below, proved along similar lines, has recently been obtained by G. Rémond;

see [62, Proposition 2.9, p. 468].

Proposition 7.1. There is a constant c=c(g) with the following property. Let A

be a principally polarised abelian variety of dimension g defined over a number field K,

and let P be a point on A with finite order N . Then,

N 6 c([K(P ) : Q] max{1, h(A)})G̃

for G̃=8gg!2 and the semistable Faltings height h(A).
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Proof. This is of course by induction on g. The case g=1 does follow from [23,

Théorème 1.2, p. 121]. So, assume it true for dimension strictly less than some g>2.

The arguments of [23, p. 123] show that it suffices to take A=A(τ) in the notation

there. Now, consulting equation (28) in [23, p. 156], we find an algebraic subgroup B 6=A
of A. In fact, Philippon’s multiplicity estimate used there (p. 159) guarantees that B is

connected; that is, an abelian subvariety. If B=0, then the arguments around equation

(29) in [23, p. 156] give the bound for N as in [23, Théorème 2.2, p. 123], namely

N 6 c(d
3/2
A dPh

3/2
A )κ

for any fixed κ>g, where dA=[K :Q], dP =[K(P ):K] and hA=max{1, h(A)}. Here, as

in the rest of the proof, we use c indiscriminately for any constant depending only on g.

So, it remains to treat the case 0 6=B 6=A, with B of dimension say b. We note, by

[46, Lemma 2.2, p. 414], that B is defined over an extension KB of K of degree at most

c. And we get the estimate

T g−b∆Lb6 c(LN2)g

from equation (28) in [23]. Here, ∆ is the degree of B in the embedding divided by b! as

in [46, p. 410], and T , L and N (not our N) are defined earlier in equation (17) in [23,

p. 152]. As T , L and N2 are of the same order of magnitude up to logarithms, we find

∆6 c(dAdPhA)κ (7.1)

for any fixed κ>g.

We next apply [46, Lemma 1.4, p. 413] to find another abelian subvariety B′ in A

(so also defined over an extension K ′B of K of degree at most c) together with an isogeny

ι from B×B′ to A, defined over K, of degree at most ∆2. Further, by [46, Lemma 1.3,

p. 413], B′ has degree at most ∆. In the opposite direction, there is an isogeny ι̃ from A

to B×B′, defined over an extension of K of degree at most c by [46, Lemma 2.1, p. 414],

with degree at most (∆2)2g−1. Thus, by standard properties of Faltings heights we have

max{h(B), h(B′)}6h(B×B′)+c6hA+ 1
2 log(∆4g−2)+c6hA+c log ∆.

Now, we use [46, Lemma 4.3, p. 425] to deal with the polarisation of B. As ∆ is the

degree of the polarisation on B induced by that of A (see, for example, [46, Lemma 1.1,

p. 411], we find an isogeny ι0 of degree at most ∆ from B to a principally polarised

B0; further, B0 (and so ι0 too) is defined over an extension K0 of KB of degree at

most c∆2b6c∆2g−2. Similarly we get an isogeny ι′0 of degree at most ∆ from B′ to a

principally polarised B′0; further, B′0 (and so ι′0 too) is defined over an extension K ′0 of

K ′B of degree at most c∆2g−2.
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Now, by induction, the order p of the image Q0 in B0 under ι0 of the projection of

ι̃(P ) on B satisfies p6cd8g−1(g−1)!2 , where

d = [K0 : Q][K0(Q0) :K0] max{1, h(B0)}.

Here,

[K0 : Q] = [K0 :KB ][KB : Q]6 c∆2g−2dA,

and so [K0(Q0):K0]6c∆2g−2dP . Also, h(B0)6hA+c log ∆. We get

d6 c∆4g−4dAdP (hA+log ∆)6 c(dAdPhA)g(4g−2),

using (7.1) with κ<g+(2g−1)/(4g−4).

We get the same bound for the order p′ of the image Q′0 in B′0 under ι′0 of the

projection of ι̃(P ) on B′. Thus, (Q0, Q
′
0) has order at most pp′. Going back to A, we

get N6pp′q, where q is the degree of the composite isogeny from A to B0×B′0. We

find q6c∆4g. Now, putting everything together, gives what we want, provided only

κ<8g−1(g−1)!2. This completes the proof.

We could use more directly the factorisation estimates of [55] to get B, B′ and ι, but

the exponents involved would be astronomical. Here, things are more terrestrial (and in

[62] even more so).

From now on, we use the standard absolute Weil height

h(α) =
1

[Q(α) : Q]

∑
v

log max{1, |α|v}

of an algebraic number α, where v runs over a suitably normalised set of valuations; and

also the standard extension to vectors using the maximum norm. See, for example, [75,

p. 208]. For the next observation, we need the notation of Proposition 2.1.

Lemma 7.2. There is a constant c=c(C) with the following property. Suppose for

some a in C that the point P (a) on A(T (a)) has finite order N . Then, a is algebraic,

and

N 6 c([Q(a) : Q](1+h(a))G̃.

Proof. It is clear that a is algebraic, otherwise P would be identically torsion on C

contradicting a hypothesis of Proposition 2.1.

For A=A(T (a)) we can take K=Q(T (a)) in Proposition 7.1, and so

[K : Q]6 c[Q(a) : Q],

with c (like the others in this proof) independent of a. Also, since (µ0 :...:µG) is not

constant, if for example λ=µ1/µ0, then each of the affine coordinates of P is algebraic

over Q(λ). Thus, we deduce [K(P (a)):K]6c. Then, h(A)6c(1+h(a)) by well-known

properties of the Faltings height (see, for example, the discussion in [23, p. 123]). The

required result follows.
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8. Heights

In view of the following result, we can eliminate the height dependence in Lemma 7.2,

still in the notation and under the assumptions of Proposition 2.1.

Lemma 8.1. There is a constant c=c(C) with the following property. Suppose, for

some a in C, that the point P (a) has finite order. Then, h(a)6c.

Proof. This is a consequence of Silverman’s specialisation theorem [74, p. 197], be-

cause P is not identically of finite order (for generic t); note that our family of abelian

surfaces has no non-zero isotrivial part, because it is generically simple and itself non-

isotrivial.

Another advantage of bounded height is the following easy remark, already to be

found in [50], concerning the sets C0 and Cδ in §6.

Lemma 8.2. Let K be a number field containing the coordinates of the points of C0,

as well as a field of definition for C. For any constant c, there is a positive δ=δ(C,K, c)

depending only on C, K and c with the following property. Suppose that a is algebraic

on C, not in C0, with h(a)6c. Then, there are at least 1
2 [K(a):K] conjugates of a over

K lying in Cδ.

Proof. See [50, Lemma 8.2, p. 126]. However, there we mistakenly omitted to men-

tion a field of definition for C, which is needed to ensure that the conjugates of a stay

in C.

9. Proof of Proposition 2.1

We will need the following result from [49].

Lemma 9.1. Let f0, f1, ..., fs be analytic in an open neighbourhood N of a compact

set Z in C, and suppose that f0 is linearly independent of f1, ..., fs over C. Then, there

is c=c(f0, f1, ..., fs) with the following property. For any complex numbers a1, ..., as the

function F=f0+a1f1+...+asfs has at most c different zeros on Z.

Proof. See [49, Lemma 9.1, p. 463].

To prove Proposition 2.1, we fix any positive ε<1/G̃, with G̃ as in Proposition 7.1.

We use c for various positive constants depending only on C. We have to show that there

are at most finitely many a such that P (a) has finite order on A(T (a)). By Lemma 7.2,

each such a is algebraic, say of degree D=[Q(a):Q], and due to Lemma 8.1 and the

Northcott property, it will suffice to prove that D6c. We will actually argue with a

single a.



252 d. masser and u. zannier

Next, Lemma 7.2 together with Lemma 8.1 shows that there is a positive integer

N 6 cDG̃ (9.1)

such that

NP (a) =O. (9.2)

Fix a number field K containing the coordinates of the points of C0, as well as a

field of definition for the curve C. By Lemmas 8.1 and 8.2, the algebraic a has at least
1
2 [K(a):K] conjugates over K in some Cδ; here δ=c−1. Now, Cδ is contained in the

union of at most c closed sets ϕ−1c (Dc), and so there is c such that ϕ−1c (Dc) contains at

least c−1[K(a):K] conjugates σ(a), so at least c−1D. And the corresponding conjugate

point σ(P (a))=P (σ(a)) also satisfies NP (σ(a))=O.

We claim that each point Ψσ=ψc(ϕc(σ(a))) in R2g lies in Q2g, and even that NΨσ

lies in Z2g.

Now, the function ψc arises from continuations f1,c, ..., f2g,c, zc of the functions in

§6. We deduce from (4.2) that

Θ(τc,uc) =P (c)

on Nc. At σ(a) this implies that

Θ(τσ(a), Nuσ(a)) =O.

It follows that Nuσ(a) lies in the period lattice

U(τσ(a)) = Ze1+...+Zeg+Zt1+...+Ztg.

After multiplying this lattice by ρ−1σ(a) and using (4.3), we find Zf1,c+...+Zf2g,c at σ(a).

Thus, (6.1) shows that Nx1,c, ..., Nx2g,c at σ(a) lie in Z. Thus, indeed NΨσ lies in Z2g,

as claimed.

So, each Ψσ in the set S of §6 has common denominator dividing N . By Lemmas 3.1

and 6.2, the number of such values Ψσ is at most cN ε. By (9.1), this is at most cDG̃ε.
Let Ψ=(x1, ..., x2g) be one of these values. For any σ with Ψσ=Ψ, the value of zc at σ(a)

is a linear combination with coefficients x1, ..., x2g of the values of f1,c, ..., f2g,c at σ(a).

Lemma 6.1 implies that, for example, the first coordinate of zc is linearly independent

of the first coordinates of f1,c, ..., f2g,c. So, Lemma 9.1 shows that the number of σ(a)

for each Ψ is at most c.

Thus, the total number of σ(a) is at most cDG̃ε. Now, this contradicts the lower

bound c−1D noted just after (9.2), provided D is sufficiently large. As observed near the

beginning of this section, that suffices to prove Proposition 2.1.
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10. Examples and the proofs of Theorem 1.1 and Corollary 1.2

It was shown in [54, p. 294 and p. 296] that the Jacobian of (1.9) is identically simple, in

the sense of generic t (and even that the endomorphism ring is Z). It has good reduction

at all the points (1.7). By the equivalence of (a) and (b) in Theorem 1 of Serre–Tate

[73, p. 493], any torsion point yields a field unramified outside (1.7). However, the point

arising from (1.8) leads to ramification, for example at t=2; as this is already true of the

trisymmetric function defined by the product of the ordinates in (1.8). Thus, the point

is not identically torsion and our result applies.

To deal with the Pell equation A2−DB2=1 with squarefree D of degree 2g+2, we

choose any field K of characteristic zero over which D is defined, and we consider as in §1
the hyperelliptic curve HD defined in affine A2 by y2=D(x). This is singular at infinity

with two points ∞+ and ∞− on a non-singular model; we may fix them by choosing a

square root e of the leading coefficient of D(x) and stipulating that the function exg+1±y
has a pole of order at most g at ∞±.

We now record the following fairly well-known result, for whose formulation in

slightly more sophisticated language we thank a referee, who also pointed out the ir-

relevance of what non-singular model we choose. As in §1, let JD be the Jacobian.

Lemma 10.1. The following conditions are equivalent :

(i) the class of ∞+−∞− in JD is of finite order ;

(ii) the group of regular functions invertible on HD is non-trivial ;

(iii) there exist A and B 6=0 in K[x] such that A2−DB2=1;

(iv) there exist A and B 6=0 in K[x] and c 6=0 in K such that A2−DB2=c.

Proof. This is essentially [51, Lemma 10.1, p. 2393] extended to arbitrary genus,

together with the remark, as in [51, pp. 2393–2394], that the solvability of

A2−DB2 = c, B 6= 0

for some c 6=0 is equivalent to the same for c=1. In fact, that lemma contains some

additional information about the degree of A, which we do not need here.

To prove Theorem 1.1, we use Theorem 1.7 for the curve V=PD=β(∞+−∞−) on

A=JD. At a point c where the Pell equation for D(c) is solvable we get, by the equiv-

alence of (i) and (iii) in Lemma 10.1, an element PD(c) of V∩A[g]. So, this element

lies in one of a finite number of abelian subschemes of codimension at least g−1. If one

of these has codimension g, then it is a finite group scheme, and so there is a positive

integer N (independent of c) such that NPD(c)=0. As NPD 6=0 generically in case (a)
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this gives the required finiteness. If one of these has codimension g−1, then it is an ellip-

tic subscheme E . Now, the condition that NPD(c) lies in E(c) again gives the required

finiteness, because NPD is not generically in E in this case (a).

In case (b), if nPD lies in an elliptic curve ED in JD, then ED is defined over a finite

extension of 
Q(C) (see, for example, [46, Lemma 2.2, p. 414]). We may find an isogeny

ι from ED to some E of the form

ỹ2 = x̃(x̃−1)(x̃−t);

write Q=ι(nPD). If E is not defined over 
Q, then Q is defined over �Q(t). Now, any of

the arguments in [77, p. 68 and p. 92] suffice to give infinitely many t in 
Q such that Q

is torsion. So, there are infinitely many c in C(
Q) such that PD(c) is torsion, and this

gives the main part of case (b), again by the equivalence of (i) and (iii) in Lemma 10.1.

Next, suppose that E is defined over 
Q. If Q is not defined over 
Q, then the

infinitude of the c is immediate. If Q is defined over 
Q, then specialisation has no effect;

if Q is non-torsion we get no c at all, also as in (b), and if Q is torsion then all but

finitely many c will do.

Finally, in case (c), if PD is torsion, then here too all but finitely many c will do.

This completes the proof of Theorem 1.1.

We now discuss some examples, which also show that all the cases (a)–(c) of this

theorem actually turn up.

Presumably, (a) holds with affine C=A1 for D=x8+x+t, just as we proved in [51]

for x6+x+t.

And (b) holds for

D=x8+x2+t; (10.1)

in fact it is by now well known (see, for example, [77, p. 68 and p. 92]) that there are

infinitely many τ in C such that Pell’s equation is solvable for x4+x+τ , and then we

need only replace x by x2. In fact, this (10.1) arises because of the map from HD to

HD̃, with D̃(x̃)=x̃4+x̃+t, defined by sending (x, y) to (x2, y). Extending to non-singular

models and taking the pull-back, we obtain a non-zero homomorphism φ from JD̃ to JD,

so ED=φ(JD̃) is an elliptic curve. One checks that 2PD=φ(PD̃), so lies in ED.

But for the constant

D=x8+x2+1 (10.2)

Pell’s equation for x̃4+x̃+1 is not solvable, and so we get the second possibility in (b):

there are no c such that Pell’s equation is solvable for (10.2). This also arises in terms

of maps.



torsion points, pell’s equation, and integration in elementary terms 255

As an example of (c), we take

D=x8+x4+t, (10.3)

exhibit the identity (1.1) with

A=
8x8+8x4+4t+1

4t−1
and B=

8x4+4

4t−1
,

and specialise to arbitrary t 6= 1
4 . This arises analogously with D̃(x̃)=x̃2+x̃+t, for which

Ã2−D̃B̃2=c, with Ã=x̃+ 1
2 , B̃=1 and c= 1

4−t. We may replace c by 1 using the standard

trick, and then replace x̃ by x4. Here, 4PD=0 because of the function (x4+y)/(x4−y).

Finally, we prove Corollary 1.2. The key here, as for Theorem 1.3, is Liouville’s

Theorem, which says roughly that, if f is integrable in elementary terms, then it suffices

to use only logarithms, and in a linear way. More precisely, let F be a differential field

(of characteristic zero) with a derivation δ, and suppose that the field F of constants c

with δc=0 is algebraically closed. Then, f in F is elementary integrable if and only if

there are g0, g1 6=0, ..., gm 6=0 in F, and c1, ..., cm in F with

f = δg0+c1
δg1
g1

+...+cm
δgm
gm

. (10.4)

See Ritt [65], Risch [63], and for a more modern exposition also Rosenlicht [67]; also

Lützen [45] for an interesting history.

As we shall stress in the sequel, it is very convenient to take m minimal in (10.4). If

m>1, then this implies the linear independence over Q of c1, ..., cm. For if not, then we

could find p with 16p<m and b1, ..., bp in F such that c1, ..., cm are linear combinations

of b1, ..., bp with integer coefficients. Then, substituting into (10.4), we would obtain an

expression with fewer functions h1, ..., hp instead of g1, ..., gm.

For Corollary 1.2, we take F as the function field C(HD(c)), again with δ=d/dx. Let

c be in C(C) for which there exists E 6=0 in C[x] of degree e62g such that f=E/
√
D(c)

is elementary integrable. This means that the differential form ω=Edx/
√
D(c) has the

shape

ω= dg0+c1
dg1
g1

+...+cm
dgm
gm

, (10.5)

as in (10.4).

If e<g, then ω has no poles on HD(c). If g0 is not constant, then dg0 would have a

pole of order at least 2 which would not be cancelled out by any poles of dgi/gi, which

have order at most 1. Thus, dg0=0. However, any poles of dgi/gi have rational (and

even integral) residues, and so, by the independence of c1, ..., cm, there is no cancelling

here either. Thus, also dgi/gi=0, i=1, ...,m. But then ω=0, contradicting E 6=0.
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So, in this case e<g (which corresponds to differentials of the first kind, that is,

having no poles at all), there are no c at all such that f is elementary integrable at c.

If e=g, then ω has simple poles at∞+ and∞−, but no other poles. So, still dg0=0.

And some gi (i=1, ...,m) is non-constant. But now the only possible zeros or poles of

gi are at ∞+ and ∞−. So, by the equivalence of (i) and (iii) in Lemma 10.1, Pell’s

equation for D(c) is solvable. Thus, by Theorem 1.1 (a), there are at most finitely many

possibilities for c.

Finally, if e>g, then ω has poles of order e−g+1>2 at ∞+ and ∞−, but no other

poles. So, the only possible poles of g0 are at ∞+ and ∞−, of orders e−g.

If some gi (i=1, ...,m) is non-constant, then we get finiteness as above. Otherwise,

ω=dg0; but now g0=A+yB for A,B in C[x]. As e−g6g, we must have B=0. But then

E/
√
D(c)=dA/dx is clearly impossible. This completes the proof of Corollary 1.2.

Here, we see that the forbidden case e=2g+1 indeed allows g0=2y with E=dD(c)/dx

(and m=0).

A referee wondered if the corollary could be strengthened by dropping the degree

condition and excluding only E of the form 1
2BdD(c)/dx+D(c)dB/dx for B in C[x].

Then, E/
√
D(c)=d(B

√
D(c) )/dx is elementary integrable. The case B=2 corresponds

to e=2g+1 above. Indeed, the proof above gives this easily on remarking that, if

2yω= 2y dA+B dD(c)+2D(c) dB

lies in C[x]dx, then dA=0. See also the discussion in [78, §2].

11. Residue divisors

It will be very useful later to generalise the minimality discussion around (10.4) and

(10.5), at least when g0=0.

Namely, let V and W be vector spaces over Q. Any element x of the tensor product

V⊗QW has a representation

x= v1w1+...+vmwm, (11.1)

where, for v in V and w in W, we abbreviate v⊗w to vw.

We call (11.1) a shortest representation (sometimes known as tensor rank decompo-

sition) if there is no representation of x with fewer than m (sometimes known as tensor

rank) summands.

On this topic we record a few facts, almost certainly well known.
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Lemma 11.1. The following conditions hold :

(i) For a given x 6=0, the representation is shortest if and only if v1, ..., vm are lin-

early independent over Q and w1, ...,wm are linearly independent over Q.

(ii) In that case, if x=v̇1ẇ1+...+v̇ṁẇṁ is another representation (of course with

ṁ>m), then v1, ..., vm are linear combinations of v̇1, ..., v̇ṁ with coefficients in Q and

w1, ...,wm are linear combinations of ẇ1, ..., ẇṁ with coefficients in Q.

Proof. For (i) the “only if” part is easy; for example, if v1, ..., vm are dependent,

then we may shorten (11.1) (as we did with (10.4) above).

For the “if” part, we use the dual space V∗ of all homomorphisms from V to Q. An

f in V∗ extends to V⊗QW in (11.1) by

f(x) = f(v1)w1+...+f(vm)wm (11.2)

in W (for example, by the universal property).

Suppose that there is a shorter representation x=v′1w
′
1+...+v′nw

′
n, with n<m. Pick

any f in V∗ killing v′1, ..., v
′
n. Then, f(x)=0 in (11.2), and so, by the independence of

w1, ...,wm, we see that f kills v1, ..., vm. As f was arbitrary, this implies that v1, ..., vm

are combinations of v′1, ..., v
′
n, impossible because the former are also independent.

We prove (ii) similarly, with f killing v̇1, ..., v̇ṁ. This completes the proof.

So far, we used this only for V=C and W as the space of differentials on a curve.

When this curve X is defined over a field V=K of characteristic zero, and ω is a differ-

ential on X with residues in K, then we define the residue divisor (compare also Serre

[71, p. 4], for which we thank Daniel Bertrand)

Resω=
∑
P

(resP ω)P

taken over all points P of X; now, W is the group of divisors on X itself tensored with Q.

For example, we have

Res(dg) = 0 and Res

(
dg

g

)
= (g)

for the divisor (g) of g, and as in (21.8), on the curve y2=x3−x,

Res

(
x dx

(x2−t2)
√
x3−x

)
= ρ1D1+ρ2D2, (11.3)

with

ρ1 =
1

2s
, ρ2 =− i

2s
, D1 =P−R and D2 =Q−S,
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for

P = (t, s), Q= (−t, is), R= (t,−s), S= (−t,−is),

and s2=t3−t.
In general, write R=

∑
P Z(resP ω) for the subgroup of K generated by all residues

of ω. If R 6=0 with rank m>1, it is rather convenient to choose ρ1, ..., ρm in R tensored

with Q such that R is contained in Zρ1+...+Zρm with finite index; this we call an

over-basis of R (note that ρ1, ..., ρm need not themselves be residues).

Now, there are integers aiP with resP ω=
∑m
i=1 aiP ρi, and the definition of R implies

that the matrix with entries aiP has rank m. Also, from
∑
P resP ω=0, it follows that∑

P aiP =0, so that

Resω= ρ1D1+...+ρmDm (11.4)

for genuine divisors Di=
∑
P aiPP of degree zero. Here, D1, ..., Dm are linearly inde-

pendent over Q, and so, from Lemma 11.1 (i), we see that the representation (11.4) is

automatically shortest.

12. Elimination of non-simple poles

We show here that it suffices to prove Proposition 1.4 when the associated differential

$=f dx is of the third kind. We have temporarily changed from the notation ω to

“calligraphic” $ to emphasise that we are taking K as 
Q(C) at the moment. Similarly,

we use P in place of P for points, D in place of D for divisors, and so on.

This step seems to be related to Davenport’s fifth obstacle. By taking a finite

covering of C, we may assume that all the poles of $ are defined over 
Q(C).

Suppose that the simple poles of $ are among P1, ...,Pd, and the non-simple poles

at P ′1, ...,P ′e, of orders −w1>2, ...,−we>2, respectively. Let c in C(C) be such that the

specialisation $(c) is integrable. Then, we have an expression

$(c) = dg
(c)
0 +

m∑
i=1

c
(c)
i

dg
(c)
i

g
(c)
i

, (12.1)

as in (10.5), for c
(c)
1 , ..., c

(c)
m in C and g

(c)
0 , g

(c)
1 , ..., g

(c)
m in C(X (c)). Here, the superscript

(c), which unfortunately now seems necessary, indicates that the dependence on c is not

necessarily algebraic, unlike X (c) and $(c)—however, we usually refrain from putting

a superscript on m=m(c), and other similarly occurring integers or rationals, as the

notation would get too cumbersome.

By reduction theory, we may suppose that the only simple poles of $(c) are among

the specialised P1(c), ...,Pd(c), and the only non-simple poles at P ′1(c), ...,P ′e(c), still of
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orders −w1, ...,−we. Then, g
(c)
0 in (12.1) must have poles of orders −w1−1, ...,−we−1

at P ′1(c), ...,P ′e(c), and no other poles. Fix basis elements f0=1, f1, ..., fr of the linear

space

L((−w1−1)P ′1+...+(−we−1)P ′e)

of elements of 
Q(C) with poles of orders at most −w1−1, ...,−we−1 at P ′1, ...,P ′e, and

no other poles. Then, f0(c)=1, f1(c), ..., fr(c) are basis elements of the specialised space

L((−w1−1)P ′1(c)+...+(−we−1)P ′e(c)).

We may assume that g
(c)
0 =

∑r
i=1 a

(c)
i fi(c) (i.e. no f0) for complex coefficients a

(c)
i ;

most of g
(c)
0 depends algebraically on c. So,

$(c)−
r∑
i=1

a
(c)
i dfi(c)

is of the third kind.

Consider the generic condition that$−
∑r
i=1 ai dfi is of the third kind. This amounts

to a set of linear equations in the ai over 
Q(C). The specialised equations have a solu-

tion, and so we may assume that the generic equations also have a solution, else looking

at ranks would give the finiteness of the c at once. In fact, this latter solution is unique,

otherwise we could find b1, ..., br not all zero in 
Q(C) such that

r∑
i=1

bi dfi = d

( r∑
i=1

bifi

)
would be of the third kind. As it has no residues, it would have to be a differential of the

first kind. But the only exact differential of the first kind is zero. Thus,
∑r
i=1 bifi=b0,

so all bi=0, a contradiction.

Thus, again by looking at ranks, we may assume that the specialised equations also

have a unique solution, and as

$(c)−
r∑
i=1

ai(c) dfi(c)

is of the third kind, we conclude that the a
(c)
i =ai(c) also depend algebraically on c. Now,

$′=$−
r∑
i=1

ai dfi (12.2)

is of the third kind. Thus, Proposition 1.4 for $′ implies Proposition 1.4 for $.

As the above arguments do not mention the quantity D in Proposition 1.4, they are

capable of wider application; we will see this in §13, §14, §17, §19 and §20.
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Remark. One may wonder about an analogue of Davenport’s assertion when “el-

ementary integrable” is replaced by “exact”. This corresponds to just $(c)=dg
(c)
0 in

(12.1). The analogue of the above arguments goes through, showing that it suffices to

treat $ of the third kind. But then clearly $(c)=0, so that the finiteness is easy (and

effective).

13. Proof of Proposition 1.4

From §12, we may assume that $ is of the third kind.

We need two preliminary observations about the relation group of elements r1, ..., rp

of an additive group; this is defined as the set of (m1, ...,mp) in Zp with

m1r1+...+mprp = 0.

Lemma 13.1. Let A0 be an abelian variety defined over a number field K, and

denote by w the order of the torsion part of A0(K). Let ĥ on A0(K) be a Néron–Tate

height with respect to some polarisation, and denote by δ>0 the minimum of ĥ on the

non-torsion part of A0(K). Let M1, ...,Mp be in A0(K) with ĥ(Mi)6∆, i=1, ..., p, for

some ∆>δ. Then, the relation group of M1, ...,Mp has basis elements whose supremum

norms are at most pp−1w(∆/δ)(p−1)/2.

Proof. This is [53, Theorem A, p. 257].

Lemma 13.2. Let A be an abelian variety over 
Q(C) with no non-zero isotrivial

part, and let P1, ...,Pp be in A(
Q(C)). Then, the c in C(
Q) such that the relation group

of the specialised points P1(c), ...,Pp(c) on the specialised A(c) has rank strictly larger

than that of the relation group of P1, ...,Pp have height bounded above.

Proof. Let r be the rank of the relation group of P1, ...,Pp. Then, we may suppose

r<p, and also that Pr+1, ...,Pp are independent. The relation group of P1(c), ...,Pp(c)

has rank strictly larger than r, and so Pr+1(c), ...,Pp(c) must be dependent. Now, the

standard form of Silverman’s theorem [74] gives what we want.

With a view also to proving Theorem 1.3, we now take a fixed differential $ on our

curve X defined over 
Q(C).

If c in C(C) is such that the specialised $(c) is elementary integrable, then we have

an expression

$(c) =

m∑
i=1

c
(c)
i

dg
(c)
i

g
(c)
i

(13.1)

with m=m(c) as in (12.1) but now dg
(c)
0 =0.
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We choose (13.1) shortest as before, so that the c
(c)
1 , ..., c

(c)
m (if m>1) are linearly

independent over Q.

Now, the zeros and poles of the g
(c)
1 , ..., g

(c)
m (if m>1) give rise to poles of $(c) of

order at most 1. If the poles of order at most 1 of $ are among P1, ...,Pd (for some d>1),

then we may assume that the poles of order at most 1 of $(c) are among the specialised

P1(c), ...,Pd(c). It follows that the divisors of g
(c)
i have the form

(g
(c)
i ) =

d∑
j=1

NijPj(c), i= 1, ...,m, (13.2)

with integer coefficients Nij (here we also omit the superscript) satisfying of course

d∑
j=1

Nij = 0, i= 1, ...,m, (13.3)

in Z (if m>1).

We note that the matrix with rows Ni=(Ni1, ..., Nid), i=1, ...,m, has full rank m

(if m>1). Otherwise, by (13.2), the g
(c)
1 , ..., g

(c)
m would be multiplicatively dependent

modulo constants. Then, dg
(c)
1 /g

(c)
1 , ..., dg

(c)
m /g

(c)
m would be linearly dependent over Q,

and (13.1) would not be shortest.

Thus, by (13.3), we have

m6 d−1 (13.4)

(even if m=0).

Now, we can prove Proposition 1.4.

First, we note that, if X has genus zero, then for example, by using a rational

parametrisation, we see that $ itself is generically elementary integrable. So, we hence-

forth assume that X has genus g>1. The Jacobian J of X has dimension g, and, by

reduction theory, we may assume the same for the Jacobians J (c) of the specialisations

X (c).

We use induction on d. If d=1 the assertion is trivial by (13.4), even without

bounding the degree, for then m=0 and, as before, any pole of g
(c)
0 has order at least

2, and so dg
(c)
0 =0. Thus, the integrability of $(c) implies that $(c)=0, which by $ 6=0

would lead to finitely many c.

So, we may assume that the poles of $ are among P1, ...,Pd for some d>2, as before

defined over 
Q(C).

If c is a point as in Proposition 1.4, then we have an expression (12.1). We choose m

minimal as before. As above, we may assume that m>1. Thus, c
(c)
1 , ..., c

(c)
m are linearly

independent over Q.
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We also have (13.2) and (13.3). Thus, for example

d−1∑
j=1

Nij [Pj(c)−Pd(c)] = 0, i= 1, ...,m, (13.5)

are m independent linear relations among the divisor classes

[Pj(c)−Pd(c)], j= 1, ..., d−1,

considered as points on J (c).

If it happens that J has no non-zero isotrivial part (as in the situation of Lemma 8.1,

for example), then we can finish at once. Namely, the relation group of the [Pj−Pd],
j=1, ..., d−1, is naturally a subgroup of that of the [Pj(c)−Pd(c)], j=1, ..., d−1. There

are now two possibilities.

If the two groups have the same rank, then just m>1 shows that the [Pj−Pd] are

linearly dependent on J . Thus, there is non-constant f with divisor

d−1∑
j=1

nj(Pj−Pd).

We may assume nd−1 6=0, and then we consider

$′=$− %̂d−1
nd−1

df

f
,

where calligraphic %̂d−1 is the residue resPd−1
$ of $ at Pd−1. This has poles among

P1, ...,Pd−1; and $′(c) is elementary integrable. So, by induction on d, we get at most

finitely many c, unless $′ is elementary integrable. But then so would $ be, contrary

to hypothesis.

If the two relation groups above do not have the same rank, then Lemma 13.2 implies

that c has height bounded above. As, by assumption, its degree is also bounded above

(by D), Northcott now gives the finiteness we want, at least in this special case.

In general, there is an isogeny from J to A×A0, where A has no non-zero isotrivial

part and A0 is isotrivial (or even “trivial”, i.e. constant). Denote by πA and π0 the

corresponding maps from J to A and A0, respectively. It will cause no confusion when we

write πA and π0 also after specialisation, that is, from J (c) to A(c) and A0, respectively

(indeed it might cause confusion when we didn’t).

Projecting (13.5) to A(c) gives

d−1∑
j=1

NijπA[Pj(c)−Pd(c)] = 0, i= 1, ...,m.
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Thus, by Lemma 13.2 as above, the height h(c) is bounded, and we can conclude, unless

the
d−1∑
j=1

NijπA[Pj−Pd], i= 1, ...,m. (13.6)

themselves are torsion. So, we may assume this.

Let q be the rank of the group generated by these πA[Pj−Pd], j=1, ..., d−1. Then,

there are basis elements f1, ..., fd−1−q of their relation group F in Zd−1, with norms

�1, where the implied constant (here and subsequently) is independent of c. We can

find independent f ′1, ..., f
′
q in Zd−1 orthogonal to f1, ..., fd−1−q, also with norms �1. We

deduce from (13.6) that N1, ...,Nm are orthogonal to f ′1, ..., f
′
q.

Write %̂1, ..., %̂d for the residues of $ at P1, ...,Pd, respectively. Then, (12.1) and

(13.2) give, for the specialised residues,

%̂j(c) =

m∑
i=1

c
(c)
i Nij , j= 1, ..., d. (13.7)

It follows that (%̂1(c), ..., %̂d−1(c)) is orthogonal to f ′1, ..., f
′
q.

If (%̂1, ..., %̂d−1) is not orthogonal to f ′1, ..., f
′
q, then we get a non-trivial equation for

c which determines it.

Thus, we may suppose that (%̂1, ..., %̂d−1) is orthogonal to f ′1, ..., f
′
q. Now, we play a

similar game with the relation group U in Zd−1 of %̂1, ..., %̂d−1. If the group generated

by them has rank s (note that s>1 because the d−1>1 residues are non-zero) then

U has basis elements u1, ...,ud−1−s, with norms �1. We can find independent u′t=

(u′t1, ..., u
′
t,d−1), t=1, ..., s, in Zd−1 orthogonal to u1, ...,ud−1−s, also with norms �1.

Now, f ′1, ..., f
′
q lie in U , so are orthogonal to u′1, ...,u

′
s. Therefore, u′1, ...,u

′
s lie in F⊗Q.

Thus, their multiples by a positive integer w0�1 lie in F itself. This means that

w0

d−1∑
j=1

u′tjπA[Pj−Pd] = 0, t= 1, ..., s. (13.8)

We next project (13.5) to the isotrivial part A0, giving

d−1∑
j=1

Nijπ0[Pj(c)−Pd(c)] = 0, i= 1, ...,m. (13.9)

Let r be the rank of the group generated by these π0[Pj(c)−Pd(c)], j=1, ..., d−1.

Fix a polarisation on A. By Lemma 13.1, there are basis elements g
(c)
1 , ...,g

(c)
d−1−r of their

relation group G in Zd−1 with norms �w(∆/δ)(d−2)/2.
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We are now in A0(K), for A0 fixed and [K :Q]6D�1. Therefore, we now have w�1

and δ�1 (see, for example, the discussion round (13) and (14) in [53, pp. 255–256]). It

is not difficult to see also that ∆�h(c)+1. Thus, the norms are at most N�(h(c)+1)κ

for κ= 1
2 (d−2).

Assume for the moment that r 6=0. By Siegel’s Lemma, we may find independent

g
′(c)
1 , ...,g

′(c)
r in Zd−1 orthogonal to g

(c)
1 , ...,g

(c)
d−1−r, with norms at most

N ′�N d−1−r� (h(c)+1)κ
′
, (13.10)

with say κ′=κd.

By (13.9), the N1, ...Nm lie in G.

Now, (13.7) implies that (%̂1(c), ..., %̂d−1(c)) is orthogonal to g
′(c)
1 , ...,g

′(c)
r .

If (%̂1, ..., %̂d−1) is not orthogonal to g
′(c)
1 , ...,g

′(c)
r , then we get a non-trivial equation

for c, which implies easily h(c)�logN ′+1. By (13.10), this implies that

h(c)� log(h(c)+1)+1.

Thus, h(c)�1 and we are after all done by Northcott.

Thus, we can suppose that (%̂1, ..., %̂d−1) is orthogonal to g
′(c)
1 , ...,g

′(c)
r . As above,

we find that g
′(c)
1 , ...,g

′(c)
r lie in U , so are orthogonal to u′1, ...,u

′
s. Thus, u′1, ...,u

′
s lie in

G⊗Q.

It follows that the

d−1∑
j=1

u′tjπ0[Pj(c)−Pd(c)], t= 1, ..., s, (13.11)

are torsion, at least if r 6=0.

If r=0, this follows anyway, because then all π0[Pj(c)−Pd(c)], j=1, ..., d−1, are

torsion.

Thus, on multiplying (13.11) by the w above, we get zero. The resulting equations

determine c, unless they vanish identically. That is,

w

d−1∑
j=1

u′tjπ0[Pj−Pd] = 0, t= 1, ..., s.

In conjunction with (13.8), this shows that the [Pj−Pd], j=1, ..., d−1, are linearly

dependent on J . Now, we can finish by induction on d, as in the case A0=0, using $′.

This completes the proof of Proposition 1.4, ready for the disposal of Davenport’s

third obstacle.
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14. Torsion points

14.1. Abelian varieties

The main argument of this section shows how the simplifications of §12, together with

Proposition 1.4, lead to torsion points. The general principle is essentially classical (see

Goursat [32], for example), at least for fixed integrals; we follow the formulation due to

Risch [64]. Roughly speaking, this says that, if ω in (11.4) is elementary integrable, then

the classes [D1], ..., [Dm] are torsion. But we carry this out in the context of families. It

will quickly lead to a proof of Theorem 1.3 (a), when the genus g>2 and the Jacobian J of

X is simple, again without exceptions. In that case, we may apply Theorem 1.7 to deduce

Theorem 1.3 (a). But, if g=1, the proof works only if there is no complex multiplication

(again without exceptions). In that case, we must use generalised Jacobians and apply

Theorem 1.6 instead. This partly overcomes Davenport’s fourth obstacle.

With Theorem 1.3 (a) in mind, we start with $ (again calligraphic) not elementary

integrable. The arguments of §12 show that we may assume it to be of the third kind,

with poles (if any) defined over 
Q(C), with residues also in 
Q(C).

If $ is of the first kind, then it is easy to see that (13.1) can hold for at most finitely

many c. Namely, we may assume that m=m(c)>1, and we may also assume as above

that (13.1) is shortest, and so c
(c)
1 , ..., c

(c)
m are linearly independent over Q. For any P on

X (c), we have

0 = resP $(c) =

m∑
i=1

c
(c)
i ordP g

(c)
i .

It follows that ordP g
(c)
i =0 for all P and i. Thus, all g

(c)
i are constants, leading to

$(c)=0. As $ 6=0, we get at once the finiteness required in Theorem 1.3 (a). Compare

the arguments just after (10.5).

If $ is elementary integrable modulo differentials of the first kind, then again we

get at most finitely many c. For then we may suppose that $ is already of the first kind;

and still not elementary integrable. But then the arguments just above apply.

They also apply if $ is of the second kind (that is, all its residues are zero).

So, from now on, we assume that $ has at least one non-zero residue, and is not

elementary integrable modulo differentials of the first kind.

Now, if (13.1) holds for some c, we have, as above,

resP $(c) =

m∑
i=1

c
(c)
i ordP g

(c)
i .

Denote by R(c) the (non-zero) additive group generated by the residues of $(c). Thus,

R(c) lies in the group generated by c
(c)
1 , ..., c

(c)
m . SoR(c) has rank at most m. But, ifR(c)
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had rank strictly less than m, then the matrix with entries ordP g
(c)
i would have rank

strictly less than m. This would imply the multiplicative dependence modulo constants

of the g
(c)
i , so the linear dependence over Q of the dg

(c)
i /g

(c)
i , contradicting shortness.

Thus, R(c) has rank exactly m.

At the same time, we can consider the group R generated by the residues of $.

Clearly, by specialisation, this has rank at least m. If it were strictly bigger than m, then

there would be a linear dependence relation not arising from specialisation. This would

imply that the degree [Q(c):Q] is bounded above independently of c. Now, Proposi-

tion 1.4 leads to the required finiteness conclusion of Theorem 1.3 (a). This disposes of

Davenport’s third obstacle.

Thus, we may suppose that m=m(c) (independently of c) is the rank of R, and that

this coincides with the rank of R(c).

We now proceed with this preliminary approach to Theorem 1.3 (a) by induction on

m, the case m=0 corresponding to differentials of the second kind already discussed.

Let us fix over-basis elements %1, ..., %m of R (recall that this means R is of finite

index in the direct sum Z%1+...+Z%m). Then, %1(c), ..., %m(c) are over-basis elements

of R(c). We have a shortest representation

Res$=

m∑
i=1

%iDi

for (calligraphic) divisors D1, ...,Dm. By our assumptions about poles and residues, we

may specialise to

Res$(c) =

m∑
i=1

%i(c)Di(c),

and this too is shortest. The latter is also
m∑
i=1

c
(c)
i (g

(c)
i ),

by (13.1). It follows from Lemma 11.1 (ii) that the vector spaces over Q of divisors

are the same. Therefore, there is N=N (c)>1 such that the NDi(c) are integral linear

combinations of (g
(c)
1 ), ..., (g

(c)
m ). We may use the same notation for these combinations,

and correspondingly c
(c)
1 , ..., c

(c)
m , so that (13.1) continues to hold; but now

(g
(c)
i ) =NDi(c), i= 1, ...,m. (14.1)

So, the classes [Di(c)], i=1, ...,m, are indeed torsion on the specialised Jacobian J (c).

Also,

N$(c) =

m∑
i=1

%i(c)
dg

(c)
i

g
(c)
i

. (14.2)
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Next, we show that we may assume that the generic [D1], ..., [Dm] are independent

over Z. In fact, an integer relation

0 =

m∑
i=1

ai[Di] =

[ m∑
i=1

aiDi
]

would lead to f with divisor
∑m
i=1 aiDi. We may assume that am 6=0, and because

Res

(
am$−%m

df

f

)
=

m−1∑
i=1

(am%i−%mai)Di, (14.3)

with fewer summands, we could finish using the induction hypothesis.

So, from now on, in this section we will assume that [D1], ..., [Dm] are independent

over Z.

Also, let us suppose for the rest of this section that J is simple.

If the genus g>2, we can conclude at once, because just the torsion of [D1(c)] on

J (c) gives the finiteness using Theorem 1.7, the only abelian subschemes of codimension

at least g−1 having codimension g.

If g=1 with m>2, then just the torsion of ([D1(c)], [D2(c)]) on J (c)×J (c) gives the

finiteness using again Theorem 1.7 (this is the main result of [49]). But, as we know that

[D1] and [D2] are independent only over Z, this argument fails when there is complex

multiplication. This gap will not be filled until §20.

What if g=1 and m=1? Up to now, all we know is that [D1(c)] is torsion on the

elliptic curve J (c). But we already saw in §10 that this usually happens for infinitely

many c. So, we need a new argument.

14.2. Generalised Jacobians

The simplest example is

$0 =
dx

(x−2)
√
x(x−1)(x−t)

over C=P1, because the only residues are ±1/
√

4−2t, at the poles (2,±
√

4−2t ). To

make progress, we now have to consider the zeros of the differential; for $0 there is a

single zero (of order 2) at ∞.

Return to the general case g=1 and m=1. As $ has a divisor of degree 2g−2=0,

it certainly has a zero at some Z, which we may also assume defined over 
Q(C), so also

$(c) vanishes at Z(c). Thus, g
(c)
1 satisfies

g
(c)
1 (Z(c)) 6= 0.
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We may suppose that this value is 1, and then, by (14.2), the function g
(c)
1 −1 has at

least a double zero at Z(c). So, not only is [D1(c)] torsion on the elliptic curve J (c),

but also its “narrow” class [D1(c)]2Z(c) is torsion on its extension J (c)2Z(c) by Ga

corresponding to the divisor 2Z(c) in the sense of the appendix (this situation seems not

to be classical). Now, the required finiteness follows from Theorem 1.6, for it is pointed

out in the appendix that the extension J2Z (there G2) is non-split, and so the only group

subschemes of positive codimension are finite or inverse images of torsion points on J
(finitely many copies of Ga). So, we get finiteness as long as [D1]2Z is not inside such a

subscheme. But then, projecting down would show that [D1] is torsion, a contradiction.

By the way, this argument works even when there is complex multiplication.

In fact, it can be shown (when g=m=1) that conversely, if [D1(c)]2Z(c) is torsion

on J (c)2Z(c) for some c, then $(c) is elementary integrable. This remark can be used

to construct more unlikely integrals, for example in the constant case∫
x+i

x−i
dx√
x3−x

=
−1+i

4
log

(
x2+(2+2i)

√
x3−x+2ix−1

x2−(2+2i)
√
x3−x+2ix−1

)
(14.4)

comes from D1=P−R, with P=(i, 1−i) and R=(i,−1+i), and [D1]2Z of order 4, with

Z=(−i, 1+i); the function −f in brackets has divisor 4D1 with ordZ(f−1)=2. Detmar

Welz has pointed out that this is a special case of Goursat’s results in [31]. Compare

also (21.11).

15. Ramification and the splitting line

We now pause to take stock and to explain the difficulties in going further and completely

overcoming Davenport’s fourth obstacle. So far, we have proved Theorem 1.3 (a) when

the generic Jacobian J is simple (but ruling out CM if g=1). In some sense, this is a

likely situation; but already Legendre (at the age of 80) showed that it is not certain.

Namely, if g=2, then a Jacobian can be isogenous to a product E1×E2 of elliptic

curves. Jacobi himself gave the family (see also [14, p. 155])

y2 = ax6+bx4+cx2+d (15.1)

whose Jacobians are isogenous to the product of the (palindromic pair of) elliptic curves

E1 and E2 defined by

y21 = ax31+bx21+cx1+d and y22 = dx32+cx22+bx2+a, (15.2)

respectively. This is a consequence of the maps

φ1(x, y) = (x1, y1) = (x2, y) and φ2(x, y) = (x2, y2) = (x−2, x−3y). (15.3)
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It is then likely that E1 and E2 are not themselves isogenous.

If this holds in the situation of §14, so that g=2 with an isogeny ι from the param-

eterised J to a product E1×E2 of non-isogenous curves, then the considerations of the

previous sections can be made to succeed, provided m>2. For example, we can write

ι([D1]) = ([D11], [D12]) and ι([D2]) = ([D21], [D22]),

and specialise to get two torsion points on each of E1(c) and E2(c). Using [49] as above

on E1, we get finiteness unless [D11] and [D21] are dependent, and so essentially the same

class [D′1]. Similarly, [D12] and [D22] are essentially the same class [D′2].

Now, [50] on products (also a special case of Theorem 1.7) allows us to suppose that

at least one of [D′1] and [D′2] is essentially zero.

But this contradicts the independence of [D1] and [D2].

What if m=1? Then, we can work on a suitable additive extension as in §14. These

also arise through generalised Jacobians, even for curves X of arbitrary genus over an

arbitrary field. As in Serre [72, p. 27 and p. 76], one chooses a modulus m, that is, a

divisor
∑
P∈P sPP with a (possibly empty) set P of points of X and multiplicities sP>1.

Then, Jacm(X) is the quotient of the group of divisors D on X of degree zero prime to

P by the group of principal divisors (f) with ordP (f−1)>sP for all P in P. We denote

the class of D in this quotient by [D]m. This is slightly dangerous, because [D]=[D′]

does not imply [D]m=[D′]m (rather the other way round). Such things could be avoided

by using [D]∅ corresponding to the modulus supported on the empty set, but we prefer

risk over pedantry. Anyway, for empty P, one obtains the ordinary Jacobian Jac(X),

with classes [D], and for non-empty P, one obtains also an algebraic group, an extension

of Jac(X) by a linear group (see [72, pp. 91–98]).

We shall need only the case m=sP for a single point. Then, JsP =Jacm(X) is an

extension of J=Jac(X) by Gs−1
a (see [72, p. 96]), so that

0−!Gs−1
a −! JsP −! J −! 0. (15.4)

If s>2, it is known that this is non-split, in the sense that it is not isomorphic to Gs−1
a ×J

(implicit in [72, p. 188] for s=2, and explicit in Rosenlicht [66, p. 529] for general s).

In our calligraphic context with the Jacobian J of X , we may at first try J2Z , as

near the end of §14, with

0−!Ga−!J2Z −!J −! 0. (15.5)

As observed, this is non-split; but Theorem 1.6 is for extensions only of elliptic curves.

We can obtain these by using an isogeny from J to E1×E2 in (15.5), but it is not clear

that they are non-split, and indeed it is not always true.
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An example is for Z=(0, 1) in the special case d=1 in (15.1). For any f=f(x1, y1)

on E1 having no zero or pole at Q=φ1(Z)=(0, 1), the pull-back f1=φ∗1f=f(x2, y) on

(15.1) is of course principal with [(f1)]=0, but also the narrow class [(f1)]2Z=0, due to

the expansion x=π, y=1+ 1
2cπ

2+... , with a local parameter π at Z. Thus, taking [D] to

[φ∗1D]2Z gives a well-defined regular map from Jac(E1) to J2Z (at first from (E1)Q, but

as in the appendix that is the same as the Jacobian). It is non-zero, because, for any

P1=(x1, y1) 6=∞ on E1 with x1 6=0 and y1 6=0, we have

φ∗1(P1−∞) =Z++Z−−(∞++∞−), (15.6)

with Z±=(±√x1, y1); but the only functions on (15.1), with polar divisor ∞++∞− are

x−α, up to constants, and these have zeros of the shape (x,±y). Thus, even the standard

class on the right of (15.6) is non-zero.

Now, by restricting the analogue of (15.5) to the kernel of the projection from J to

E2, we indeed obtain an additive extension of E1; but it splits because of φ∗1. One could

say that (15.5) can be “half-split”.

In general, the matter depends on ramification properties of φ1 and φ2 (see §16.3).

In (15.5) we can resolve it by using Riemann–Roch and Hurwitz to go to a suitable JsZ ,

possibly with s>3, that has the effect of killing the ramification. So, the case m=1 can

be handled.

But it can happen that E1 and E2 in (15.2) are isogenous. The example with

a=−d=t+2 and c=−b=3t−10 (itself “antipalindromic”) leads, after replacing x by

(x+1)/(x−1) and adjusting y, to

y2 =x5+tx3+x. (15.7)

In fact, there is an isogeny ι from the Jacobian, which we could now call J over P1, to

the square E2 of an elliptic curve, which is just

ỹ2 = x̃3− t̃x̃2+ t̃x̃−1, (15.8)

with

t̃=
3t−10

t+2
.

We can take ι(D)=(ϕ1∗(D), ϕ2∗(D)) with the (calligraphic) maps

ϕ1(x, y) =

((
x+1

x−1

)2
,

8˜̃ty

(x−1)3

)
and ϕ2(x, y) =

((
x−1

x+1

)2
,

8i˜̃ty

(x+1)3

)
(15.9)

from (15.7) to (15.8), where ˜̃t2=1/(t+2); these are easily seen to be independent, for

example by considering valuations at x=±1.
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Now, the above methods fail for m=2 as well. In that case, assuming no problems

with ramification, we have to take m=2 copies of (15.5) to give

0−!G2
a−!J 2

2Z −!J 2−! 0.

However, we do not obtain a torsion point on the specialised J 2
2Z , until we have taken

the quotient by a suitable line in G2
a. Using ι2 from J 2 to E4 and then [49], we can

reduce to an extension of just a single E by G2
a (a sort of fibre product). But even here,

it is again not clear that we end up with something non-split after taking the quotient.

This problem has nothing to do with ramification. It turns out that we do obtain

non-split, with the exception of a unique bad line or “splitting line”. This we explain in

the appendix.

In fact, all these examples arising from (15.1) can be handled by a trick using the

involution Υ sending (x, y) to (−x, y); this reduces Theorem 1.3 to the case of genus 1

(which however still needs care, as (21.8) shows). For ω is elementary integrable if and

only if

ω1 =ω+Υ∗(ω) and ω2 =ω−Υ∗(ω)

are, and it is easily seen that these are pull-backs of differentials on E1 and E2 by φ1

and φ2, respectively.

But we do not know how to use similar tricks for other examples (see also the remark

in Krazer [42, p. 479]). Hermite found the curve

y2 = (x2−a)(8x3−6ax−b),

and elliptic curves

y21 = (2ax1−b)(x21−a) and y22 =x32−3ax2+b,

with the maps

φ1(x, y) =

(
4x3−3ax

a
,

4x2−a
a

y

)
and φ2(x, y) =

(
2x3−b

3(x2−a)
,

√
3

9

x3−3ax+b

(x2−a)2
y

)
.

(see Königsberger [41, p. 276], with a misprint). Consult also [42, p. 480] for another

example, and Enneper and Müller [25, pp. 501–513] for a survey. Also Kuhn [43], Frey

[29], and Frey and Kani [30] have considered general examples in genus 2. See Cassels

[13, p. 202] for an example in genus 3. (Not to mention Mestre [56, p. 196] in genus g=19,

or Ekedahl and Serre [24] for g=1297.)

Finally, when we take ramification into account, as well as the situation for general

g, we have a similar problem for extensions of E by some G2s−2
a ; but still the splitting

line controls the quotient.
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16. Elusive differentials

16.1. Preamble

In order to prove Theorem 1.3, we must of course say what we mean by elusive f . The

reader is advised that the definition extends over the next few pages and involves two

lemmas.

We work in K(X), where K is a field of characteristic zero now containing 
Q, and X

(no longer calligraphic) is a smooth irreducible curve defined over K. As in the previous

sections, we prefer to work with differentials ω on X defined over K. Denote by J the

Jacobian of X, the set of all classes [D] of divisors D of degree zero.

For non-constant maps θ from a curve to a second curve, we use the standard nota-

tion θ∗ and θ∗ for the action on divisors or their classes [ · ], as well as θ∗ on differentials

(see, for example, [75, pp. 33–35]). Thus, the composition θ∗�θ
∗ is simply multiplication

by the degree of θ. But θ∗�θ∗ is not so easy to describe.

Soon, we will take the second curve to be an elliptic curve. In that case, the maps

(now including constant maps) form a group, and it is easy to see that (θ1+θ2)∗=θ1∗+θ2∗

on divisor classes of degree zero. In fact, the same linearity holds with upper stars; but

this is not quite so straightforward (and may be deduced from the seesaw principle, for

example).

To begin the definition, there are no elusive ω (that is, no counterexamples to Dav-

enport’s assertion) if the genus g of X is zero. Thus, henceforth we assume g>1, so that

J has positive dimension.

Also, there are no elusive ω if J does not contain an elliptic curve.

If J does contain an elliptic curve, and θ is a non-constant map from X, then it

turns out that, in certain special circumstances, θ∗�θ∗ can be described. This will be the

content of the next two lemmas.

When J is as above, there is an elliptic curve E and an isogeny ι from J to

En×B (16.1)

for some positive integer n, where B is an abelian variety containing no abelian subvariety

isogenous to E.

We fix any point P0 on X, and define the embedding  of X in J by (P )=[P−P0].

The analogous construction for E taking the origin enables us to identify E with its

Jacobian. Recall that the endomorphism ring O of E comes with a natural Rosati

involution, whose action on β we denote by β̄.

We remark that, if φ̃ is a non-zero homomorphism from J to E, then φ=φ̃� is

non-constant from X to E. For if not, then, because φ(P0)=0, it would be zero; but,

since (X) generates J as a group, this is absurd. We can also check that φ∗=φ̃.
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Lemma 16.1. Let X, J , E, ι, n and B be as above, and let π1, ..., πn and πB be

the projections from ι(J) to the various factors in (16.1). Write φk=πk �ι�, k=1, ..., n,

from X to E. Then, ι=(φ1∗, ..., φn∗, πB �ι), provided we identify E with its Jacobian,

so in particular φ1, ..., φn must be linearly independent over O. Let γkh be in O with

γkh∗=φk∗�φ
∗
h, k, h=1, ..., n. Then, for any α1, ..., αn in O, there are β1, ..., βn in O with

n∑
h=1

β̄hγkh = lαk, k= 1, ..., n, (16.2)

for some positive integer l.

Proof. Taking φ̃=πk �ι in the remark above, we see the required expression for ι,

and so the linear independence assertion.

Now, the matrix with entries γkh is non-singular. Otherwise, we could find α′1, ..., α
′
n

in O, not all zero, with

α′1γ1h+...+α′nγnh = 0, h= 1, ..., n.

But then, for φ=α′1φ1+...+α′nφn, we would have from bilinearity φ∗�φ
∗
h=0, h=1, ..., n,

and then φ∗�φ
∗=0, leading to a contradiction through the degree.

Thus, indeed, β1, ..., βn and l exist as in (16.2). This completes the proof.

We now make the above comment on θ∗�θ∗ precise.

Lemma 16.2. Let X, J , E, ι, n and B be as above, with φ1, ..., φn and γhk as in

Lemma 16.1. Let M be a non-torsion point on J with

ι(M) = (Q1, ..., Qn, H) (16.3)

for points Q1, ..., Qn on E and H on B. Assume that there is a positive integer a and

α1, ..., αn in the endomorphism ring O of E with

aQk =αkQ, k= 1, ..., n, and aH = 0 (16.4)

for some point Q on E. Define β1, ..., βn and l as in Lemma 16.1, and define

θ=

n∑
h=1

βhφh

from X to E. Then, θ is non-constant, c=
∑n
h=1 βhαh 6=0 is in Z and

aθ∗M = cQ. (16.5)

Further,

abθ∗θ∗M = abd0M

for the degree b of ι and the degree d0=cl of θ.
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Proof. If θ were constant, then, by the remark just before Lemma 16.1,
n∑
h=1

βh(πh�ι)

would be zero. Thus, βh=0, h=1, ..., n, and also αk=0, k=1, ..., n, by (16.2). But then

(16.3) and (16.4) would show that M is torsion, against our hypothesis.

Next, we define Q0=θ∗M on E. We calculate

Q0 = θ∗M =

n∑
h=1

βh∗φh∗M =

n∑
h=1

βh∗Qh,

which, by hypothesis, implies that

aQ0 = c∗Q (16.6)

for

c=

n∑
h=1

βhαh.

Now, the degree d0 of θ can be evaluated by working out θ∗�θ
∗, which is( n∑

h=1

βh∗φh∗

)
�

( n∑
t=1

φ∗tβ
∗
t

)
=

n∑
h=1

n∑
t=1

βh∗γht∗β
∗
t = l

n∑
h=1

βh∗αh∗= lc∗.

Here, we used (16.2) and the fact that (β̄)∗=β
∗ (consider (ββ̄)∗, for example) on divisor

classes of degree zero. Thus, d0=lc is a rational integer and c 6=0. Now, c is in O and in

Q, so in Z.

Define also ξ=θ∗Q0=θ∗θ∗M on J . Then,

ι(ξ) = (φ1∗ξ, ..., φn∗ξ, πB(ι(ξ))), (16.7)

and here

πB(ι(ξ)) =πB(ι(θ∗Q0)) = f(Q0)

for the map f=πB �ι�θ
∗ from E to B. However, our assumptions on E and B imply that

f=0. Thus, we can go further with (16.7) as

aι(ξ) = a(φ1∗θ
∗Q0, ..., φn∗θ

∗Q0, 0) = a

( n∑
h=1

γ1h∗β
∗
hQ0, ...,

n∑
h=1

γnh∗β
∗
hQ0, 0

)
,

which is

al(α1∗Q0, ..., αn∗Q0, 0) = lc(α1∗Q, ..., αn∗Q, 0),

by (16.6). By (16.4), this is in turn alc(Q1, ..., Qn, 0). Thus, recalling (16.3), we get

aι(ξ) = alcι(M).

Therefore, abξ=ablcM=abd0M . Thus,

abθ∗θ∗M = abd0M,

and this completes the proof.
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16.2. The definition

We now continue with the definition of elusive.

In fact, there are no elusive ω if J does not contain an elliptic curve with complex

multiplication.

So, from now on, in this section, we suppose that this is not the case; equivalently

(E0) There is an isogeny ι from J to En×B for some n>1, where E is an elliptic

curve defined over 
Q with complex multiplication and endomorphism ring say O, and B

has no abelian subvariety isogenous to E.

We shall need the concept of generalised Jacobian, for the moment only for g=1

(but later for any g). This is recalled in the appendix. For an elliptic curve E over K, a

point W on E and a positive integer r, we denote more precisely by ErW the extension

called Gr there with respect to the modulus rW . The corresponding class in ErW of a

divisor D (prime to W ) on E will be denoted more precisely, as above, by [D]rW . The

linear part of ErW is isomorphic to Gr−1
a and consists of the classes [(k)]rW of principal

divisors (k) of functions k (with no poles or zeros at W ) on E.

Next, we list certain properties (E1)–(E4) about a differential ω of the third kind

which is not elementary integrable modulo differentials of the first kind. As in §§12–14,

we shall eventually prove Theorem 1.5 by reducing to such ω.

(E1) Now, ω as a differential of the third kind must have at least one non-zero

residue, otherwise it would be of the first kind. Pick over-basis elements ρ1, ..., ρm of the

additive group generated by the residues of ω, and write

Resω= ρ1D1+...+ρmDm

for divisors D1, ..., Dm in X of degree zero. Then, if πB is the projection from En×B
to B, the πB(ι([Di])), i=1, ...,m, should be torsion on B.

We note that not all of [D1], ..., [Dm] can be torsion. Otherwise, there would be a

positive integer ã with

Res(ãω) =

m∑
i=1

ρi(fi).

But that is Res ε for

ε=

m∑
i=1

ρi
dfi
fi
,

so ãω−ε would have zero residue divisor. This too is already of the third kind, so would

have to be of the first kind, a contradiction.
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Now, when the over-basis elements ρ1, ..., ρm are changed by a matrix in SLm(Z),

the D1, ..., Dm change by the inverse matrix. As SLm(Z) is Zariski-dense in SLm(R), it

is easy to find an over-basis with [D1], ..., [Dm] all non-torsion. It is not too natural to

do this, but it will be highly convenient in what follows, especially in §19, and we call it

a torsion-killing over-basis. Recall the embedding  above from X to J .

(E2) Let π1, ..., πn be the projections from En×B to the factors E, and put

φk =πk �ι�, k= 1, ..., n,

non-constant from X to E. Then, there should be αik in O, a divisor D of degree zero

on E and a positive integer a such that

aφk∗[Di] =αik∗[D], i= 1, ...,m and k= 1, ..., n.

Further, [D] should not be defined over 
Q.

We note that [D] above cannot be torsion. For otherwise all the φk∗[Di] would be

torsion. By (E1) the πB(ι([Di])) are torsion, so that, by Lemma 16.1, the ι([Di]) would

be torsion. Thus, the [Di] would be torsion, which we ruled out just after (E1).

Now, we can use Lemma 16.2. With non-torsion M=[Di], we may assume that the

quantity a in the first equations of (16.4) is independent of i, and that

aπB(ι([Di])) = 0, i= 1, ...,m.

We obtain non-constant θi from X to E, together with non-zero functions hi on X, such

that

abdiDi−abθ∗i θi∗Di = (hi) i= 1, ...,m, (16.8)

where b is the degree of ι and di is the degree of θi. Fixing these, define

ω\ =ω− 1

ab

m∑
i=1

ρi
di

dhi
hi
, (16.9)

which is non-zero because ω is not elementary integrable.

From (E1) and (16.8), we note for later use that

Res ω\ =

m∑
i=1

ρi

(
Di−

1

ab

(hi)

di

)
=

m∑
i=1

ρ\iD
\
i (16.10)

for

ρ\i =
1

abd
ρi and D\

i = abdDi−ei(hi) = abeiθ
∗
i θi∗Di, i= 1, ...,m, (16.11)
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and diei=d1 ... dm, i=1, ...,m. However, this might not be shortest as in (11.4). But in

§18 it will be. At least ρ\1, ..., ρ
\
m are linearly independent over Q.

(E3) For each zero Z of ω\, of order say r−1>1, write Wi=θi(Z) and define FZ

as the product of the generalised Jacobians ErWi fibred over E embedded diagonally, with

UZ as the subspace of the linear part consisting of those ([(k1)]rW1
, ..., [(km)]rWm

) such

that

ordZ

( m∑
i=1

ρiθ
∗
i

dki
ki

)
> r−1 (16.12)

(note that, if (ki) is prime to Wi, then θ∗i (ki) is prime to Z, else di(ki)=θi∗θ
∗
i (ki) would

not be prime to θi(Z)=Wi). Then, with GZ=FZ/UZ , of dimension say dZ , there should

be a surjective homomorphism σZ from GZ to GdZ−1
a .

It will be clear in the sequel that there is an exact sequence

0−!GdZ−1
a −!GZ −!E−! 0,

so the above condition expresses splitting as in the appendix (as already used in §14 and

§15). The condition will be simplified in Lemma 16.3 below.

Next, we note that each θi∗Di is prime to Wi, else D\
i=abeiθ

∗
i θi∗Di would not be

prime to anything in θ−1i (Wi) and in particular Z; but then, by the linear independence

of ρ\1, ..., ρ
\
m in (16.10), we would deduce that Z is a pole of ω\.

(E4) There should be a positive integer t such that, for each such Z, the point

TZ = a(e1[θ1∗D1]rW1
, ..., em[θm∗Dm]rWm

)

on ErW1×...×ErWm projects to t([D], ..., [D]) on Em, and furthermore σZ(TZ)=0.

At last, we can state what it means for an arbitrary differential to be elusive. This

we do in terms of the particular ω considered above.

Definition. A differential on X is elusive if it differs from a differential of the third

kind ω by an exact differential, but is not elementary integrable modulo differentials of

the first kind, and furthermore (E0) holds for J and (E1)–(E4) hold for ω.

Note that, if ω exists for the original differential, then it is unique. And it too is not

elementary integrable modulo differentials of the first kind.

Elusiveness is invariant under adding exact differentials.

As already remarked, it may be found surprising that any elusive differentials actu-

ally exist. But

ω0 =
x dx

(x2−t2)
√
x3−x
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(with K as �Q(t), for example) in (21.8) is elusive.

It is not too hard to see that, for reasonable K, such as 
Q(C), we can effectively

decide whether a given ω is elusive. Especially for ω0 above, with m=2, it is fairly easy

(see §21). But it is more tedious for things like

ω0+
dx

x
, (16.13)

with m=3 (and the obvious over-basis not torsion-killing), or

ω0+
1√
t3−t

dx

x
, (16.14)

back to m=2 (thanks to residues and the choice of coefficient).

The problem is that adding quite a simple elementary integrable differential (even

something exact) complicates the zeros Z in (E3) and (E4). In fact, we will see in §19,

at least over 
Q(C), that the property of elusiveness is invariant under adding arbitrary

elementary integrable differentials (as it should be according to Theorem 1.5).

16.3. More about (E3)

We will soon see how to take back control in (E3). First, we need some more generalities.

Return to non-constant θ from X to another curve, say X ′. The pull-back θ∗ extends

to generalised Jacobians. Namely, there is a homomorphism θ∗m from Jacθ∗m(X ′) to

Jacm(X) defined by

θ∗m([D′]θ∗m) = [θ∗D′]m.

As we could not find a reference in the literature, and especially as the push-forward θ∗

seems not to extend, we give a slightly pedantic proof. It rests on

ordP (θ∗h′) = eP (θ) ordθ(P ) h
′ (16.15)

for any function h′ on X ′, where eP (θ)>1 is the ramification index of θ at P . We have

θ∗m =
∑
P ′∈P′

s′P ′P
′,

with P′=θ(P) and

s′P ′ =
∑

θ(P )=P ′

sP .

It suffices to show that, if f ′ is a function on X ′ with ordP ′(f
′−1)>s′P ′ for all P ′, then

also ordP (θ∗f ′−1)>sP for all P . But θ∗f ′−1=θ∗(f ′−1), so (16.15) gives

ordP (θ∗f ′−1) = eP (θ) ordθ(P )(f
′−1)> ordθ(P )(f

′−1)> s′θ(P ) > sP ,
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as desired.

Later, we will need the analogue of (16.15) for differentials ω′ on X ′, namely

ordP (θ∗ω′) = eP (θ)−1+eP (θ) ordθ(P ) ω
′ (16.16)

(also a standard calculation with local parameters).

Remark. When m has empty support, the map θ∗ from Jac(X ′) to Jac(X) is almost

injective in the sense of finite kernel, because, if θ∗D′=(f), then θ∗θ
∗D′=(θ∗f), and since,

as remarked, θ∗θ
∗ is multiplication by the degree d of θ, we see that d[D′]=0. But, for

general m, this may fail. For example, with φ1 around (15.6), we have

ordZ(y−1) = ordZ(φ∗(y1−1)) = ordZ((y1−1)�φ1) = eZ(φ1) ordφ1(Z)(y1−1) = 2,

because eZ(φ1)=2, and so

φ∗1[(y1)]2φ1(Z) = [(φ∗1y1)]2Z = [(y)]2Z = 0.

But d[(y1)]2φ1(Z) 6=0 for all positive d (provided c 6=0). This also explains the connection

between ramification and “half-split” around (15.5).

A later problem (see (18.3) and the discussion around it) will be the lack of surjec-

tivity of θ∗m; but this fails already on dimensional grounds, if the genus of X exceeds that

of X ′.

In the case m=sP as in (15.4), it is known (see, for example, Serre [72, p. 94]) that

the Gs−1
a is the set of classes [(f)]m. This makes it clear that θ∗m acts on the linear parts.

It also commutes with the natural projections from Jacθ∗m(X ′) to Jac(X ′), and from

Jacθ∗m(X) to Jac(X) via the standard θ∗ from Jac(X ′) to Jac(X).

Now, we can clarify (E3) by eliminating the zeros Z. We note that there is a

canonical embedding κ of O in K defined by α∗(χ)=κ(α)χ for any differential χ of the

first kind on E.

Lemma 16.3. Suppose that J is as in (E0), except possibly for the condition of

complex multiplication. Suppose also that ω on X is of the third kind, but is not elemen-

tary integrable modulo differentials of the first kind, and satisfies (E1) and (E2). Then,

(E3) is equivalent to
m∑
i=1

ρiκ(�αik) = 0, k= 1, ..., n, (16.17)

which is in turn equivalent to
m∑
i=1

ρiθ
∗
i χ= 0 (16.18)

for any differential χ of the first kind on E.



280 d. masser and u. zannier

Proof. First, suppose that (E3) holds. We shall first deduce (16.18).

Thus, define

ω0 =

m∑
i=1

ρiθ
∗
i χ

on X, also of the first kind, and assume for the moment that ω0 6=0. We will obtain a

contradiction.

Then, ω0 has exactly 2g−2 zeros. Our ω\ has poles, because ω is not elementary

integrable modulo differentials of the first kind. Thus, ω\ has more than 2g−2 zeros.

Thus, (a primitive sort of zero estimate) there is a point Z in X with

r−1 = ordZ ω
\> ordZ ω0 > 0. (16.19)

We have

0−!Gr−1
a −! JrZ −! J −! 0,

and here the Gr−1
a is the set of classes [(f)]rZ (recall that [D]rZ is defined only for D

coprime to Z). Thus, in the product

0−! (Gr−1
a )m−! (JrZ)m−! Jm−! 0,

the (Gr−1
a )m is the set of

([(f1)]rZ , ..., [(fm)]rZ).

Define VZ in (Gr−1
a )m inside (JrZ)m by

ordZ

( m∑
i=1

ρi
dfi
fi

)
> r−1. (16.20)

By functoriality, we have a map Y =(θ∗1 , ..., θ
∗
m) from ErW1

×...×ErWm
to (JrZ)m.

Thus,

UZ =Y −1VZ

in (Gr−1
a )m inside

∏m
i=1ErWi .

From (E3), the corresponding GZ=FZ/UZ is split. Thus, by Proposition A.3 in the

appendix, and the remark immediately following, we know that UZ contains the splitting

line LZ in FZ .

To calculate LZ , we use Corollary A.7 in the appendix, with τi being the translation

by −Wi, i=1, ...,m. Thus, LZ is the set of

l(k) = ([(τ∗1 k)]rW1
, ..., [(τ∗mk)]rWm

), (16.21)
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for all k on E with

ordO

(
dk

k
−λχ

)
> r−1, (16.22)

and some constant λ in 
Q(C). Now, LZ inside UZ amounts to Y LZ inside VZ , and so

Y l(k) in VZ for all such k. Taking any such k with ordO(k−1)=r−1, we have λ 6=0, and

we find that

(θ∗1([(τ∗1 k)]rW1
), ..., θ∗m([(τ∗mk)]rWm

)) = ([(θ∗1τ
∗
1 k)]rZ , ..., [(θ

∗
mτ
∗
mk)]rZ)

lies in VZ , which is ([(f1)]rZ , ..., [(fm)]rZ) for

fi = θ∗i τ
∗
i k= θ∗i (τ∗i k), i= 1, ...,m.

Here,
dfi
fi

= θ∗i

(
d(τ∗i k)

τ∗i k

)
= θ∗i τ

∗
i

dk

k
= θ∗i τ

∗
i (λχ+η), i= 1, ...,m,

for some η with ordO η>r−1 by (16.22). Now,

θ∗i τ
∗
i (λχ) =λθ∗i (τ∗i χ) =λθ∗i χ (i= 1, ...,m)

by translation-invariance of χ, and

ordZ(θ∗i τ
∗
i η)> ordWi

(τ∗i η)> ordO η> r−1, i= 1, ...,m,

by (16.16). It follows from the definition (16.20) of VZ that ordZ ω0>r−1. But this

contradicts (16.19).

Thus, indeed, (16.18) holds; that is, ω0=0.

To get to (16.17), we write

θi =

n∑
h=1

βihφh, i= 1, ...,m, (16.23)

as in Lemma 16.1, with

n∑
h=1

β̄ihγkh = lαik, i= 1, ...,m and k= 1, ..., n, (16.24)

as in (16.2). We calculate formally that ω0 is

m∑
i=1

ρi

n∑
h=1

φ∗hβ
∗
ihχ=

m∑
i=1

ρi

n∑
h=1

φ∗hκ(βih)χ=

n∑
h=1

νhφ
∗
hχ. (16.25)

for νh=
∑m
i=1 ρiκ(βih), h=1, ..., n.
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We note that the construction of φ1, ..., φn gives φ̃1, ..., φ̃n from J to E with

φh = φ̃h�.

We now use upper stars in the extended sense to indicate the pull-back action on differ-

entials for general maps between general varieties. Thus, from the above,

0 =ω0 = ∗
( n∑
h=1

νhφ̃
∗
hχ

)
.

Now, ∗ is well known to be an isomorphism from differentials of the first kind on J to

differentials of the first kind on X. Thus,

0 =

n∑
h=1

νhφ̃
∗
hχ

too. Also, Φ̃=(φ̃1, ..., φ̃n) would be surjective from J to En, because φ1, ..., φn are linearly

independent overO. And Φ̃∗χh=φ̃∗hχ for χh on En corresponding to the hth factor. From

the injectivity of Φ̃∗, there would follow

0 =

n∑
h=1

νhχh

too; an absurdity, unless νh=0, h=1, ..., n.

But then, using (16.24), we compute

0 =

n∑
h=1

κ(�γkh)νh = l

m∑
i=1

ρiκ(�αik), k= 1, ..., n, (16.26)

giving (16.17), as required.

Now, we can get back to (E3) as follows. Take any zero Z of ω\, and any l(k) in

LZ as in (16.21), so that, by (16.22), we have dk/k=λχ+η for η vanishing to order at

least r−1 at O. Then, with ki=τ
∗
i k, i=1, ...,m, we have

m∑
i=1

ρiθ
∗
i

dki
ki

=

m∑
i=1

ρiθ
∗
i τ
∗
i (λχ+η) =

m∑
i=1

ρiθ
∗
i τ
∗
i η.

Thus, this vanishes to order at least r−1 at Z. So, by (16.12), we are in UZ . In other

words, LZ lies in UZ , and so GZ is split. Therefore, we are back to (E3). This completes

the proof.
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To be able to handle the zeros Z in (E4) later, we need Theorem 1.3 (b), which we

accordingly prove next.

The following side question arose. Suppose we have verified (E0)–(E3), together

with (E4) except for the conditions σZ(TZ)=0. Do these conditions then follow auto-

matically? If not, this would provide differentials of the third kind for which Davenport’s

assertion is relatively easy (compare the treatment in §21 of (21.9) for d=5, which how-

ever has a pole of order 6). Indeed, the answer is no, and (21.12) is such an example—we

found that there are at most 138 values of t, effectively computable, for which it becomes

elementary integrable.

17. Proof of Theorem 1.3 (b)

Now, we suppose that $ (once more calligraphic) is elusive. We can even suppose it

is of the third kind. For it is certainly $′+df with $′ elusive of the third kind, and

so Theorem 1.3 (b) for $′ would show that $′ is not elementary integrable, but there

are infinitely many c with $′(c) elementary integrable. Thus, $ itself is not elementary

integrable, and $(c) is elementary integrable.

So, we may assume (E0) for J and (E1)–(E4) for $ (with a torsion-killing over-

basis) which is not elementary integrable, even modulo differentials of the first kind.

Because D in (E2) is a divisor (of degree zero) not defined over 
Q on the elliptic

curve E defined over 
Q, there is an infinite (countable) set S of c such that [D(c)] is

torsion.

Take any c in this S, and let Z be any zero of $\ in (E3), of order say r−1. With

TZ in (E4), we show that TZ(c) (this is short for T (c)Z(c)) is torsion on GZ(c) (similarly

shortened). For the latter is an extension of E(c)=E by GdZ−1
a , and ςZ (this is our

“calligraphic” version of σZ) is a surjective map from GZ(c) to GdZ−1
a . As ςZ(TZ)(c)=0,

by (E4), we have torsion on the additive part. But also, by (E4), the projection of

TZ(c) to the elliptic part is t([D(c)], ..., [D(c)]). So, indeed, TZ(c) is torsion on GZ(c).

With Y=(ϑ∗1, ..., ϑ
∗
m), we deduce that YTZ(c) is torsion on YGZ(c). Now, YFZ(c)

lies in JmrZ(c) (also shortened), and with UZ as in (E3), YUZ(c) lies in the subspace

VZ(c) of (Gr−1
a )m there, where now VZ is defined by

ordZ

( m∑
i=1

%i
dfi
fi

)
> r−1.

So, YTZ(c) is torsion on JmrZ(c)/VZ(c).

Now,

bYTZ(c) = ab(e1[ϑ∗1ϑ1∗D1]rZ(c), ..., em[ϑ∗mϑm∗Dm]rZ(c)),
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which, by (16.11), is

([D\1]rZ(c), ..., [D\m]rZ(c)).

So, there is a positive integer N \ with

N \([D\1]rZ(c), ..., [D\m]rZ(c))

in VZ(c). Being in (Gr−1
a )m, it has the form

([(g
′ \(c)
1 )]rZ(c), ..., [(g

′ \(c)
m )]rZ(c))

for g
′ \(c)
1 , ..., g

′ \(c)
m on X (c). Thus, there are g

′′ \(c)
1 , ..., g

′′ \(c)
m on X (c) (with suitable order

conditions at Z(c) as above) so that

N \D\i (c) = (g
′ \(c)
i )+(g

′′ \(c)
i ) = (g

\(c)
i ), i= 1, ...,m, (17.1)

for g
\(c)
i =g

′ \(c)
i g

′′ \(c)
i , i=1, ...,m. Then, being in VZ(c) means

ordZ(c)$
\(c) > r−1,

where

$\(c) =
1

abdN \

m∑
i=1

%i(c)
dg
\(c)
i

g
\(c)
i

.

Consider now χ(c)=$\(c)−$\(c) on X (c). By definition, $\(c) vanishes to order

at least r−1 at Z(c), and therefore so does χ(c).

Next, we show that χ(c) is of the first kind. From (16.9) and (16.10), we get

Res$\(c) =
1

abd

m∑
i=1

%i(c)D\i (c). (17.2)

On the other hand,

Res$\(c) =
1

abdN \

m∑
i=1

%i(c)(g
\(c)
i ),

which, by (17.1), also works out as (17.2). Thus,

Resχ(c) = Res$\(c)−Res$\(c) = 0.

As χ(c) is already of the third kind, it must indeed be of the first kind.

Now, $\ is not of the first kind, otherwise $ would be elementary integrable modulo

differentials of the first kind, and we ruled out these right at the beginning (they obviously

cannot lead to counterexamples). Thus, $\ has strictly more than 2g−2 zeros with

multiplicity. Thus, so has χ(c). This forces χ(c)=0 (the same zero estimate as before).

Now, $\(c)=$\(c) is elementary integrable (for all c in S). This completes the proof of

Theorem 1.3 (b).
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18. More torsion points

Let $ be a differential on X over 
Q(C) of the third kind, not elementary integrable

modulo differentials of the first kind. So, there is at least one non-zero residue, and we

have the usual (torsion-killing over-basis)

Res$=

m∑
i=1

%iDi

for m>1. We saw in §14 that, if $(c) is elementary integrable and %1(c), ..., %m(c) are

linearly independent over Q, then the broad classes [D1(c)], ..., [Dm(c)] are all torsion.

For the proof of Theorem 1.3 (a), we will need the following refinement for narrow classes,

assuming certain of the conditions of §16.

Lemma 18.1. Suppose that $ on X over 
Q(C) is of the third kind, not elementary

integrable modulo differentials of the first kind, and that (E0) with E holds for J , except

possibly for the condition of complex multiplication. Suppose also that (E1) holds with

[D1], ..., [Dm] linearly independent over Z, and that (E2) holds; also, that there is a

positive integer t such that, for every zero Z of $\ with Wi=ϑi(Z), i=1, ...,m, the

point

TZ = a(e1[ϑ1∗D1]rW1 , ..., em[ϑm∗Dm]rWm)

on ErW1
×...×ErWm

projects to t([D], ..., [D]) on Em. Let c be such that $(c) is elemen-

tary integrable and %1(c), ..., %m(c) are linearly independent over Q. Then, the ϑi∗Di(c)

are prime to Wi(c), i=1, ...,m, and the point

TZ(c) = a(e1[ϑ1∗D1]rW1
(c), ..., em[ϑm∗Dm]rWm

(c))

is torsion on GZ(c)=FZ(c)/UZ(c), where FZ(c) is the fibre product of the ErWi(c),

i=1, ...,m, and UZ(c) is the set of ([k1]rW1(c), ..., [km]rWm(c)) with

ordZ(c)

( m∑
i=1

%i(c)ϑ∗i
dki
ki

)
> r−1.

Proof. The assumption on the independence of [D1], ..., [Dm] is not really necessary,

but it seems to make certain aspects of the structure clearer.

The arguments of §14 lead to (14.1) and (14.2), because we are assuming that

%1(c), ..., %m(c) are linearly independent.

Recall now (16.10) and (16.11). Here, %\1, ..., %
\
m remain independent over Q; but also

D\1, ...,D\m remain independent over Z, because we assumed [D1], ..., [Dm] independent.

Thus, (16.10) is shortest. It follows that the residue group R\ of $\ has rank m\>m.
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On the other hand, it is clear that R\ is contained in Z%\1+...+Z%\m, so m\6m. Hence,

m\=m and %\1, ..., %
\
m are an over-basis for R\.

For the specialisation, we find using (14.2) that

$\(c) =$(c)− 1

ab

m∑
i=1

%i(c)

di

d~i(c)

~i(c)
=

1

abdN

m∑
i=1

%i(c)
dg
\(c)
i

g
\(c)
i

(18.1)

and

g
\(c)
i = (g

(c)
i )abd~i(c)−Nei , i= 1, ...,m. (18.2)

Also, using (14.1), we find for the divisors

(g
\(c)
i ) = abd(g

(c)
i )−Nei(~i(c)) =ND\i (c), i= 1, ...,m. (18.3)

For us, the fact that these D\i in (16.11) are images by ϑ∗i will be crucial; we already

noted during the discussion of θ∗m in §16 that pull-backs can be far from surjective.

Now, by (18.1), we have

abdN$\(c) =

m∑
i=1

%i(c)
dg
\(c)
i

g
\(c)
i

,

which has a zero of order r−1 at the specialised point Z(c). In particular no pole, and

so (g
\(c)
1 ), ..., (g

\(c)
m ) are prime to Z(c) from the linear independence of %1(c), ..., %m(c)

over Q. Thus, by (18.3),

N([D\1]rZ(c), ..., [D\m]rZ(c)) = ([(g
\(c)
1 )]rZ(c), ..., [(g

\(c)
m )]rZ(c))

lies in the subspace VZ(c) of (Gr−1
a )m in (JrZ(c))m, where VZ in (Gr−1

a )m inside (JrZ)m

is defined by

ordZ

( m∑
i=1

%i
dfi
fi

)
> r−1. (18.4)

This gives a torsion point (of order dividing N)

([D\1]rZ(c), ..., [D\m]rZ(c))

on the quotient (JrZ(c))m/VZ(c).

As before, we have Y=(ϑ∗1, ..., ϑ
∗
m) from ErW1

×...×ErWm
to (JrZ)m. Thanks to

(16.11), we have

abY(e1[ϑ1∗D1]rW1
, ..., em[ϑm∗Dm]rWm

) = ([D\1]rZ , ..., [D\m]rZ)
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(note that ϑi∗Di is prime toWi, otherwise D\i would not be prime to Z, and so D\i (c) not

prime to Z(c) either, leading by (18.3) and (18.1) to Z(c) being a pole of $\(c) rather

than a zero—compare the argument in (E4) above). We thus get a torsion point

TZ(c) = a(e1[ϑ1∗D1]rW1(c), ..., em[ϑm∗Dm]rWm(c))

on ( m∏
i=1

ErWi
(c)

)
/UZ(c),

because UZ=Y−1VZ in (Gr−1
a )m, and of course TZ(c) is the specialisation of

TZ = a(e1[ϑ1∗D1]rW1
, ..., em[ϑm∗Dm]rWm

)

as in (E4). By hypothesis, this is on the fibre product, and thus so is T (c). This

completes the proof.

19. Elusive invariance

Here, we establish the result mentioned in §16, working throughout with X over 
Q(C).

Proposition 19.1. If $ is elusive and ε is elementary integrable, then $+ε is

elusive.

Proof. By familiar arguments it suffices to do it when $ and ε are of the third kind.

Even though the result has nothing to do with specialisations, these will be used in the

proof, and so we take a suitable cover of C to ensure everything specialises well.

Write as usual Res$=
∑m
i=1 %iDi, with an over-basis that is torsion-killing (recall

that this means that the classes [D1], ..., [Dm] are non-torsion). We use induction on

m>1. As in §14, this enables us to assume that [D1], ..., [Dm] are linearly independent

over Z. For if not, then f exists as in (14.3) (also torsion-killing), and then we see that

am($+ε) =

(
am$−%m

df

f

)
+

(
%m

df

f
+amε

)
is elusive.

It suffices now to check the case of a single ε=cdg/g, with g non-constant and c

constant.

Write $̇=$+ε and as usual a shortest

Res $̇=

ṁ∑
i=1

%̇iḊi,
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where we shall soon choose %̇1, ..., %̇ṁ torsion-killing. Here ṁ>1, otherwise $̇ would be

of the second kind, so also of the first kind, contradicting the fact that $ is elusive. We

also have

Res $̇= c(g)+

m∑
i=1

%iDi (19.1)

for the divisor (g), but this is probably not shortest. Anyway, by Lemma 11.1 (ii)

Ḋ1, ..., Ḋṁ must be linear combinations over Q of (g),D1, ...,Dm. Multiplying by a

denominator and taking classes, we see that there is a positive integer Ṅ , with ṄḊ⊆D,

for the groups

D= Z[D1]+...+Z[Dm] and Ḋ= Z[Ḋ1]+...+Z[Ḋṁ]

(nothing to do with polynomial rings!) in J .

From $=$̇−ε follows in the same way ND⊆Ḋ, so the two groups are in a natural

sense commensurable.

As D has rank m, it follows that Ḋ also has rank m. Therefore, ṁ>m.

On the other hand, for the residue spaces

S = Q⊗R= Q%1+...+Q%m and Ṡ = Q⊗Ṙ= Q%̇1+...+Q%̇ṁ,

we have

Ṡ ⊆S+Qc, (19.2)

and so ṁ6m+1. Also,

Ṙ⊆R+Zc (19.3)

for the groups.

Now, there are two cases (I) and (II), according to whether c lies in S or not.

(I) First suppose c lies in S, as for example in (16.14). Then, by (19.2), we get Ṡ⊆S,

so ṁ6m. Thus, in this case, ṁ=m.

Now, we replace %i by %i/q for some integer q so large that c lies in the new

Z%1+...+Z%m.

This new group still contains R, so by (19.3) Ṙ as well, and so we can choose

%̇i = %i, i= 1, ...,m, (19.4)

indeed torsion-killing.
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Writing c as an integral linear combination of %1, ..., %m, we find

[Ḋi] = [Di], i= 1, ...,m. (19.5)

We now proceed to check that the conditions of elusive for $ carry over to $̇. In

fact, for (E0), there is nothing to do, as it is independent of the differentials; for (E1),

(E2), it suffices to add overhead dots everywhere. In (E3), we can take

ϑ̇i =ϑi, i= 1, ...,m. (19.6)

We do not know how to check the rest of (E3) directly, as there is no obvious relation

between the zeros Ż of $̇\ and the zeros Z of $\. It is Lemma 16.3 which by-passes this

problem with either (16.17) or (16.18). Thus, the ĠŻ are split for every zero Ż of $̇\.

For (E4) we have no analogue of Lemma 16.3. But the projection of ṪŻ for $̇

involves ȧėi[ϑ̇i∗Ḋi]= ṫ[Ḋ] for ṫ=t. Thus, we are indeed on the fibre product ḞŻ .

For the rest of (E4), we have to argue again indirectly, this time as follows.

If the condition ς̇Ż(ṪŻ)=0 (again the calligraphic σ) fails for some Ż, take any c

with the specialisation $̇(c) elementary integrable. If %̇1(c), ..., %̇m(c) are independent,

then, by Lemma 18.1, we get a torsion point ṪŻ(c) on ĠŻ(c). So, ς̇Ż(ṪŻ)(c) is torsion

on the additive part, that is, zero. This gives a non-trivial equation for c, and so the

number of such c is at most finite. The same conclusion holds if %̇1(c), ..., %̇m(c) are not

independent, because then [Q(c):Q] is bounded, and we can appeal to Proposition 1.4.

Thus, if some ς̇Ż(ṪŻ) 6=0, there would be at most finitely many c with $̇(c) elemen-

tary integrable. As $̇=$+ε, the same would hold for $(c). But, as $ itself is elusive,

this contradicts Theorem 1.3 (b)!

Thus, indeed we have shown that $̇ is elusive in this case where c lies in S.

(II) Suppose that c does not lie in S, as for example in (16.13). Then, c, %1, ..., %m

are independent. Also, (g) 6=0,D1, ...,Dm are independent, otherwise clearing denomi-

nators and taking classes would contradict the independence of [D1], ..., [Dm]. Thus, by

Lemma 11.1 (i), the representation (19.1) is also shortest, so ṁ=m+1.

Now, (19.3) (without the q-trick) shows that we could assume (19.4), and also

%̇m+1 = c. (19.7)

But then Ḋm+1 comes out as (g), so its class is zero and torsion is not killed. It suffices

to make the single change

%̇m = %m−c (19.8)

in (19.4). Then, we find even

Ḋi =Di, i= 1, ...,m,
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as divisors, as well as

[Ḋm+1] = [Ḋm] = [Dm].

Thus, indeed, %̇1, ..., %̇ṁ are torsion-killing.

Again, we can check that the conditions of elusive for $ carry over to $̇, taking into

account the extra (19.7) and the change (19.8). For example, we find

ϑ̇m+1 =ϑm = ϑ̇m (19.9)

(incidentally not independent over Z as will be secured in the next section).

Now, for example in (16.18), for $̇ we find

%̇iϑ̇
∗
iχ= %iϑ

∗
iχ, i= 1, ...,m−1,

as well as

%̇mϑ̇
∗
mχ+%̇m+1ϑ̇

∗
m+1χ= %mϑ

∗
mχ.

So, as before, the ĠŻ are split for every zero Ż of $̇\.

Also just as before, we check (E4) for $̇.

This completes the proof of Proposition 19.1.

It would be nice here to eliminate the use of Theorem 1.3 (b).

20. Proof of Theorem 1.3 (a)

As above, suppose our underlying curve X has Jacobian J , now not necessarily simple.

There is an isogeny ι from J to some En1
1 ×...×E

np
p ×A1×...×Aq, with positive powers

of mutually non-isogenous elliptic curves E1, ..., Ep and simple abelian varieties A1, ...,Aq
of dimension at least 2. Here, we allow p=0 or q=0. Further, if some E has complex

multiplication CM, then we may assume that it is defined over 
Q.

If $ is $0+ε for $0 of the first kind (of course non-zero) and ε elementary integrable,

then as in §14 we get the required finiteness.

So, we may assume that $ is not such a $0+ε, just as in the definition of elusive.

As in earlier sections, we take a suitable cover of C.

Of course we suppose, from now on, that $ is not elusive.

As in §17, it will be enough to consider differentials $ of the third kind.

Take c such that the specialisation $(c) is elementary integrable, as in (13.1). Then,

as in §14, we get divisors D1, ...,Dm on X with classes [D1], ..., [Dm] that are all non-

torsion, but whose specialisations [D1(c)], ..., [Dm(c)] are all torsion. Also, as there, we

may assume that %1(c), ..., %m(c) are independent over Q.
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We may still assume using induction on m that [D1], ..., [Dm] are independent over

Z, because, by the crucial Proposition 19.1, the am$−%mdf/f in (14.3) remains not

elusive.

Now, in the arguments that follow, failure to prove Theorem 1.3 (a) will result in

the verification of the conditions (E0)–(E4), one by one. This gives the contradiction

that $ is elusive.

If some ι([Di]) has a non-torsion projection to some A, then Theorem 1.7 gives the

required finiteness of the c straightaway (this settles the case p=0).

So, replacing D1, ...,Dm by non-zero integer multiples of themselves (which, by

(14.1), amounts to replacing g
(c)
1 , ..., g

(c)
m by non-zero integer powers of themselves), we

may assume that their projections to A1, ...,Aq are all zero.

Now, ι([D1]) is non-torsion, and so it has some non-torsion projection on some En.

But then, by [50], we may assume that the projections on the other En are torsion. In

fact, the same arguments with multiples show that we may assume that the projections

of all ι([Di]) on the other En are zero.

Thus, writing ι(J )=En×B, we see that B contains no abelian subvariety isogenous

to E (if q=0, we can just forget about B in the arguments below). Thus, we have condition

(E0) of the definition of elusive except for the CM part. That will follow a bit later. We

may assume that

πB(ι([Di])) = 0, i= 1, ...,m, (20.1)

for the projection πB from En×B to B. Now, (E1) is completely verified.

Next, we go for (E2). As in §16, we fix an embedding  of X into J by (P)=[P−P0],

and we identify E with its Jacobian. As in Lemma 16.1, we obtain maps ϕ1, ..., ϕn

from X to E , with ι=(ϕ1∗, ..., ϕn∗, πB �ι), which are linearly independent, even over the

endomorphism ring O of E .

Thanks to (20.1), we may now write

ι([Di]) = ([Di1], ..., [Din], 0), i= 1, ...,m, (20.2)

for divisors Di1, ...,Din of degree zero on E .

If two from the classes [Dik], i=1, ...,m and k=1, ..., n, are independent over O, then

we get finiteness from [49]. Thus, we may assume that

a[Dik] =αik∗[D], i= 1, ...,m and k= 1, ..., n, (20.3)

for some divisor D on E (also of degree zero), some αik in O (with the same identification

as above) and some positive integer a. We are nearly at (E2), except for the last part.
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If [D] were defined over 
Q, then, because it is non-torsion by the remark just after

(E2), the specialisation [D(c)]=[D] would be non-torsion for any c. Now, not all αik=0

in (20.3), else (20.2) would imply that all [Di] are torsion, a subcontradiction. Thus,

again by (20.3), some [Dik(c)] is non-torsion. But this again by (20.2) contradicts the

fact that [Di(c)] is torsion. Thus, we have arrived at the entire condition (E2).

Now, as in Lemma 16.1, the maps ϕk∗�ϕ
∗
h from E to E are γkh∗ for γkh in O.

We now start some calculations which will eventually lead to (E3), (E4) and the

missing part of (E0). With the natural involution on O, we get βih in O such that

n∑
h=1

β̄ihγkh = lαik, i= 1, ...,m and k= 1, ..., n, (20.4)

as in (16.24) (or in informal matrix notation 
BΓt=lA) for some positive integer l. As in

(16.23) we write

ϑi =
n∑
h=1

βihϕh, i= 1, ...,m, (20.5)

from X to E .

Soon, we have to check the missing CM part of (E0). For this purpose, it is conve-

nient now to prove that

ϑ1, ..., ϑm are independent over Z (20.6)

(which by the way failed in (19.9) for $̇). If not, then the independence (over O) of

ϕ1, ..., ϕn would give λ1, ..., λm in Z, not all zero, with
∑m
i=1 λiβih=0, h=1, ..., n (informal

λB=0). But then, from (20.4),

m∑
i=1

λ̄iαik = l−1
m∑
i=1

n∑
h=1

λ̄iβ̄ihγkh = 0, k= 1, ..., n,

(informal λ̄A=l−1λ̄
BΓt=0). But now (remember that for the moment the λi are in Z)

ι

(
a

m∑
i=1

λ∗i [Di]
)

=

( m∑
i=1

λ∗iαi1∗[D], ...,

m∑
i=1

λ∗iαin∗[D], 0

)
= 0

from (20.2) and (20.3) contradicts the independence of [D1], ..., [Dm] over Z. This is what

we wanted.

We now use $\ as in (16.9), with $\(c) as in (18.1).

We next fix a differential χ 6=0 of the first kind on E , and consider the pull-backs

ϑ∗iχ, i=1, ...,m, on X , also of the first kind. We write

$0 =

m∑
i=1

%iϑ
∗
iχ, (20.7)
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as in Lemma 16.3, also of the first kind.

Assume for the moment that $0 6=0. In this case, we will prove Theorem 1.3 (a),

without bothering much further about (E0)–(E4). Then, by Lemma 16.3, we see that

(E3) cannot hold. Thus, there is a zero Z of $\, of order say r−1>1, such that G=F/U
is non-split, where F=FZ is the product of the generalised Jacobians ErWi fibred over

E embedded diagonally with Wi=ϑi(Z), i=1, ...,m, and U=UZ is the subspace of the

linear part consisting of those ([(k1)]rW1 , ..., [(km)]rWm) such that (16.12) holds.

We will eventually apply Theorem 1.6 to some projection of G=GZ .

We use the point

T = TZ = a(e1[ϑ1∗D1]rW1
, ..., em[ϑm∗Dm]rWm

)

defined in (E4).

Then, (16.5) (with M=[Di] and so on) shows that T projects down to

a(e1[ϑ1∗D1], ..., em[ϑm∗Dm]) =
d

l
([D], ..., [D]) (20.8)

on Em, as required in the first part of (E4). So, by Lemma 18.1, the specialisation T (c)

is torsion on G(c).

Because G is non-split, it projects onto a non-split extension by a single Ga (see

Proposition A.2 in the appendix) and, as at the end of §14, we can conclude using

Theorem 1.6, as long as T does not project down to torsion on Em. But, using (20.8)

and recalling (20.2) and (20.3), we see that [D] is not torsion.

But what if $0=0 in (20.7)? Then, we show that E has complex multiplication,

using a variation of the argument in the paragraph following (16.25).

We note that the construction of ϕ1, ..., ϕn gives ϕ̃1, ..., ϕ̃n from J to E , with ϕk=

ϕ̃k �. We obtain ξ1, ..., ξm, with ϑi=ξi�. Thus, $0=0 would imply

∗
( m∑
i=1

%iξ
∗
i χ

)
= 0.

Now, ∗ is well known to be an isomorphism from differentials of the first kind on J to

differentials of the first kind on X . Thus,

m∑
i=1

%iξ
∗
i χ= 0

too. Also, if there is no complex multiplication, then ξ=(ξ1, ..., ξm) would be surjective

from J to Em, because ϑ1, ..., ϑm are linearly independent over the endomorphism ring Z,
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by (20.6). Also, ξ∗χi=ξ
∗
i χ for χi on Em corresponding to the ith factor. From the

injectivity of ξ∗ there would follow

m∑
i=1

%iχi = 0

too; an absurdity.

Thus, indeed, E has complex multiplication. But that is the missing part of (E0).

Now, if it happened anyway that GZ (as defined in (E3) of course) is non-split for

some zero Z of $\, then we can proceed as just above.

Otherwise, if GZ is split for every zero Z of $\, then we have a surjective homomor-

phism ςZ from GZ to GdZ−1
a as in (E3), where dZ is the dimension of GZ (this could be

calculated explicitly in terms of ramification). This then establishes (E3).

Thus, we now have all the conditions in the definition of elusive, apart from the

second part ςZ(TZ)=0 of (E4). For this, we argue in the same style as in §19. Suppose

that there is Z such that ςZ(TZ) 6=0 in GdZ−1
a . As TZ(c) is torsion on GZ(c), we deduce

for the specialisation ςZ(TZ)(c)=0. This leads at once to the finiteness of the c. Thus,

we may suppose that (E4) holds, and finally we have shown that $ is elusive (by the

way disposing completely of Davenport’s fourth obstacle).

21. Examples and further remarks

21.1. Examples

The following examples are for case (a) of Theorem 1.3.

There are at most finitely many t in C for which

1

(x2−1)
√
x6+x+t

(21.1)

is elementary integrable; here, J is simple of dimension 2. The same conclusion holds

for
1

(x2−1)
√
x6+x2+t

, (21.2)

but now J is isogenous to a product of two non-isogenous elliptic curves without CM.

And for
1

(x2−1)
√
x5+tx3+x

, (21.3)

where J is isogenous to the square of an elliptic curve without CM. And also for

1

(x2−t2)
√
x6+x4+ 29

9 x
2+1

, (21.4)
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even though J is isogenous to a product of two elliptic curves exactly one of which has

CM. And even for
1

(x2−t2)
√
x5+ 14

9 x
3+x

, (21.5)

J now being isogenous to the square of a CM elliptic curve. And, more subtly, for

1

(x2−t2)
√
x6−3x4+x2+1

, (21.6)

where now two non-isogenous CM elliptic curves turn up. And, more simply, for

1

(x2−t2)
√
x3−x

, (21.7)

where J is now itself a CM elliptic curve.

But when we make a tiny change, then there are infinitely many t in C for which

x

(x2−t2)
√
x3−x

(21.8)

is elementary integrable. It is not identically so, and thus we are now in case (b) with

something elusive.

The differentials corresponding to all the above examples are of the third kind.

It is amusing to continue the sequence (21.7), (21.8) by considering

xd

(x2−t2)
√
x3−x

, d= 2, 3, 4, 5, ... . (21.9)

(for which the corresponding differentials are generally not of the third kind). For exam-

ple, we get finiteness for d=2, 3, 4, 5; but for d=3, 5 we can actually prove that there are

no t at all (the reader is invited to tackle general d).

Now, we give the details.

We start with (21.1). Here, the considerations of §14 suffice, because g=2 and the

Jacobian of y2=x6+x+t is simple (see [51, p. 2394]). We have only to show that (21.1)

is not elementary integrable. Fix s+ and s−, with s2+=2+t and s2−=t. The poles are at

P=(1, s+) and Q=(−1, s−), together with R=(1,−s+) and S=(−1,−s−). The residues

are 1/2s+ and −1/2s−, together with −1/2s+ and 1/2s−, so m=2. Taking %1=1/2s+

and %2=−1/2s−, we find D1=P−R and D2=Q−S. As in the discussion around (1.9),

we see by ramification (at t=−2, 0) that both of these are non-torsion, which does the

trick.

For (21.2) the Jacobian is no longer simple, so we have to proceed to §16. But no

CM elliptic curves occur as a factor (see [51, p. 2397]), so there are no elusive differentials.

And ramification does the rest.
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For (21.3) it is similar; that the elliptic curve in question has no CM is clear from

(15.8), whose j-invariant is

64
(3t−10)3

(t−2)(t+2)2
.

(Actually, it was examples like this that led us to the theory of the splitting line.)

For (21.4) we find that the curves E and E ′ in (15.2) have invariants 1728 and

− 778688
729 , respectively, so the first has CM by Z[i] and the second no CM. Therefore,

if the differential is elusive, we must have n=1 and B=E ′ in (E0). The isogeny ι can

be constructed from the maps (15.3), which we denote now by ϕ and ϕ′ in order to

distinguish them from ϕ1, ..., ϕn in (E2). Then, ι=(ϕ∗, ϕ
′
∗). Fix s with

s2 = t6+t4+ 29
9 t

2+1.

The poles are at P=(t, s) and Q=(−t, s), together withR=(t,−s) and S=(−t,−s). The

residues are 1/2ts and −1/2ts, together with −1/2ts and 1/2ts, so now m=1 in (E1).

Taking %1=1/2ts, we find D1=P−Q−R+S. Thus,

πB(ι[D1]) =ϕ′∗[D1] =ϕ′(P)−ϕ′(Q)−ϕ′(R)+ϕ′(S),

which works out as 4H, with H=(t−2, t−3s) on E ′. But this cannot be torsion, because

H is not. Thus, the differential, call it now $, is not elusive.

For (21.5) we find invariants 1728 in both, so again CM by Z[i]. Therefore, if the

differential is elusive, we must have n=2 in (E0). Now, the isogeny can be constructed

from the maps (15.9), which we denote now by ϕ̃1 and ϕ̃2; thus, ι=(ϕ̃1∗, ϕ̃2∗). Fix s with

s2 = t5+ 14
9 t

3+t.

The poles are at P=(t, s) and Q=(−t, is), together with R=(t,−s) and S=(−t,−is).
The residues are 1/2ts and i/2ts, together with −1/2ts and −i/2ts. So, m=2 in (E1).

Taking %1=1/2ts and %2=i/2ts, we find D1=P−R and D2=Q−S in (E1); both non-

torsion. For (E2) we take (M)=[M−∞] for the unique point at infinity. We find

ϕk(M) = ϕ̃k(M)−W k= 1, 2

for W=(0, 1) on E with 2W=0. So, for example, ϕk∗(D1)=ϕ̃k(P)−ϕ̃k(R), which on E
is 2ϕ̃k(P). Now, a relation as in (E2) for i=1 would imply

2aα12ϕ̃1(P) = 2aα11ϕ̃2(P). (21.10)

Here, ϕ̃1(P) has the abscissa ((t+1)/(t−1))2 and ϕ̃2(P) has abscissa ((t−1)/(t+1))2.

Also, α11 and α12 are not both zero, else ϕ1∗[D1]=ϕ2∗[D1]=0, which would lead to [D1]
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being torsion, which it is not. Thus, (21.10) is impossible, because exactly one side has

a pole at t=ε for ε=1 or ε=−1. So, again, the differential $ is not elusive.

For (21.6) we have to work a bit harder. Now, we get invariants 1728 and 8000 in

(15.2), so one curve has CM by Z[i] and the other by Z[i
√

2]. But, if the differential is

elusive, we do not know in advance which is the E in (E0). At any rate n=1, and again

we use ι=(ϕ∗, ϕ
′
∗). Fix s with

s2 = t6−3t4+t2+1.

The poles are at P=(t, s) and Q=(−t, s), together with R=(t,−s) and S=(−t,−s), so,

as for (21.4), we get m=1 in (E1), with D1=P−Q−R+S for %1=1/2ts.

Trying first E with Z[i], we get πB(ι[D1])=4H as in (21.4), clearly not torsion on B.

So, this E cannot be the source of elusiveness.

But then, trying E with Z[i
√

2], we get

πB(ι[D1]) =ϕ(P)−ϕ(Q)−ϕ(R)+ϕ(S) = 0,

and so (E1) is satisfied.

As for (E2), choose (M)=[M−∞+]. Then, ϕ1(M)=ϕ′(M)−ϕ′(∞+), and (E2)

holds trivially for a=α11=1 and any D with

[D] =ϕ1∗[D1] = [ϕ′(P)−ϕ′(Q)−ϕ′(R)+ϕ′(S)].

For example, D=4H−4∞ with H as above.

To check (E3), we could calculate $\ and look at its zeros. But, by Lemma 16.3, it

is clear immediately from (16.17) that (E3) cannot hold. Thus, $ is not elusive.

For (21.7) we have CM again by Z[i], so n=1 and ι is naturally the identity. Fix

s with s2=t3−t. The poles are at P=(t, s) and Q=(−t, is), together with R=(t,−s)
and S=(−t,−is). The residues are 1/2ts and i/2ts, together with −1/2ts and −i/2ts,
so m=2, and with %1=1/2ts and %2=i/2ts we get as usual D1=P−R and D2=Q−S.

For (E0) there is no B, and so for (E1) nothing to check. In (E2) we take  as the

identity, and so ϕ1 also. As D2=i∗D1, for i(x, y)=(−x, iy) we can take a=1, D=D1,

α11=1 and α21=i.

To check (E3), we calculate, for (16.17),

1

2ts
+

i

2ts
κ(−i) =

1

2ts
+

i

2ts
(−i) =

1

ts
,

and so (E3) cannot hold for $, so $ is not elusive either.
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Even though the general proof strategy in §20 for (21.7) leads to a torsion point

on a curve in an isotrivial additive extension of an isotrivial elliptic curve, which can in

principle be treated by [36], it also shows that the verification of non-split is not at all

straightforward.

Finally, the harmless-looking change from (21.7) to (21.8) gives, with now %1=1/2s

and %2=−i/2s, then D1 and D2 as before (see (11.3) above), so also ϑ1 and ϑ2 as before,

so (E0)–(E2) hold. But now (16.17) is

1

2s
− i

2s
(−i) = 0

and so (E3) also holds. This means that GZ is split for every zero Z of $\.

So, finally, we have to examine (E4), and in particular calculate $\. We find β11=1

and β21=−i, and hence ϑ1=ϕ1 and ϑ2=−iϕ1. So, ϑ∗1ϑ1∗ and ϑ∗2ϑ2∗ are both the identity,

and $\=$. The zeros are at ∞ and O=(0, 0), both of order r−1=2.

Next, we need maps ςZ from GZ surjective to Gr
a=G3

a. In order to check ςZ(TZ)=0,

it suffices, by the appendix, to check the same thing with a splitting map (which we can

also denote by ςZ) for FZ . For this, we use Proposition A.8.

For Z=∞, we can take

ς∞([∆1]3∞, [∆2]3∞) =

(
(∆1, x), (∆2, x),

df

f
(∞)

)
,

with the pairing (∆, h) for the function h=x, and (f)=∆1−∆2. In T∞, we find

ϑ1∗D1 =P−R and ϑ2∗D2 = (−i)∗(Q−S) =P−R,

and so

ς∞(T∞) = (x(P)−x(R), x(P)−x(R), 0) = 0,

as we wanted.

For Z=O, we can take

ςO([∆1]3O, [∆2]3O) =

(
(∆1, x

−1), (∆2, x
−1),

df

f
(∞)

)
,

giving also ςO(TO)=0.

Thus, indeed, $ is elusive.

We leave (21.9) for d=2 as an exercise.

Also the case d=4 is left as an exercise—note that this is not of the third kind, so

we have to find f to kill the repeated poles.
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For d=3 it is a swindle: we note that the differential has a double pole at ∞, and

no other pole. Thus, if for some t=τ it is elementary integrable as in (10.5), the f would

have to have a single pole at ∞, and no other pole, which is impossible. In fact, the

differential is not exact modulo differentials of the third kind (as in the definition of

elusive), so this is a simple form of the arguments of §12.

For d=5 the differential $ has a pole of order 6 at∞, and no other poles. If there is

f such that $−df is of the third kind, then f must have a pole of order 5, and no others.

Thus, we can take f=ax+by+cx2+exy, and it is clear that, for any given value τ of

t, we can reduce the order of pole of $−df to at most 2. A simple computation shows

that, if we can go further to order at most 1, then τ2=− 3
5 (here also as in §12). This

gives finiteness; but then the corresponding points (τ, σ) on y2=x3−x must be torsion.

This is not hard to disprove; for example, with x=
(
1
6τ
)
x1 and y=

(
1
24σ
)
y1, we get (6, 24)

on y21=x31+60x1, with double
(
1
4 ,−

31
8

)
not integral.

21.2. Final remarks

Here is a direct proof that the

$=
x dx

(x2−t2)
√
x3−x

corresponding to (21.8) is a counterexample. In fact, we show that the complex numbers

τ such that

$(τ) =
x dx

(x2−τ2)
√
x3−x

is elementary integrable are precisely those τ for which the point (τ,
√
τ3−τ ) is of finite

order at least 3 on the elliptic curve y2=x3−x.

Fix s with s2=t3−t. The poles of $ are at P=(t, s) together with Q=iP, R=−P
and S=−iP. The residues are 1/2s, together with −i/2s, −1/2s and i/2s, respectively,

so m=2 in (E2). Taking %1=1/2s and %2=−i/2s, we find D1=P−R and D2=Q−S.

As P is not torsion, it follows that $ is not elementary integrable.

Next, pick Pτ=(τ, σ). If $(τ) is elementary integrable, then Pτ is torsion. Let N>2

be its order.

When N=2, we leave it to the reader to check that the corresponding

$(0) =
dx

x
√
x3−x

and $(±1) =
x dx

(x2−1)
√
x3−x

(which now acquire double poles) are not elementary integrable.

When N>3, we now show that $(τ) is elementary integrable.
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For the points

Qτ = iPτ = (−τ, iσ), Rτ =−Pτ = (τ,−σ) and Sτ =−iPτ = (−τ,−iσ),

there are functions g1 and g2 with divisors NPτ−NRτ and NQτ−NSτ . We can nor-

malise them to be 1 at infinity.

Consider

χ=$(τ)− 1

2Nσ

(
dg1
g1
−idg2

g2

)
.

We check easily that the residues at Pτ , Qτ , Rτ and Sτ are zero. Since all the poles are

at worst simple, this means that χ=c dx/y for some c.

Also, we check again easily that g2=i∗g1.

Now, let g1=1+aπ+... be the expansion at infinity, with say π=x/y. As i∗π=−iπ,

we deduce that g2=1−iaπ+... . It follows yet again easily that dg1/g1−i dg2/g2 vanishes

at infinity.

But so does $(τ)! Therefore, so does χ; and this implies c=0. Therefore,

$(τ) =
1

2Nσ

(
dg1
g1
−idg2

g2

)
is indeed elementary integrable.

An example with N=4 and Pi=(i, 1−i) leads to∫
x dx

(x2+1)
√
x3−x

, (21.11)

which is

1+i

16
log

(
x2+(2+2i)

√
x3−x+2ix−1

x2−(2+2i)
√
x3−x+2ix−1

)
+

1−i
16

log

(
x2+(2−2i)

√
x3−x−2ix−1

x2−(2−2i)
√
x3−x−2ix−1

)
.

This was our first intimation of a counterexample to Davenport’s assertion. It can ac-

tually be deduced directly from (14.4). It (and (14.4) too) can be slightly simplified by

using divisors 2Pτ−2Rτ and 2Qτ−2Sτ . Welz has pointed out that this too is a special

case of Goursat’s results in [31]. And we note that Euler [26, p. 25], [27, p. 39] had already

given something equivalent to∫ √
x4+1 dx

x4−1
=

1

4

√
2 log

(√
2x−
√
x4+1

x2−1

)
+
i

4

√
2 log

(
i
√

2x+
√
x4+1

x2+1

)
,

also in which the two logarithms cannot be combined into a single one; his own solution

−1

4

√
2 log

(√
2x+
√
x4+1

x2−1

)
− 1

4

√
2 arcsin

( √
2x

x2+1

)
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does not literally involve complex logarithms and stays inside the real field (note however

the intrusive
√

2).

We then tried other points with N=4, and then with N=3, but the clincher was

with N=5, when ∫
x dx(

x2− 1
5−

2
5 i
)√
x3−x

= c1 log g1+c2 log g2,

with

c1 =
1

2b
and c2 =− i

2b

for

b= 4
√

220+40i= (0.1738 ... )−(3.8630 ... )i and a=−2+i

10
b2,

and

g1 =−10ax
√
x3−x−(15−5i)bx2−50

√
x3−x+(2−4i)abx+(3+i)b

10ax
√
x3−x+(15−5i)bx2−50

√
x3−x−(2−4i)abx−(3+i)b

,

g2 =−10aix
√
x3−x−(15−5i)bx2+50i

√
x3−x−(2−4i)abx+(3+i)b

10aix
√
x3−x+(15−5i)bx2+50i

√
x3−x+(2−4i)abx−(3+i)b

,

which Maple 18 cannot check, even by differentiation (however, it can check equality

up to say 1000 decimal places, when we integrate between say x=2 and x=2.1). This

probably cannot be simplified.

In this way, one can construct functions “of bounded complexity” which are ele-

mentary integrable, but whose integrals involve “unbounded complexity”. Actually this

was also possible classically using (1.3); but there the resulting (τ, υ) do not lie on a

fixed parameter curve C (in fact, by Theorem 1.3 (a), because y2=x4+x+t has no CM

as required for (E0) in the definition of elusive). Maybe this is related to Hrushovski’s

“uniform definability” in [37, p. 101].

There are also counterexamples with CM by Q(i
√

3 ) instead of Q(i). We found

x dx

(x2+tx+t2)
√
x3−1

and Welz pointed out that it amounts to the more attractive

x dx

(x3−t3)
√
x3−1

,

actually integrated by Euler for t=−2 (according to [34, p. 643]; see also [28, p. 22] in

disguise). We originally thought we had a proof that any Q(i
√
d ) turns up, and this

seemed to lead to a counterexample

((5t2+40t+62)x+t3+8t2+70t+144) dx

(x−t)((2t+8)x+t2+4t+18)
√
x3−30x−56

(21.12)
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for Q(i
√

2 ); but Welz was very sceptical after testing it on the computer algebra system

FriCAS (see http://fricas.sf.net), and then we found a mistake in our proof. In fact,

we were able to show, partly computationally, that Q(i
√

2 ) does not turn up, and we

strongly suspect that Q(i) and Q(i
√

3 ) are the only fields. This would make it unlikely

that there are any connections with Bertrand’s counterexamples in [8], because those do

exist for every Q(i
√
d ). Also, they involve multiplicative extensions, rather than additive

extensions.

In higher genus, one can use pull-backs ϕ∗ to find, for example,

(3x5−x4−2x3−2x2−x+3) dx

((9t−9)x4−(36t+12)x3+(54t−22)x2−(36t+12)x+9t−9)
√
x5+ 14

9 x
3+x

,

which can easily be shown to be not elementary integrable, by using ϕ∗ on the corre-

sponding divisors. It would be interesting to know if all elusive differentials in higher

genus come from pull-backs on elliptic curves with complex multiplication.

Probably, related to this, is the question of whether there are examples with “gen-

uinely” three logarithms; that is, with m=3 and [D1], [D2] and [D3] linearly independent.

Appendix A.

We start by remarking that a referee, after seeing our presentation below, pointed out that

many of the assertions are consequences of the theory of universal vectorial extensions, as

for example in Brion’s Proposition 2.3 [12, p. 940]. Thus, given an elliptic curve E, there

is an extension Γuniv of E by Ga such that any extension, as in (A.1) below, arises from a

push-out from Γuniv by a linear homomorphism φ from Ga to Gn
a . The extension is non-

trivial if and only if φ 6=0, and in that case one may define the splitting line below simply

as φ(Ga). Its property in Proposition A.3 below is just a consequence of composing with

a second push-out. The same referee made more comments about Proposition A.2 and

Theorem A.4, which we insert below at the appropriate place. But, for ease of reading,

we have kept our original more self-contained presentation, especially as the whole paper

is aimed principally at number theorists.

It will suffice here, by the Lefschetz principle, to treat elliptic curves over K=C;

thus, we drop the calligraphy from now on. We shall consider extensions of a complex

elliptic curve E by a power of Ga, by which we mean algebraic groups Γ for which there

exists an exact sequence of algebraic groups

0−!Gn
a −!Γ−!E−! 0, (A.1)

with π the projection from Γ to E.

http://fricas.sf.net
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The general theory of extensions is studied in particular in [72], and in part expanded

in [19] for the present case of Ga. We shall now recall some facts, and also give short

proofs of other results, apparently not easy to locate in the literature. After this, we

shall prove a result, apparently new, which is important for the main text.

We shall say that a (homo)morphism of such extensions φ from Γ to Γ′ is over E if

it commutes with the projections π and π′ to E; that is, if π′�φ=π.

We shall say that such an algebraic group is (totally) split if it is isomorphic to

E×Gn
a over E.

Note that we intend all such isomorphisms in the sense of algebraic groups, and we

do not insist that the isomorphism are in the strongest sense of extensions (as in [72,

Chapter VII]).

An important class of extensions is associated with the modulus rW for a positive

integer r. Namely, let W be a given point in E. Following [72], we denote by Gr (or

GrW ) the extension of E by Gr−1
a obtained by the modulus rW .

We recall that, as a group, this is the factor group of divisors of degree zero and

prime to W , by the subgroup of principal divisors (f), where f is a rational function on

E, regular and non-zero at W , and such that df vanishes at W to order at least r−1.

We shall denote by [D]r (or [D]rW ) this (narrow) class of a divisor D (prime to W

and of degree zero).

Let t be a local parameter at W . Then, we have a map which, with a principal

divisor D=(f) (with D prime to W , that is, f regular and non-zero at W ), associates

df/f modulo tr−1.

This target space is a vector space (over C) of dimension r−1, where we can take as

coordinates the first r−1 coefficients of df/f in the t-expansion. Also, the map induces

a homomorphism from the group of narrow principal divisor classes defined above, to

the additive group Gr−1
a , injective by definition. The map is also surjective, as we may

prescribe arbitrarily the first r coefficients of the expansion of f at W in terms of t, and

with say f(W )=1.

These definitions yield G1=E (for example by some “approximation” result, or we

may simply note that the broad classes [D]=[τ∗D] for any translation τ on E), and we

have dimGr=r.

For r>s there is a natural map πrs from Gr to Gs, obtained by weakening equiva-

lence.

The extension G2 is especially relevant. We recall from [19] or [72] that G2 is a non-

split extension of E by Ga. Also, it is proved in [19] that G2 does not contain properly

any connected algebraic subgroups other than the identity and Ga. In particular, this

itself implies that G2 is non-split (otherwise it would contain a copy of E), and that it
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admits no non-constant homomorphisms to Ga. (Actually, it admits no non-constant

morphisms to Ga, as is proved in [19, Remark 3.7], for example.)

We shall soon recall how G2 in fact suffices to classify all extensions in question.

An issue is what happens if we start with another point W ′ in place of W and

consider the extension G′r defined by the modulus rW ′. Let, as above, [ · ]r and [ · ]′r
denote classes with respect to W and W ′, respectively. We shall prove the following

result.

Proposition A.1. The extensions Gr and G′r are isomorphic over E, with an

explicit isomorphism induced by translation on classes of points; and, in particular, [(f)]r

goes to [(τ∗f)]′r, where τ is translation by W−W ′.

Proof. Translation byW ′−W induces an isomorphism of pointed curves from (E,W )

to (E,W ′) inducing the identity on Pic0(E), so it induces an isomorphism from Gr to

G′r over E. Note that translations on E induce the identity on Pic0(E), because they

preserve the value of the σ in [75, Proposition III.3.4, p. 66].

We now denote by t a local parameter at a point W in E.

Let us consider again the extension Gr, defined above, where r>2 and W in E is

a given point. We have mentioned the map πr2 from Gr to G2 obtained by weakening

equivalence; it is a homomorphism over E. Since G2 is non-split, Gr cannot be split as

well (for otherwise we would have a non-constant map E to G2, contrary to the fact that

G2 does not contain other 1-dimensional subgroups other than Ga, as shown in [19], for

example).

Recall that we may map the group of narrow divisor classes prime to W and prin-

cipal to Gr, by associating a narrow class [(f)]r to df/f (mod tr−1). This is a group

homomorphism, sending the narrow divisor classes of functions onto Gr−1
a .

Definition. We define V =Vr⊂Gr as the vector subspace of Gr consisting of divisor

classes [(f)]r, where f−1 vanishes to order at least 2 at W .

Note that this is indeed a vector subspace, because these functions form a mul-

tiplicative group, and we may prescribe the truncated expansion in t of f modulo tr

arbitrarily.

From the above definitions, it also immediately follows that V is precisely the kernel

of πr2.

Note that, for an integer m>1, the space Lm=L(−mW ) of functions in C(E) with

at most one pole of order m at W has dimension m (for m=1 it is just C of course).

For r>3, we now construct a pairing from Gr×Lr−1 to Ga as follows.



torsion points, pell’s equation, and integration in elementary terms 305

For a divisor D=
∑
P mPP of degree zero, prime to W (so that mW =0), and for a

function h in Lr−1, we define

(D,h) =
∑
P

mPh(P ). (A.2)

Note this is well defined, and a pairing to Ga from the product of the group of divisors

of degree zero prime to W , with Lr−1/L1. (It is naturally suggested, for example, by

[72, Theorem 1, p. 1]; see also [72, p. 33].)

We prove the following result.

Proposition A.2. The above pairing induces a pairing from Gr×(Lr−1/L1) to Ga

of algebraic groups, which is perfect when restricted to V on the left. This also induces

an isomorphism of algebraic groups Gr∼=EG2×Gr−2
a (over E).

Proof. We start by observing that the pairing (A.2), with divisors on the left, induces

indeed a pairing of additive groups on Gr×(Lr−1/L1), which is C-linear on the right.

For this, it suffices to check that a divisor D of degree zero, coprime to W and equivalent

to zero in the narrow sense associated with Gr, lies inside the kernel on the left.

Indeed, if such a D is equivalent to zero in the narrow sense, there exists a function

f in C(E) with divisor D and such that df vanishes at W of order at least r−1. Consider

now the differential h df/f on E; it has no residue at W (since it has no pole there), and

hence the sum of its residues is just (D,h). But the sum of the residues of a differential

is zero ([72, Chapter II, Proposition 6]), whence the assertion.

Now, from the construction of generalised Jacobians given in [72], we see that the

induced pairing is algebraic also on the left, and it follows that it is C-linear when

restricted to Gr−1
a ⊂Gr on the left. (Or one may also argue by continuity, here.)

Let us now consider such induced pairing, and let K be its kernel on the left.

To restrict it on the left to Gr−1
a ⊂Gr is just like restricting to narrow divisor classes

[(f)]r for functions f in C(E), regular and non-zero at W . By the same argument as

above, we see that −([(f)]r, h) equals the residue at W of h df/f .

Let now f be a non-constant function with f≡1 (mod t), and such that [(f)]r is in

V ∩K.

Then, by the definition of V , for some m>2, we can write expansions at W as

f = 1+cmt
m+... and

df

f
= (mcmt

m−1+... ) dt,

where cm 6=0. If [(f)]r 6=0, we have m6r−1. Also, let hm in Lm be a function with a pole

of exact order m at W (which exists, since m>2). Then, the residue at W of hm df/f is

non-zero, whence the above remark entails ([(f)]r, hm) 6=0, against the assumption.
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Hence, V ∩K={0}, so the pairing yields an isomorphism between V and the dual of

Lr−1/L1, which is isomorphic to Gr−2
a .

Take now g in Gr; then, the map taking x to (g, x) is a linear map from Lr−1 to Ga

vanishing on L1, whence there is v in V with (g, x)=(v, x) for all x. Then, g−v is in K,

and hence Gr∼=EK×V .

As noted above, the natural map from Gr to G2 has kernel V and is surjective, so

K∼=EG2. This completes the proof.

Remark. It also follows that Gr∼=EG2×Gr−2
a , where the first projection is πr2, and

we have a section λ2r from G2 to Gr, which is unique (e.g. because any homomorphism

from G2 to Ga must be zero). Also, K=λ2r(G2).

We now come to the main objects of our study.

Definition. For the extension Gr as above, we define the splitting line in Gr as

L=K∩Gr−1
a , where K is the kernel on the left of the pairing of Proposition A.2.

Note that, by the isomorphism Gr∼=EG2×Gr−2
a , this line is the image of the unique

Ga inside G2, through the natural section from G2 to Gr.

Proposition A.3. The splitting line is the unique line Λ in Gr−1
a ⊂Gr with the

property that, for a vector subspace U of Gr−1
a ⊂Gr, the extension Gr/U of E is split

if and only if Λ⊂U .

Proof. Clearly, in view of Proposition A.2, the splitting line has the stated property.

In particular, Gr/L is split. Conversely, let Λ have this property. By the previous remark,

Λ contains L, proving what is stated.

We now come to the main result of this appendix, which characterises the splitting

line in Gr in terms of classes of principal divisors.

Theorem A.4. The splitting line in Gr consists of divisor classes [(f)]r of functions

f regular and non-zero at W such that df/f coincides with some non-zero invariant

differential χ=χf up to order r−1, that is, such that

df

f
−χ

has a zero of order at least r−1 at W .

Proof. We start by observing that, since χ has no zeros, these divisor classes form

indeed a line in Gr−1
a ⊂Gr.
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Then, it suffices to show that this line is inside K. For this, let f in C(E) have the

property stated in the theorem. Then, for any h in Lr−1, we have (as in Proposition A.2)

([(f)]r, h) =− resW

(
h
df

f

)
= resW (hχ)−resW

(
h

(
df

f
−χ
))

.

The term on the right is zero, because the differential h(df/f−χ) has no pole at W (since

h is in Lr−1). The same holds for the first term, since the differential hχ has a pole only

at W , and therefore, since the sum of all of its residues vanishes, its only residue at W

must also vanish. This completes the proof.

As remarked above, a referee outlined another proof of Theorem A.4. One restricts

the pairing of Proposition A.2 to the kernel V ′ rather of πr1, and notes that, as above,

V ′ is isomorphic to the space Ωr−1 of differentials regular at W modulo those vanishing

to order at least r−1. The resulting pairing from Ωr−1×(Lr−1/L1) to Ga has left kernal

which is the image of the 1-dimensional space H0 of invariant differential forms on E,

and trivial right kernel—this follows for example from Theorem VIII.1.3 of Mumford and

Oda [57]. Finally, if L is the image of H0 in Ωr−1 in Gr via V ′, we get an isomorphism

between Gr/L and Gr−2
a ; thus, L is the splitting line.

We next consider the splitting line in a fibre product Γ=Γ1×E ...×EΓs (over E),

where the Γj are non-split extensions of E by powers of Ga, with injections λj from G2

into Γj over E (namely, these maps commute with the projections to E).

Proposition A.5. We have Γ∼=EG2⊕Gs−1
a , again over E, where the embedding of

G2 into Γ sends z to (λ1(z), ..., λs(z)).

Proof. Indeed, let x=(x1, ..., xs) be in Γ. We have x=(λ1(y1), ..., λs(ys)), where yj is

in G2 and π2(yj)=u in E is independent of j. Then, we note that yj=y1+aj for suitable

a1=0, a2, ..., as in Ga, and hence x=(λ1, ..., λs)(y1)+v, where v is in Gs−1
a ; this shows

what we want, identifying G2 with its image in Γ through the map (λ1, ..., λs).

Similarly, a fibre product

Γ×E (E×Ga)rE
∼=E Γ×E (E×Gr

a),

where Γ is as above, and s>1, is isomorphic to G2⊕Gr+s−1
a , as is immediately checked

on using the previous result.

Finally, suppose that ι from Γ to Γ′ is an isomorphism over E between extensions

of E by Gr
a. Then,

Γ×EΓ′∼=E Γ×Gr
a,

where the last isomorphism sends (x, x′) to (x, x′−ι(x)). (Observe that indeed, since

π(x)=π′(x′) and π=π′�ι, we have that π′(x′−ι(x))=0, that is, x′−ι(x) is in kerπ′=Gr
a.)
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A similar fact holds of course for products of several isomorphic extensions, gener-

alising the previous situations.

The previous results allow us to describe the splitting line in a fibre product.

Corollary A.6. Let Γ1, ...,Γs be non-split extensions of E by Gr1
a , ...,G

rs
a , respec-

tively, with injections λj from G2 into Γj over E. Also, let Γ=Γ1×E ...×EΓs. Then,

the splitting line in Γ is the set of (λ1(x), ..., λs(x)) for x in L, where L is the splitting

line in G2.

Proof. Immediate from Proposition A.5 above.

Corollary A.7. For r>2 the splitting line in ErW1×E ...×EErWm consists of el-

ements

([(τ∗1 f)]rW1
, ..., [(τ∗mf)]rWm

),

with functions f regular and non-zero at W such that df/f coincides with some non-

zero invariant differential χ=χf up to order r−1, where τi is translation by W−Wi,

i=1, ...,m.

Proof. We apply Corollary A.6 with Γi=ErWi
, i=1, ...,m. By Proposition A.1, there

are isomorphisms Ti from ErW to ErWi
taking [(f)]rW to [(τ∗i f)]rWi

, i=1, ...,m. With λ

from G2 into ErW being the standard section, we obtain sections λi=Ti�λ from G2 into

ErWi
, i=1, ...,m. So, the splitting line consists of all (λ1(x), ..., λm(x)), as x runs over

the splitting line in G2. As already noted, the λ(x) describe the splitting line in ErW ,

which consists of all [(f)]rW as in Theorem A.4, and what we want follows at once.

We shall also need the following definition.

Definition. Suppose that Γ in (A.1) is non-split with splitting line L. Then, Γ/L is

split, and we shall say that any surjective σ to Gn−1
a is a splitting map for Γ.

Note that σ is unique, up to automorphisms of Gn−1
a (because there are no non-zero

maps from G2 to Ga).

A similar argument shows that, for any linear subspace U of Γ, say of dimension p,

containing L, there is an essentially unique surjective map from Γ/U to Gn−p
a , obtained

by identifying Gn−1
a /σ(U) with Gn−p

a .

If r=2, then σ2=0 is trivially a splitting map for Gr. If r>3, we can easily obtain a

splitting map for Gr from the pairing. Pick a basis (h0, h1, ..., hr−2) of Lr−1 with h0=1.

Thanks to Proposition A.2, we can define σr from Gr to Gr−2
a by

σr([D]r) = ((D,h1), ..., (D,hr−2)).
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As (D,h0)=0, the kernel is K, of dimension 2 containing L; thus, σr induces a map on

Gr/L with kernel of dimension 1, and so we get surjectivity.

Here is a generalisation to fibre products.

Proposition A.8. For r>3, m>2 and Γi=Gr, i=1, ...,m, a splitting map on Γ=

Γ1×E ...×EΓm is induced by the map from Γ to G
m(r−1)−1
a sending ([D1]r, ..., [Dm]r) to(

σr(D1), ..., σr(Dm),
df1
f1

(W ), ...,
dfm−1
fm−1

(W )

)
for any functions f1, ..., fm−1 on E with (fi)=Di−Dm, i=1, ...,m−1.

Proof. Again we look at the kernel. First, we see that [D1]r, ..., [Dm]r lie in K=

λ(G2), with λ being the standard section. So, [Di]r=λ(xi) for xi in G2, i=1, ...,m.

Second, the vanishing of the (dfi/fi)(W ) means that the [Di]2, i=1, ...,m, are all equal.

These are just the π([Di]r) for π=πr2, and so the xi=π(λ(xi)), i=1, ...,m are all equal

in G2. Thus, the kernel has dimension at most 2. As Γ has dimension m(r−1)+1, this

implies surjectivity.
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[8] — Special points and Poincaré bi-extensions, with an Appendix by Bas Edixhoven.
Preprint, 2011. arXiv:1104.5178[math.NT].

[9] — Generalized jacobians and Pellian polynomials. J. Théor. Nombres Bordeaux, 27 (2015),
439–461.

[10] Bertrand, D., Masser, D., Pillay, A. & Zannier, U., Relative Manin–Mumford for
semi-Abelian surfaces. Proc. Edinb. Math. Soc., 59 (2016), 837–875.

[11] Binyamini, G., Density of algebraic points on Noetherian varieties. Geom. Funct. Anal.,
29 (2019), 72–118.

[12] Brion, M., Anti-affine algebraic groups. J. Algebra, 321 (2009), 934–952.

http://arxiv.org/abs/1104.5178


310 d. masser and u. zannier

[13] Cassels, J. W. S., The arithmetic of certain quartic curves. Proc. Roy. Soc. Edinburgh
Sect. A, 100 (1985), 201–218.

[14] Cassels, J. W. S. & Flynn, E. V., Prolegomena to a Middlebrow Arithmetic of Curves
of Genus 2. London Math. Soc. Lecture Note Ser., 230. Cambridge Univ. Press, Cam-
bridge, 1996.

[15] Cassidy, P. J. & Singer, M. F., Galois theory of parameterized differential equations
and linear differential algebraic groups, in Differential Equations and Quantum Groups,
IRMA Lect. Math. Theor. Phys., 9, pp. 113–155. Eur. Math. Soc., Zürich, 2007.
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Methods in Algebra and Number Theory, Progr. Math., 235, pp. 251–282. Birkhäuser,
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