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1. Introduction

Let

P (x) =xd+Ad−1x
d−1+...+A1x+1∈Z[x] (1.1)

be a random polynomial with independent coefficients A1, ..., Ad−1 taking values in 0 and

1 with equal probability. Odlyzko and Poonen [31] conjectured that the probability that

P is irreducible in Z[x] converges to 1 as d!∞.

The best known lower bound in this problem is due to Konyagin [26], who proved

that

P(P is irreducible)>
c

log d

for an absolute constant c>0.

A strongly related problem was studied by Bary-Soroker and Kozma [3], who proved

that

P(xd+Ad−1x
d−1+...+A1x+A0 is irreducible)! 1,

where A0, ..., Ad−1 are independent random integers uniformly distributed in 1, ..., L for

a fixed integer L that has at least four distinct prime divisors.

In another paper, Bary-Soroker and Kozma [4] studied the problem for bivariate

polynomials. See also [32] for a study of the probability that a random polynomial has

low-degree factors, and [6] for computational experiments on related problems.

In this paper we prove the following result.
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Theorem 1. Let P be a random polynomial as in (1.1). Suppose that the Riemann

hypothesis holds for the Dedekind zeta function ζK for all number fields of the form

K=Q(a), where a is a root of a polynomial with 0, 1 coefficients.

Then,

P(P is irreducible in Z[x])! 1

as d!∞.

See §1.2 for more precise results, where we discuss the following finer aspects of the

problem:

• random polynomials with arbitrary i.i.d. coefficients;

• the rate at which the probability converges to 1;

• relaxation of the assumption of the Riemann hypothesis;

• Galois groups.

1.1. Motivation

Beyond its intrinsic interest, the problem of irreducibility of random polynomials of high

degree is motivated by some other problems, which we now briefly discuss.

It is believed to be computationally difficult to determine the prime factorization

of integers. On the other hand, polynomial-time algorithms are known for computing

the factorization of polynomials in Z[x]. Given an integer N∈Z>0, we can write it as

N=P (2) for a unique polynomial P with 0, 1 coefficients. By computing the factorization

of P in Z[x] and evaluating the factors at 2, we can obtain a factorization of N .

The only weakness of this approach is that the polynomial P may be irreducible

and thus the factorization of N obtained may be trivial. The problem we study in this

paper thus asks for the probability that this procedure returns only a trivial factorization.

Therefore, it is desirable to have results, such as those of this paper, proving that this

probability converges to 1 very fast.

We will discuss our method in §1.3. The method links the problem of irreducibility

of random polynomials with mixing times of certain Markov chains, which are mod-p

analogues of the Bernoulli convolutions we had studied in earlier work (see e.g. [10], [8],

[35]). In this paper, we use results available for the Markov chains to study random

polynomials, but this can be reversed. In particular, in a forthcoming paper, we will use

the results of this paper to obtain new results about the Markov chains.

Our results on irreducibility assume the Riemann hypothesis for Dedekind zeta func-

tions, or at least some information on the zeros. In our last theorem, Theorem 7, we show

that conversely irreducibility of random polynomials has (modest) implications about the

zeros of Dedekind zeta functions.
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1.2. Results

Under the full force of the Riemann hypothesis (RH), our best result is the following.

Theorem 2. Let P=Adx
d+...+A1x+A0∈Z[x] be a random polynomial with inde-

pendent coefficients. Assume that A1, ..., Ad−1 are identically distributed with common

law µ. Assume further that all coefficients are bounded by exp(d1/10) almost surely. Let

τ>0 be a number such that ‖µ‖22 :=
∑
x∈Z µ(x)2<1−τ .

There are absolute (and effective) constants c, C>0 such that, if d>C/τ4, then with

probability at least 1−exp(−cτd1/2/ log d) the following holds for P .

(1) If RH holds for ζK for K=Q and for all number fields of the form K=Q(a),

where a is a root of P , then P=ΦP̃ , where P̃ is irreducible, and Φ has deg Φ6(C/τ)
√
d,

and is a product of cyclotomic polynomials and xm for some m∈Z>0.

Moreover, with probability at least 1−exp(−cτd1/2/(log d)2), the following additional

property holds for P .

(2) If RH holds for ζK for all number fields of the form K=Q(a1, ..., am), where

a1, ..., am are any number of roots of P , then Gal(P̃ )⊃Alt(deg P̃ ).

Here Alt(n) denotes the alternating group on n elements, Gal(P ) the Galois group

of the splitting field of the polynomial P .

There are several remarks in order regarding this theorem. It is natural to allow that

the probability laws of Ad and A0 differ from those of the other coefficients, for example

to include the original problem discussed in the beginning of the paper. The exponent 1
10

has no particular significance and the upper bound exp(d1/10) on the coefficients could

be relaxed at the expense of some technical complications in the proof, but we do not

pursue this. Nevertheless, the method of proof definitely requires some upper bound in

terms of d; it would be interesting to know if this is also necessary for the theorem to

hold.

Our method is based on studying higher-order transitivity of the Galois group acting

on the roots, and hence it cannot distinguish between the Galois group being Sym(d) or

Alt(d). Deciding whether or not the Galois group is Sym(d) with probability tending to

1 appears to be a hard problem.

There are certain obstructions to the irreducibility of P that occur with probability

higher than the estimate 2 exp(−cd1/2/ log d) given in the theorem. In particular, if

P(A0=0) is positive, then x|P with positive probability. Moreover, if ω is a root of

unity, then one may think of P (ω) as the end point of a random walk on Z[ω] whose

steps are given by Ajω
j for j=0, ..., d. If we fix ω 6=1 and µ, then, for large values of d,

P(P (ω)=0) is proportional to d−r/2 (say by the lattice local limit theorem [18, §49,

Chapter 9]), where r is the rank of the lattice Z[ω].
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In summary, the factor Φ may be non-trivial with probability higher than

2 exp

(
−cd

1/2

log d

)
,

and its precise behavior can be described by a detailed analysis of random walks on

lattices, which we do not pursue here, except for the following result.

Corollary 3. Let µ be a probability measure on Z with finite second moment,

which is not supported on a singleton. Let N be a positive integer and UN be the finite

subset of C consisting of 0 and all of roots unity ω with [Q(ω):Q]<N . Let (Ai)i>0 be

a sequence of i.i.d. random variables with common law µ and set

Pd =Adx
d+...+A1x+A0 ∈Z[x].

Then, assuming the Riemann hypothesis for Dedekind zeta functions of number fields, as

d!∞,

P(Pd is irreducible in Q[x]) = 1−P(∃ω ∈UN :Pd(ω) = 0)+Oµ,N (d−N/2).

In a similar flavor, we answer the original problem posed at the beginning of the

paper.

Corollary 4. Let P (x)=xd+Ad−1x
d−1+...+A1x+1∈Z[x] be a random polyno-

mial with independent coefficients A1, ..., Ad−1 taking values in 0 and 1 with equal prob-

ability. Suppose that the Riemann hypothesis holds for the Dedekind zeta function ζK

for all number fields of the form K=Q(a), where a is a root of a polynomial with 0, 1

coefficients.

Then

P(P is irreducible in Z[x]) = 1−
√

2

πd
+O(d−1),

where the implied constant is absolute.

Polynomials of small Mahler measure can also contribute to the error term. In this

respect, it is also worth pointing out that an exponential bound in the error term in

Theorem 2, say of the form exp(−cd) for some c>0, would easily imply the Lehmer

conjecture (arguing, say, as in [10, Lemma 16]).

In the proof of part (2) of Theorem 2, we will show that the Galois group of P̃ acts k-

transitively on its roots with k>(log d)2. By a well-known fact going back to Bochert and

Jordan in the 19th century, this implies that the Galois group contains the alternating

group. In fact, now there are even better results available, which we will discuss in more
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details in §9.1. Using the classification of finite simple groups, it has been proved that

all 6-transitive permutation groups contain Alt(d). However, if we were to rely on this,

it would lead only to a very minor improvement in Theorem 2, so we opted for a proof

avoiding the classification. Unfortunately, our method cannot distinguish between the

symmetric and alternating groups.

Bary-Soroker and Kozma proved that, if µ is the uniform distribution on an interval,

then, with probability tending to 1, the Galois group of P contains Alt(d), provided P

is irreducible. However, our result applies in greater generality and provides a better

bound for the probability of exceptions conditionally on the Riemann hypothesis.

Next, we state two results, where the reliance on the Riemann hypothesis is relaxed

at the expense of a weakening of the bound.

Theorem 5. For any numbers τ>0 and α>β>3, there is c>0 such that the follow-

ing holds. Let P=Adx
d+...+A1x+A0∈Z[x] be a random polynomial with independent

coefficients. Assume that A1, ..., Ad−1 are identically distributed with common law µ.

Assume further that all coefficients are bounded by d1/τ almost surely and ‖µ‖22<1−τ .

Then, with probability at least 1−2 exp(−c(log d)β−2), the following holds for P .

Suppose ζK has no zeros % with |1−%|<(log d)α/d for all K=Q(a) for any root a of P .

Then, P=ΦP̃ , where P̃ is irreducible, deg Φ6
√
d/c and Φ is a product of cyclotomic

polynomials and xm for some m∈Z>0.

We recall the state of the art in our knowledge about the zeros of Dedekind zeta

functions near 1 to motivate the next result. The Dedekind zeta function ζK has at most

one zero % with |1−%|<4/ log ∆K , where ∆K is the discriminant of the number field K,

see [33, Lemma 3]. If such a zero exists, it must be real, and we call it the exceptional

zero of ζK . The constant 4 has been improved, see [24] for the latest results. We note

that, in the setting of Theorems 5 and 6, log ∆K6Cd log d for a constant C depending

only on τ .

The bounds available for the exceptional zero are much weaker. We know that ζK

has no zeros % with

|1−%|< c

d·d!|∆K |1/d
, (1.2)

where d is the degree of K and c is an absolute constant, see [33, proof of Theorem 1′].

However, conditionally on Artin’s holomorphy conjecture for Artin L-functions, we know

by [33, Theorem 4] that ζK has no zeros % with

|1−%|< c

d log ∆K
+

c

∆
1/d
K

.

In the next result, we formulate our hypothesis on the zeros of Dedekind functions

allowing for an exceptional zero.
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Theorem 6. For any numbers τ>0, α>4 and γ>1 such that α>2γ+2, there is

c>0 such that the following holds. Let P=Adx
d+...+A1x+A0∈Z[x] be a random polyno-

mial with independent coefficients. Assume that A1, ..., Ad−1 are identically distributed

with common law µ. Assume further that all coefficients are bounded by d1/τ almost

surely and ‖µ‖22<1−τ .

Then, with probability at least 1−2 exp(−c(log d)α−γ−2), the following holds for P .

Suppose that ζK has at most one zero % satisfying |1−%|<(log d)α/d and no zeros with

|1−%|<exp(−c(log d)γ) for all K=Q(a) for any root a of P . Then, P=ΦP̃ , where P̃ is

irreducible, deg Φ6
√
d/c and Φ is a product of cyclotomic polynomials and xm for some

m∈Z>0.

Most of the interest in our final result is when we know unconditionally that the

random polynomial P is irreducible with high probability, e.g. in the setting of the

work of Bary-Soroker and Kozma [3] mentioned above. Then, we obtain as a direct

consequence of the following theorem an unconditional improvement on the bound (1.2)

for the exceptional zero of the Dedekind zeta function ζK that holds for most number

fieldsK, whereK is the sampled by settingK=Q(a) for a root a of the random irreducible

polynomial P .

Theorem 7. For every τ>0 and α>β>3, there is c>0 such that the following

holds. Let P=Adx
d+...+A1x+A0∈Z[x] be a random polynomial with independent coeffi-

cients. Assume that A1, ..., Ad−1 are identically distributed with common law µ. Assume

further that all coefficients are bounded by d1/τ almost surely and ‖µ‖22<1−τ .

Then, with probability at least 1−2 exp(−c(log d)β−2), the following holds for P .

There is a root a of P that is not a root of unity such that ζQ(a) has no zeros % with

|1−%|<exp(−(log d)α+1).

1.3. An outline of the proof

Our strategy for proving the results stated above aims at finding information about the

distribution of the degree sequence in the factorization of the random polynomial P in

Fp[x], and then uses this information to study irreducibility of P in Z[x] and the Galois

group of its splitting field.

Bary-Soroker and Kozma [3] approximated (in a certain sense) the degree sequence

in the factorization of a polynomial chosen uniformly at random from degree-d monic

polynomials in Fp[x]. It is very plausible that such an approximation holds in greater

generality not only for the uniform distribution, but we do not know how to prove this.

However, we are able to approximate the statistics of the number of low-degree factors,
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and this allows us to gain information about the Galois groups using special cases of the

Chebotarev density theorem.

The most relevant density theorem for our purposes is the prime ideal theorem,

which has the following consequence.

Theorem 8. Let P0∈Z[x] be a fixed polynomial and let p be a random prime chosen

uniformly in a dyadic range [y, 2y). Then,

E[number of roots of P0 in Fp]!number of distinct irreducible factors of P0 (1.3)

as y!∞.

This observation was suggested as a basis for an algorithm to compute the number

of irreducible factors of a polynomial by Weinberger [36].

If the Riemann hypothesis holds for ζK for all K=Q(a), where a is a root of P0, then

the approximation (1.3) is valid once y>C(ε)(log ∆P0
)2+ε. A more precise discussion

of these ideas including proofs will be given in §§2–4. We note that, if we wish to

approximate the distribution of the full degree sequence of the factorization of P0 in Fp
using the Chebotarev density theorem, then we need to take a much larger value for

y, even if we assume the Riemann hypothesis for all relevant Dedekind zeta functions.

Indeed, that would require us to replace the discriminant of P0 with the discriminant of

its splitting field in the above bound, which is potentially much larger, and that would

not be sufficient for our purposes.

The next aim of our strategy is to show that

E[number of roots of P in Fp0 ]≈ 1, (1.4)

where P is a random polynomial in the setting of the above theorems, and p0 is a fixed

prime in the range [y, 2y), which is suitably large for the approximation in (1.3) to hold.

If we achieve this goal, then we can randomize the polynomial in (1.3) and the prime

in (1.4) and compare the right-hand sides to obtain

E[number of distinct irreducible factors of P ]≈ 1.

Since the number of irreducible factors is always a positive integer, Markov’s inequality

implies that P has only one irreducible factor with high probability. When we will give

the details of the argument, we will choose a slightly different route by estimating the

second moments and applying Chebyshev’s inequality. Although this is not necessary for

Theorems 2, 5 and 6, it does help in that it is enough to make the assumption on the

Dedekind zeta functions only for those polynomials for which the conclusion holds. On

the other hand, the second moment estimates are necessary for Theorem 7.
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To establish (1.4), we fix an element a∈Fp0 and consider an additive random walk

on Fp0 whose jth increment is Aja
j . The endpoint of this walk is P (a). If we can show

that the walk mixes rapidly, then we can conclude that

P(P (a) = 0)≈ 1

p0
. (1.5)

Summing up the probabilities for each a∈Fp0 , we arrive at (1.4).

The study of random walks of this kind goes back at least to Chung, Diaconis and

Graham [12], who considered the case a=2. Their work has been extended in several

directions by Hildebrand (see [21]), however he mostly focused on the case in which a is

a fixed integer independent of p0. In the setting when a may vary with p0, the diameter

of the underlying graph was considered by Bukh, Harper and Helfgott in an unpublished

work, see also [20, footnote 4 on p. 372], that is, they considered how large d needs to

be taken so that the walk reaches every element of Fp0 with positive probability. Their

approach relies on certain estimates of Konyagin [25] pertaining to the Waring problem

on finite fields and we will apply the same method. See also [9], where the connection

between these random walks and Lehmer’s conjecture is explored.

It turns out that the random walk does not mix fast enough for certain choices of

the parameter a. Indeed, if a=0, then the walk does not mix at all. Moreover, if a=1,

then the mixing time (i.e. how large d needs to be taken for (1.5) to hold) will be ≈p2
0, as

can be seen by the central limit theorem. A similar issue arises if a has low multiplicative

order. Therefore, it is useful to exclude certain elements of Fp0 from the count. We say

that an element a∈Fp0 is admissible if it is not the root of a cyclotomic polynomial of

degree at most log p0. We can then modify (1.3) by counting admissible primes on the

left-hand side and non-cyclotomic factors on the right. When we give the details of the

argument, we will exclude from the admissible elements not only the roots of cyclotomic

polynomials, but also the roots of polynomials of very small Mahler measure. This allows

us to obtain improved bounds.

We are able to show that the mixing time is at most log p(log log p)3+ε for most of

the parameters a∈Fp in a sufficiently strong sense required by our application.(1) This

allows us to set y=exp(d/(log d)3+ε) when we apply (1.3). Even if we disregard the effect

of the exceptional zero, our current knowledge about the zeros of Dedekind zeta functions

would require the larger range y=exp(Cd log d). Unfortunately, an argument based on

the analysis of the random walks for a fixed parameter a∈Fp cannot yield a mixing time

better than c log p, since the number of points that the random walk can reach grows

exponentially with the number of steps. To overcome this barrier, one would need to

(1) We can get better results for typical parameters in a weaker sense, which is not suitable for
the purposes of this paper. These results will appear in a forthcoming paper.
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consider the average distribution of the random walk over the parameters a∈Fp. This,

however, seems to be exceedingly difficult to study.

There is one last issue that we need to consider. The above argument cannot dis-

tinguish between irreducible polynomials and proper powers. Indeed, we are able count

distinct irreducible factors only. To show that P is not a proper power with high proba-

bility, we show that P (2) is not a proper power. To that end, we will use the large sieve

together with the classical a=2 case of the above discussed random walks.

Using the above method, we can also obtain information about the Galois group of P .

What we discussed so far amounted to showing that the Galois group acts transitively

on the complex roots of P . A more general version of this argument can be used to show

that the action is k-transitive for large values of k, large enough that it forces the Galois

group to contain the alternating group.

Finally, we comment on the proof of Theorem 7. If the Dedekind zeta function has

an exceptional zero, then all other zeros are repelled away from 1 by what is known

as the Deuring–Heilbronn phenomenon. In the context of Theorem 8, this implies that

the left-hand side of (1.3) is close to zero for a certain range of primes. This can be

contradicted by (1.4).

1.4. Organization of the paper

In §§2–4 we discuss the prime ideal theorem and use it to obtain estimates for the

average number of roots of a polynomial in finite fields related to (1.3). In §5 and §6,

we study equidistribution of random walks, we revisit Konyagin’s estimates in [25] and

the argument suggested by Bukh, Harper and Helfgott. In §7, we give an upper bound

on the probability that the random polynomial P has a factor of small Mahler measure

utilizing some ideas of Konyagin [26]. In §8 we use the large sieve to show that P is not

the product of a proper power and cyclotomic factors with high probability. In §9 we

combine the above ingredients to prove the results stated in §1.2.

1.5. Notation

If K is a number field, we write dK for its degree and ∆K for its discriminant. If P∈Z[x]

is a polynomial, we write dP for its degree, ∆P for its discriminant and

M(P ) = ad
∏

zj :|zj |>1

|zj |
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for its Mahler measure, where ad is the leading coefficient of P and zj runs through the

complex roots of P taking multiplicities into account. We recall the estimates

1+c

(
log log dP

log dP

)3
6M(P )6 (a2

0+...+a2
d)

1/2, (1.6)

where the upper bound holds for all 0 6=P∈Z[x], and the lower bound holds if in addition

P is not the product of cyclotomic polynomials and xm for some m∈Z>0. Here, c>0 is

an absolute constant a0, ..., ad are the coefficients of P . See [16] for the inequality on the

left-hand side and [5, Lemma 1.6.7] for the right-hand side.

We write
∑
p for summation over rational primes.

Throughout the paper, we use the letters c and C to denote positive numbers whose

values may vary at each occurrence. These values are effective and numerical: they

could, in principle, be determined by following the arguments. We will use upper case C

when the number is best thought to be large, and lower case c when it is best thought

to be small. In addition we will use Landau’s O(X) notation to denote a quantity that

is bounded in absolute value by a constant multiple of X.

1.6. Acknowledgments

The authors are grateful to Boris Bukh, Mohammad Bardestani and Peter Sarnak for

helpful discussions on various aspects of this work. We thank the referees for their careful

reading of our paper and for useful comments and suggestions.

2. The prime ideal theorem

Let K be a number field of degree d=dK with discriminant ∆=∆K , and denote by OK
its ring of integers. Write ζK for the Dedekind zeta function of K. Write A(n)=AK(n)

for the number of prime ideals p⊂OK with NK/Q(p)=n.

The purpose of this section is to compute the average value of A(p) with respect

to suitably chosen weights supported on primes. We first consider this question under

the assumption that RH holds for ζK . In what follows,
∑
p indicates summation over all

positive primes in Z.

Proposition 9. Let X>1 be a number and let

hX(u) =

{
2 exp(−X), if u∈ (X−log 2, X],

0, otherwise.
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If RH holds for ζK , then

∑
p

A(p) log(p)hX(log p) = 1+O

(
X2 log(∆) exp

(
−X

2

))
,

where the implied constant is absolute.

Proof. We write

ψK(x) =
∑

n,m∈Z>0:nm6x

A(n) log n.

There is an absolute constant C>0 such that, if RH holds for ζK , then, for all x>1,

|ψK(x)−x|6C
√
x(log x log ∆+d(log x)2).

See, for example, [19, Corollary 1.2]. Applying this for x=exp(X) and x= 1
2 exp(X), we

find that

∞∑
n=1

∞∑
m=1

A(n) log(n)hX(log nm) = 2 exp(−X)

(
ψK(exp(X))−ψK

(
exp(X)

2

))
= 1+O

(
X2 log(∆) exp

(
−X

2

))
.

Here we used that dK6C(log ∆K) by Minkowski’s lower bound on the discriminant.

We estimate the contribution of the summands for which nm is not a prime. First,

we note that for each of these terms, nm is a proper power, and there are at most

exp

(
X

2

)
+exp

(
X

3

)
+...+exp

(
X

dXe

)
6C exp

(
X

2

)

such numbers between exp(X) and exp(X)/2. Each such number can be written in the

form nm in at most X different ways, and A(n) log n6dKX. Therefore,

∑
n,m: nm is not prime

A(n) log(n)hX(log nm)6CX2 log(∆) exp

(
−X

2

)
.

The purpose of the rest of this section is to formulate a variant of this proposition

with a milder assumption on the zeros of ζK . Readers only interested in the proof of

Theorem 2 may skip to the next section. Everything that follows is well known and

classical. We begin by recalling the smooth version of the explicit formula.
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Theorem 10. Let g∈C2(R) be a function supported in a compact interval contained

in R>0. Write

ĝ(s) =

∫
R

exp(isu)g(u) du.

Then,
∞∑
n=1

∞∑
m=1

A(n) log(n)g(m log(n)) = ĝ(−i)−
∑
%

ĝ(−i%),

where the summation over % is taken over all zeros of ζK (including the trivial ones)

taking multiplicities into account.

This result is well known but it does not seem to be readily available in this form in

standard text books, therefore we give the very short proof for the reader’s convenience.

Proof. We note that

ζ ′K
ζK

(s) =−
∞∑
n=1

∞∑
m=1

A(n) log(n)n−ms

for Re(s)>1.

Since g is compactly supported and C2, ĝ is holomorphic and |ĝ(is)|=O(|Im(s)|−2)

with an implied constant (continuously) depending only on Re(s). By the Fourier inver-

sion formula, we have∫
Re(s)=2

n−sĝ(−is)ds=

∫
Re(s)=0

n−sĝ(−is) ds

= i

∫ ∞
−∞

exp(−it log n)ĝ(t) dt= 2πig(log n)

for each n∈Z>0.

Therefore, we have

− 1

2πi

∫
Re(s)=2

ζ ′K
ζK

(s)ĝ(−is) ds=

∞∑
n=1

∞∑
m=1

A(n) log(n)g(m log n).

Shifting the contour integration to Re(s)=−∞, we can recover the claimed formula

from the residue theorem. We note that supp(g)⊂R>0, ĝ(−is) decays exponentially

as Re(−is)!∞, and leave the verification of the rest of the details to the interested

reader.

In the next lemma, we introduce the weight functions that we will use and establish

some of their properties. The aim is to find compactly supported weights g such that

its Laplace transform G(s)=ĝ(−is) decays fast when Re(s)61 and s is moving away

from 1. To achieve the optimal decay, it is useful to choose g depending on the distance

of s from 1, where we wish to make G(s) small. The construction was inspired by

Ingham [22].
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Lemma 11. Let X∈R>0 and let k∈Z>0. For r∈R>0, write

Ir(u) =

{
1/r, if u∈

[
− 1

2r.
1
2r
]
,

0, otherwise.

Let

gX,k(u) = exp(−u) IX/2k∗...∗IX/2k︸ ︷︷ ︸
k-fold

(
u− 3

4X
)
, (2.1)

GX,k(s) = ĝX,k(−is) =

∫
R

exp(su)g(u) du. (2.2)

Suppose k>4 and X>2k. Then, gX,k∈C2(R) and it is supported in
[

1
2X,X

]
, and

we have gX,k(u)6exp(−u) for all u∈R. We have G(1)=1 and the following bounds hold

for all s∈C with Re(s)61 and for all σ∈(0, 1) and X1>X2:

06 1−GX,k(σ)6X(1−σ),

|GX,k(s)|6
(

4k

|1−s|X

)k
,

|GX,k(s)|6 exp

(
(Re(s)−1)X

2

)
,

GX1,k(σ)

GX2,k(σ)
6 exp

(
− (1−σ)(X1−X2)

4

)
.

Proof. The claim supp gX,k⊂
[

1
2X,X

]
and g(u)6exp(−u) follows immediately from

its definition and the assumption X>2k.

Note that

ÎX/2k(s) =
exp(isX/4k)−exp(−isX/4k)

isX/2k
.

Then |ĝX,k(σ)|6C|σ|−k for σ∈R, where C is a number that depends only on X and k,

and it follows that gX,k∈C2 if k>4.

We also have

ĝX,k(s) = exp

(
3i(s+i)X

4

)(
exp(i(s+i)X/4k)−exp(−i(s+i)X/4k)

i(s+i)X/2k

)k
.

We can write

GX,k(s) = exp

(
3(s−1)X

4

)(
exp((s−1)X/4k)−exp(−(s−1)X/4k)

(s−1)X/2k

)k
. (2.3)

Taking the limit s!1, we get GX,k(1)=1. Using the bound∣∣∣∣exp(z)−exp(−z)
2z

∣∣∣∣6 exp(−Re(z))
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with z=(s−1)X/4k, which is valid for Re(z)60, we get

|GX,k(s)|6 exp
(

1
2 (Re(s)−1)X

)
if Re(s)61.

Next, we use ∣∣∣∣exp(z)−exp(−z)
2z

∣∣∣∣6 exp(−Re(z))

|z|
,

with z=(s−1)X/4k, which is valid for Re(z)60, and we get

|GX,k(s)|6
exp
(

1
2 (Re(s)−1)X

)
(|s−1|X/4k)k

if Re(s)61. Using exp
(

1
2 (Re(s)−1)X

)
61, we get the claim.

To show that
GX1,k(σ)

GX2,k(σ)
6 exp

(
− (1−σ)(X1−X2)

4

)
,

it is enough to prove that F ′1(Y )/F1(Y )6−1 for Y >0, where

F1(Y ) = exp(−3Y )

(
exp(Y/k)−exp(−Y/k)

2Y/k

)k
.

(We use the substitution Y = 1
4 (1−σ)X and (2.3)).

This follows at once, if we show that F ′2(Z)/F2(Z)61 for Z>0, where

F2(Z) =
exp(Z)−exp(−Z)

2Z
.

To that end, we calculate

F2(Z)′

F2(Z)
=

exp(Z)+exp(−Z)

exp(Z)−exp(−Z)
− 1

Z
,

and observe that F ′2(Z)/F2(Z)61 is equivalent to

2 exp(−Z)6
exp(Z)−exp(−Z)

Z
.

We note that the left-hand side is always less than 2 and the right-hand side is greater

than 2 for Z>0. The latter can be seen, for example by computing the power series

expansion of the right-hand side.

We record some well-known estimates for the number of roots of ζK near s=1. These

go back at least to Stark [33].
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Lemma 12. For every 06r61, we have∣∣{% : ζK(%) = 0 and |1−%|<r}
∣∣6 3

2 +3r log |∆K |.

There is an absolute constant C>0 such that, for every r>1, we have∣∣{% : ζK(%) = 0 and |1−%|<r}
∣∣6C log |∆K |+CdKr log r.

We count the zeros with multiplicities and include the trivial ones.

Proof. As in the proof of [33, Lemma 3], we have∑
%

′ 1

σ−%
<

1

σ−1
+

1

2
log |∆K |,

where 1<σ62 is arbitrary and
∑′
% indicates summation over an arbitrary subset of non-

trivial zeros of ζK (taking multiplicities into account) closed under conjugation. If r< 1
2 ,

we take σ=1+2r and consider the zeros % that satisfy |1−%|<r. For each such %, we

have

Re

(
1

σ−%

)
>

1

3r
,

which can be seen easily by finding the image of the disk {z :|1−z|<r} under the inversion

through 1+2r. This gives us

1

3r

∣∣{% : |1−%|<r}
∣∣< 1

2r
+

1

2
log |∆K |,

which yields ∣∣{% : |1−%|<r}
∣∣< 3

2 + 3
2r log |∆K |.

Taking σ=1+r for 1
26r61, the same argument gives∣∣{% : |1−%|<r}

∣∣< 2+r log |∆K |,

which is stronger than our claim since 2r log |∆K |> 1
2 .

We note that the trivial zeros are among the non-positive integers, and each have

multiplicity at most dK . Moreover, we have∣∣{% : 0<Re(%)< 1 and |Im(%)−t|6 1}
∣∣6C log(∆K)+CdK log(|t|+2)

for any t∈R (see e.g. [28, Lemma 5.4]). These two facts easily imply the second claim.

Now, we formulate a variant of Proposition 9 under a milder assumption on the

zeros.
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Proposition 13. Let α>β, τ∈R>0. Let X=d(log d)−β or X=2d(log d)−β and

k=
⌊

1
10 (log d)α−β

⌋
.

Let K be a number field of degree at most d and discriminant at most exp(τ−1d log d) in

absolute value. Suppose that ζK has at most one zero %0 such that |1−%0|<d−1(log d)α.

Then, ∑
p

A(p) log(p)gX,k(log(p)) = 1−GX,k(%0)+O(exp(−c(log d)α−β)).

When the exceptional zero %0 does not exist, the corresponding term should be removed

from the formula. The implied constant and c may depend only on α, β and τ .

Proof. In what follows, we will assume that d is sufficiently large depending on α, β

and τ . Otherwise, the claim may be made trivial by a sufficient choice of the constants.

The proof is based on the explicit formula in Theorem 10, which gives us

∞∑
n=1

∞∑
m=1

A(n) log(n)g(m log(n)) =G(1)−
∑
%

G(%), (2.4)

where g=gX,k and G=GX.k.

First, we focus on the left-hand side of (2.4) and show that the terms for which nm

is not a prime do not have a significant contribution. We write

∞∑
n=1

∞∑
m=1

A(n) log(n)g(m log(n)) =

∞∑
p

∞∑
l=1

Ã(pl)g(log(pl)),

where

Ã(pl) =
∑

n,m:nm=pl

A(n) log(n) =
∑
j:j|l

A(pj) log(pj).

We note that Ã(p)=A(p) log p for all primes p, and that

Ã(pl)6
∞∑
j=1

jA(pj) log(p)6 dK log(p).

(The last inequality is an equality, if p is unramified in K.) Therefore, we can write∣∣∣∣ ∞∑
n=1

∞∑
m=1

A(n) log(n)g(m log(n))−
∑
p

A(p) log(p)g(log(p))

∣∣∣∣
6
∑
p

∞∑
l=2

dK log(p)g(log(pl)).

(2.5)
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Since the support of g=gX,k is contained in
[
exp
(

1
2X
)
, exp(X)

]
only those terms

contribute in (2.5) for which pl∈
[
exp
(

1
2X
)
, exp(X)]. This means in particular that

log(p)6X for all such terms, and we can write

(2.5)6 dKX
∑
p

∑
l:l>2

pl∈[exp(X/2),exp(X)]

p−l,

where we also used g(log(x))6x−1. Therefore,

(2.5)6 dKX

( exp(X/2)∑
n=exp(X/4)

n−2+

exp(X/3)∑
n=exp(X/6)

n−3+

exp(X/4)∑
n=2

∑
l:nl∈[exp(X/2),exp(X)]

n−l
)
.

We note that ∑
l:nl∈[exp(X/2),exp(X)]

n−l6 2 exp

(
−X

2

)
for any n, and hence

(2.5)6 dKX
(
C exp

(
− 1

4X
)
+C exp

(
− 1

3X
)
+2 exp

(
1
4X
)

exp
(
− 1

2X
))
,

so we can conclude that∣∣∣∣ ∞∑
n=1

∞∑
m=1

A(n) log(n)g(m log(n))−
∑
p

A(p) log(p)g(log(p))

∣∣∣∣6CdKX exp

(
−X

4

)
.

Now we turn to the right-hand side of (2.4) and estimate the contribution of the

zeros % that satisfy |1−%|>d−1(log d)α. We write

Rj := {% : ζK(%) = 0 and 2jd−1(log d)α6 |1−%|< 2j+1d−1(log d)α}

for each j∈Z>0. We think about this as a multiset with each zero contained in it with

its multiplicity.

By Lemma 12, we have

|Rj |6C2j(log d)α+1

for each j such that 2j+1d−1(log d)α61. Here, we use that log ∆K6τ−1d log d. To

consider the case 2j+1d−1(log d)α>1, we note that

log(2j+1d−1(log d)α)6Cj,

and the second part of the same lemma implies that

|Rj |6C(j+1)2j(log d)α+1 6C22j(log d)α+1.
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So this last estimate holds for all j.

By Lemma 11, we know that

|G(%)|6
(

4k

2jd−1(log d)αX

)k
6 exp(−c(j+1)(log d)α−β)

for each %∈Rj . We combine this with the bounds on |Rj | and obtain the following

estimates, provided d is sufficiently large (depending on α, β and τ):

∞∑
j=0

∑
%∈Rj

|G(%)|6
∞∑
j=0

C2j(log d)α+1 exp(−c(j+1)(log d)α−β)

6
∞∑
j=0

C exp(−c(j+1)(log d)α−β)

6C exp(−c(log d)α−β).

We recall that G(1)=1 and, using the above estimate, we write

|G(1)−
∑
%

G(%)−(1−G(%0))|6C exp(−c(log d)α−β),

where %0 is the unique zero of ζK with |1−%0|<d−1(log d)α, if it exists, and the term

G(%0) should be omitted from the formula, if there is no such zero. Combining this with

the estimate we gave above for the left-hand side, we get the claim of the proposition.

3. Splitting of prime ideals and roots in finite fields

In this section, we record some facts about the connection between the number of roots

a polynomial has in finite fields and the way prime ideals split when we extend Q by

adjoining roots of the polynomial.

We fix two numbers �∈
(
0, 1

100

)
and X∈R>10.

Definition 14. (Admissible polynomial) We say that an irreducible polynomial R∈
Z[x] is (X,�)-admissible if M(R)>exp(�) or degR>10X. Otherwise, it is called (X,�)-

exceptional.

By abuse of language and ease of notation, in this section we will simply speak of

admissible or exceptional polynomials without reference to X and �, which we assume

fixed.

Lehmer’s conjecture implies that all exceptional irreducible polynomials are either

cyclotomic or equal to x. It follows from a result of Dubickas and Konyagin [17, Theo-

rem 1] that the number of exceptional polynomials of degree d is at most exp(�d) if d is

larger than an absolute constant independent of X.
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The reason for excluding polynomials of small Mahler measure is that this will

allow us to obtain slightly better results in §5 and §6. We will set the value of �

depending on the common law of the coefficients of the random polynomials so that

the probability of a random polynomial having an exceptional and non-cyclotomic factor

will be very small. This is proved in §7 using the above mentioned estimate for the

number of exceptional polynomials. We could opt to make only the low-degree cyclotomic

polynomials exceptional, but this would not lead to a significant simplification of our

arguments.

Definition 15. (Admissible residue) Let p be a prime such that log p∈
[

1
2X,X

]
. A

residue a∈Fp is said to be (X,�)-admissible if it is not the root of an (X,�)-exceptional

irreducible polynomial mod p.

Again, if X and � are fixed, as we assume in this section, we will drop the prefix

(X,�) and speak about admissible residues.

Let P∈Z[x] be a polynomial, F be its splitting field and p be a prime. We write

BP (p) for the number of distinct admissible roots of P in Fp. Write P̃ for the product

of the admissible irreducible factors of P . Note that P̃ is square free. Write Ω for the

set of complex roots of P̃ .

Let m∈Z>0 and consider the diagonal action of G=Gal(F |Q) on Ωm. We may

decompose Ωm into distinct G-orbits and for each orbit O∈Ωm/G pick one representative

ω :=(x1, ..., xm)∈O and consider the subfield KO=Q(x1, ..., xm). The isomorphism class

of KO is independent of the choice of the representative ω in Ω.

Recall that AK(p) denotes the number of prime ideals p⊂OK with norm p.

The purpose of this section is to prove the following.

Proposition 16. Let P∈Z[x], let p be a prime such that p-∆P̃ and and p-Res(P̃ , R)

for any exceptional polynomials R. Let m∈Z>0. Then,

BP (p)m =
∑

O∈Ωm/G

AKO
(p).

Let F be a finite Galois extension of Q and let p∈Z be a prime that is unramified

in F . Then, we write FrobF (p) for the (conjugacy class) of the Frobenius element in

Gal(F |Q) at p.

We begin by recalling two standard facts.

Lemma 17. ([13, Theorem 4.8.13]) Let P∈Z[x] be a polynomial and let F be a finite

Galois extension of Q containing the roots of P . Let p be a prime such that p-∆P . Then,

there is a bijective correspondence between the cycles of FrobF (p) acting on the complex

roots of P and the irreducible factors of P in Fp, such that the length of a cycle equals

the degree of the corresponding irreducible factor.
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Lemma 18. ([30, Chapter 4, Theorem 33]) Let F be a finite Galois extension of Q
with Galois group G=Gal(F |Q) and let H6G be a subgroup. Let p∈Z be a prime, which

is unramified in the extension F |Q. Then, the number of fixed points of FrobF (p) acting

on G/H is AK(p), that is the number of prime ideals in OK of norm p, where K is the

subfield of F pointwise fixed by H.

Proof of Proposition 16. Recall that F is the splitting field of P , and Ω⊂C the set

of roots of P̃ . We apply Lemma 17 for P̃ , and see that the number of fixed points of

FrobF (p) acting on Ω is BP (p). Here, we used that all roots of P̃ in Fp are distinct and

admissible, because p-∆P̃ and p-Res(P̃ , R) for any exceptional R. Therefore, BP (p)m is

the number of fixed points of FrobF (p) acting diagonally on Ωm.

Consider an orbit O of Gal(F |Q) in Ωm and let KO=Q(x1, ..., xm) for some rep-

resentative ω :=(x1, ..., xm) of O. Let H be the stabiliser of ω in G. By the Galois

correspondence, KO is the subfield of F fixed by H. Hence, the number of fixed points

of FrobF (p) in O is AKO
(p) by Lemma 18. The claim follows.

4. Expected number of roots of a polynomial in a random finite field

We combine the results of the previous two sections and deduce the following two results.

Below we have kept the notation of §3. Recall that the function hX was defined in

Proposition 9, that Ω is the set of roots of P̃ , F the splitting field of P and G=Gal(F |Q)

its Galois group. Given m∈Z>0, �∈(0, 1/100) and X>10, we will denote by BP (p) the

set of (�/m,mX)-admissible roots of P in Fp (see Definition 15).

Proposition 19. Let d,m∈Z>1. Let P∈Z[x] be a polynomial with coefficients in

[− exp(d1/10), exp(d1/10)] of degree at most d. Suppose that, for every G-orbit O on Ωm,

the Dedekind zeta function ζKO
of the subfield KO6F satisfies RH. Let X>md1/10.

Then, ∑
p

BP (p)m log(p)hX(log p) = |Ωm/G|+O
(

exp

(
−X

10

))
.

The implied constant is absolute.

Proposition 20. Let α>β, τ∈R>0. Let X=d(log d)−β or X=2d(log d)−β and

k=
⌊

1
10 (log d)α−β

⌋
.

Let P∈Z[x] be a polynomial with coefficients in [−d1/τ , d1/τ ] of degree at most d. Suppose

that, for every G-orbit O⊂Ω, the Dedekind zeta function ζKO
of the subfield KO6F has

at most one root %KO,0 such that |1−%KO,0|<d−1(log d)α. Then,∑
p

BP (p) log(p)gX,k(log p) =
∑

O∈Ω/G

(1−GX,k(%KO,0))+O(exp(−c(log d)α−β)).
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If the exceptional zero %KO,0 does not exist for some O, then the term GX,k(%KO,0)

should be omitted from the formula. The implied constant and c may depend only on α,

β and τ .

We will use the next lemma to estimate the number of primes for which the result

of the previous section does not hold.

Lemma 21. Let P∈Z[x] be a polynomial of degree at most d with coefficients in

[−H,H]. Let Q be a polynomial that divides P . Then,

|∆Q|6 (Hd)2d.

For any irreducible R∈Z[x] of degree at most d with M(R)62, we have

|Res(P̃ , R)|6 (4Hd)2d.

Let K be a number field obtained by adjoining at most m roots of P to Q. Then,

|∆K |6 (Hd)2mdm .

Proof. Recall Mahler’s bound on the discriminant of a polynomial Q∈C[x] of de-

gree n ([29, Theorem 1]):

|∆Q|6nnM(Q)2n−2. (4.1)

If Q divides P , we have M(Q)6M(P )6H(d+1)1/2 by (1.6), and hence Mahler’s bound

gives

|∆Q|6 dd(H(d+1)1/2)2d−2 6 (Hd)2d.

Now, recall that |∆P̃R|=|∆P̃∆R|Res(P̃ , R)2. Since R is irreducible and P̃ is square free,

|∆P̃∆R|>1, and thus Res(P̃ , R)26|∆RP̃ |. Moreover, M(P̃R)=M(P̃ )M(R)62M(P̃ ).

So, by (4.1) and (1.6), we conclude that

Res(P̃ , R)2 6 (2d)2d(2H(d+1)1/2)4d−2 6 (4Hd)4d.

Let α1, ..., αm be roots of P and K=Q(α1, ..., αm). For any two number fields L1

and L2, we have

|∆L1L2 |6 |∆L1 |[L1L2:L1]|∆L2 |[L1L2:L2] 6 |∆L1 |degL2 |∆L2 |degL1

(see, e.g., [34]). Using this inductively, we can write

|∆K |6 |∆Q(α1)|d
m−1

6 ...6 |∆Q(αm)|d
m−1

6 |∆P |md
m−1

,

which proves the claim by the first part.
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Proof of Proposition 19. We apply Proposition 9 for each KO to obtain

∑
O∈Ωm/G

∑
p

AKO
(p) log(p)hX(log p) = |Ωm/G|+O

(
dmX2 ·2mdm+1/10 exp

(
−X

2

))
= |Ωm/G|+O

(
exp

(
−X

10

))
.

Here, we used the estimate for ∆KO
from Lemma 21, and the bound dm=O

(
exp
(

1
10X

))
,

which follows from our assumption X>md1/10.

We proceed to estimate∣∣∣∣∑
p

BP (p)m log(p)hX(log(p))−
∑

O∈Ωm/G

∑
p

AKO
(p) log(p)hX(log(p))

∣∣∣∣. (4.2)

By Proposition 16, a prime p may contribute to (4.2) only if p|∆P̃ or p|Res(P̃ , R)

for some (�/m,mX)-exceptional irreducible R. As we already noted, [17, Theorem 1]

implies that the number of exceptional polynomials is at most exp(10�X)6exp
(

1
10X

)
.

Therefore, the number of primes p contributing to (4.2) is at most

dC exp
(

1
10X

)
.

Here, we used again the bounds from Lemma 21.

Since, for any p, we always have 06BP (p)m6dm and

06
∑

O∈Ωm/G

AKO
(p)6

∑
O∈Ωm/G

degKO =
∑

O∈Ωm/G

|O|= |Ωm|6 dm,

the contribution of a prime to (4.2) is at most dmX ·2 exp(−X). Therefore,

(4.2)6 dm+CX exp
(

1
10X−X

)
6C exp

(
− 1

10X
)
,

and the claim follows.

Proof of Proposition 20. The proof is similar to the previous one. By Lemma 21,

we have |∆KO
|6d2(1/τ+1)d for each orbit O in Ω. Hence, Proposition 13 applies to each

KO and we obtain∑
O

∑
p

AKO
(p) log(p)gX,k(log p) =

∑
O∈Ω/G

(1−GX,k(%K,0))+O(exp(−c(log d)α−β)).
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Since Mahler measure is multiplicative, using Dobrowolski’s lower bound (1.6), the num-

ber |Ω/G| of irreducible factors of P̃ is at most |Ω/G|6C(log d)4. Hence, |Ω/G| can be

absorbed into exp(−c(log d)α−β). We proceed to estimate∣∣∣∣∑
p

BP (p) log(p)gX,k(log(p))−
∑

O∈Ω/G

∑
p

AKO
(p) log(p)gX,k(log(p))

∣∣∣∣. (4.3)

We estimate the number of primes p contributing to (4.3) just as we did in the

previous proof, and find that there are at most

2(τ−1+1)d log(4d) exp
(

1
10X

)
such primes.

Since gX,k(p)6p−1, each such prime contributes to (4.3) at most dX exp
(
− 1

2X
)
.

Therefore,

(4.3)6 2(A+1)d log(4d) exp
(

1
10X

)
·dX exp

(
− 1

2X
)
6O(exp(−c(log d)α−β)),

and the claim follows.

5. Equidistribution of random walks

We study equidistribution of certain random walks in this section. The basic example of

these is the walk on Fp started at zero whose steps are given by x 7!αx±1, where α∈Fp
is a fixed parameter and the signs ± are chosen independently at random with equal

probabilities at each step. The study of related random walks goes back to [12], [21], but

those studies are mostly concerned with the case when α is a fixed integer independent

of p. Much less is known if α is allowed to vary with p.

We will also need to consider direct products of such walks. Before introducing our

notation for the general case, we first outline the arguments in the basic setup mentioned

above. We write ν
(d)
α for the probability measure on Fp that is the distribution of the

random walk after d+1 steps. It is easily seen that ν
(d)
α is the law of the random variable

Sd(α):=
∑d
j=0Xjα

j∈Fp, where Xj∈{−1, 1} are independent unbiased random variables,

and we can write its Fourier transform as

ν̂(d)
α (ξ) :=E

(
exp

(
2iπSd(α)

p

))
=

d∏
j=0

cos

(
2παjξ

p

)
.

Our first aim is to bound |ν̂(d)
α (ξ)| away from 1. Expanding cos in power series at

zero, we see that we need to give a lower bound for
∑

([αjξ]∼)2, where [ · ]∼ denotes the
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unique lift of an element in Fp to
(
− 1

2p,
1
2p
)
∩Z. We will use some bounds of Konyagin

[25] for this purpose. We note that Bukh, Harper and Helfgott have used similar ideas

in unpublished work (see [20, footnote 4 on p. 372]) in order to bound the diameter of

the graph underlying the random walk.

Once we have bounded away |ν̂(d)
α (ξ)| from 1, we can exploit the fact that ν

(d)
α is a

convolution product of the form ν
(−1,d1)
α ∗...∗ν(dk,d)

α , where 06d16... dk6d are some inte-

gers and ν
(d1,d2)
α is the law of

∑d2
j=d1+1Xjα

j∈Fp. We can also bound |ν̂(dj ,dj+1)
α (ξ)| away

from 1 in a similar manner. Multiplying these bounds together we can get sufficiently

strong bounds for |ν̂(d)
α (ξ)| so that we can deduce that the random walk is equidistributed

using Parseval’s formula.

Since we do not need an equidistribution result for each individual parameter α,

we can improve the above argument by giving an initial estimate for the sum of the L2

norms:

∑
α∈Fp

‖ν(d)
α ‖22

=
∑
α∈Fp

1

22d+2
|{(x0, ..., xd), (x

′
0, ..., x

′
d)∈{±1}d+1 :x0+...+xdα

d =x′0+...+x′dα
d}|.

Such an initial bound can be given by exploiting the fact that the polynomial equation

x0+...+xdα
d =x′0+...+x′dα

d

may have at most d roots in Fp, unless xj=x
′
j for all j.

The rest of the section is organized as follows. We set out our general framework in

the next section and state the equidistribution result we will use later. In §5.2, we give

a generalized exposition of Konyagin’s argument in our setup with some slight quanti-

tative improvements. Then, we use it to deduce an estimate for the Fourier coefficients

of ν
(d)
α . We prove our main equidistribution result (Proposition 23) in §5.3. Finally, in

§5.4, we prove another equidistribution statement that we need exclusively to bound the

probability that a random polynomial is a proper power.

In this paper, we focus only on those equidistribution results that we need in our

applications. We believe that these random walks are of independent interest, and we

will study them further in a subsequent paper.



irreducibility of random polynomials 219

5.1. The general setting and results

We use the following notation throughout this section. Let M∈Z>0. Let p1, ..., pM be

distinct primes (say each >5), and let m1, ...,mM∈Z>0 be numbers. Let

V =

M⊕
i=1

Fmi
pi , D= max

i=1,...,M
mi and Q= p1 ... pM .

For α=(α1, ..., αM )∈V we write αi :=(αi,1, ..., αi,mi)∈Fmi
pi , and for another β∈V we

write αβ=(αi,jβi,j)i,j , so for instance, if n∈Z, we have αn=(αni,j)i,j .

We have a canonical isomorphism of additive groups between
⊕M

i Fpi and Z/QZ
given by

Ψ: (x1, ..., xM ) 7−!
M∑
i=1

ψi(xi),

where ψi denotes the additive homomorphism

Fpi
� � // Z/QZ,

x 7−!Q

pi
x.

Moreover, we have the trace map tr:V!
⊕M

i Fpi given by

tr(α) =

( m1∑
j=1

α1,j , ...,

mM∑
j=1

αM,j

)
.

Let X0, X1, ..., Xd be a sequence of independent Z-valued random variables. We

assume that X1, ..., Xd−1 are identically distributed and write µ for their common law.

We will study the random walk in the additive group (V,+) whose nth step is
∑n
j=0Xjα

j ,

and denote by ν
(n)
α the law of this random element.

Our decision to exempt X0 and Xd from having the same distribution as the other

steps of the walk is motivated by our intention to permit families of random polynomials

whose leading and constant terms have a distribution that differs from the rest. Our

method would allow us to relax the requirement of identical distribution further by

allowing small perturbations of the same law and a small number of exceptional steps.

We leave it to the interested reader to formulate such a statement.

Definition 22. We say that α∈V is generic if, for each i∈[1,M ], the coordinates

(αi,j)
mi
j=1 are non-zero and pairwise distinct.
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For �∈
(
0, 1

100

)
, we write A�⊂V for the set of generic α∈V such that none of the

coordinates αi,j is a root of a polynomial P∈Z[x] with degP63 log(QD) and Mahler

measure M(P )6exp(�).

The aim of this section is to prove the following result, which asserts under suit-

able conditions that the probability that the random walk is at zero after d steps is

approximately |V |−1 on average for parameters α∈A� .

Proposition 23. There are absolute constants c, C>0 such that the following holds.

Let d∈Z>0 and 0<τ<1. Suppose that

d>C(�τ)−1MD logQD(log logQD)3,

log(QD)>max

(
1

�
, τ−1

)
,

‖µ‖22 :=
∑
x∈Z

µ(x)2<1−τ.

Suppose further that suppµ⊂
(
− 1

2pi,
1
2pi
)

for each i=1, ...,M .

Then, ∣∣∣∣ ∑
α∈A

ν(d)
α (0)− |A|

|V |

∣∣∣∣< exp

(
−c τ�d

logQD(log logQD)2

)
for any A⊂A�.

Remark. This proposition will be used in §6 twice: once with M=1 and a large

prime p and fixed power m, and another time with M=2 and m1=m2. For the theorems

of the introduction, except part (2) of Theorem 2 about the generic Galois group, it is

enough to consider the case m=1.

5.2. Estimates for the Fourier coefficients of the random walk

The aim of this section is to revisit an argument of Konyagin from [25] to obtain Propo-

sition 24 below. Then, we will use it in Proposition 25 to deduce a bound for the Fourier

coefficients of the random walk.

For each α∈Z/QZ, we write α̃ for the unique lift of α in Z∩
(
− 1

2Q,
1
2Q
]
.

Proposition 24. Let notation be as in §5.1. Let α, β∈V . Assume that α is generic

and βi,j 6=0 for all i and j. Write

Sn = Ψ�tr(βαn)∈Z/QZ.

Let L>200 logQD log logQD be an integer and suppose that

L∑
n=0

S̃2
n6

Q2

8 log(4L)
. (5.1)
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Then, for each i=1, ...,M and j=1, ...,mi, there is Pi,j∈Z[x] of degree at most

3 log(QD) with Mahler measure at most (log(QD))30(logQD)/L such that Pi,j(αi,j)=0.

Write eQ(y)=exp(−2πiy/Q) for y∈Z/QZ. Given β∈V , the function

χβ :V −!C×,

x 7−! eQ(Ψ�tr(βx))
(5.2)

is a complex character of the additive group (V,+), and every character is of this form.

Given a measure ν on V , we use the following notation for its Fourier transform:

ν̂(β) =
∑
x∈V

χβ(x)ν(x).

We write ν
(l1,l2)
α for the law of the random element in V given by

l2∑
n=l1+1

Xnα
n.

In this notation, ν
(d)
α =ν

(−1,d)
α .

Proposition 25. Let notation be as in the beginning of the section. Let α, β∈V .

Assume that α is generic and βi,j 6=0 for all i and j. Suppose further that suppµ⊂(
− 1

2pi,
1
2pi
)

for each i=1, ...,M .

Let L>200 logQD log(logQD) be an integer and suppose that there are i and j such

that αi,j is not a root of an integer polynomial of degree at most 3 logQD with Mahler

measure at most (logQD)30 log(QD)/L.

Then,

|ν̂(l1,l2)
α (β)|6 exp

(
− 1−‖µ‖22

8 log(4L)

)
for all 06l1<l2<d such that l2−l1>L.

First, we focus on the proof of Proposition 24, which closely follows Konyagin [25].

Using a pigeon hole argument, it is easy to find non-zero polynomials P1, P2∈Z[x] of

degree at most logQD with ±1, 0 coefficients such that P1(αi,j)=P2(αqi,j)=0 for all i and

j. Here, q is a carefully chosen prime number. The heart of the argument is the idea

that when (5.1) holds, it is possible to find P1 and P2 in such a way that, for each i and

j, there is Pi,j∈Z[x]\{0} such that Pi,j(αi,j)=0 and Pi,j(x)|gcd(P1(x), P2(xq)). From

this, we will conclude that deg(Pi,j)6deg(P1) and M(Pi,j)6M(P2)1/q.

We begin to implement this strategy. Given a monic irreducible polynomial P∈Z[x],

the next lemma allows us to find a prime q of controlled size such that, whenever P (x)|
Q(xq) for another polynomial Q∈Z[x], we have M(P )6M(Q)1/q.
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Lemma 26. (See also [25, Lemma 2]) Let α1, ..., αn be the roots of an irreducible

polynomial P∈Z[x]. Let s>4 log n be a number. If n is larger than some absolute

constant, then there is a prime q∈(s, 2s] such that αi/αj is not a q-th root of unity for

any i 6=j.

Proof. Denote by Ps the set of primes between s and 2s. Write R for the collection

of integers r such that there is a root of unity of order r among the numbers αi/αj .

Suppose, by way of contradiction, that Ps⊂R.

We begin with the observation that, if r∈R, then there is 16j6n such that α1/αj is

a root of unity of order r. Indeed, let i and j be such that αi/αj is a root of unity of order

r, and let σ be an automorphism of 
Q such that σ(αi)=α1. Then, σ(αi/αj)=α1/σ(αj)

is a root of unity of order r, and this proves the claim.

Suppose r1, r2∈R are coprime integers. We prove r1r2∈R. Let i and j be such

that α1/αi and α1/αj are roots of unity of order r1 and r2, respectively. Then, αi/αj=

(α1/αi)
−1(α1/αj) is a root of unity of order r1r2, which proves the claim.

Therefore, each divisor r of
∏
p∈Ps

p belongs to R. Since the set of roots α1, ..., αn

is invariant under the action of the Galois group, it follows that, for any such r, all roots

of unity of order r appear among the αi/αj ’s. Hence,

n2 >
∏
p∈Ps

p= exp

( ∑
p∈Ps

log p

)
.

By the prime number theorem, we have

n2 > exp
(

1
2s
)

if n and hence s is sufficiently large. (In fact, we could put here any constant less than

1 in place of 1
2 .) This proves the lemma.

Let N>e>0 be integers and let X=(x0, ..., xN ) be a sequence of integers. Following

Konyagin [25], we write Λe(X) for the set of polynomials P (x)=a0+a1x+...+aex
e∈Z[x]

of degree at most e∈Z>0 such that

a0xj+...+aexj+e = 0

holds for all j=0, ..., N−e. We denote by Λ(X) the set of polynomials P of degree

at most N such that P∈ΛdegP (X). We note that P∈Λe(x0, ..., xN ) if and only if P∈
Λ(x0, ..., xN−e+degP ).

If X were an infinite sequence, then Λ would give rise to a principal ideal in Z[x].

We need a weaker form of this fact that is valid for finite sequences. To this end, we

recall the following result.
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Lemma 27. (Konyagin [25, Lemma 5]) Let X=(x0, ..., xN ) be a sequence of integers

and let P1, P2∈Λ(X). If degP1+degP26N , then we have gcd(P1, P2)∈Λ(X).

Corollary 28. Let X=(x0, ..., xN ) be a sequence of integers and suppose that

Λ(X) contains a non-zero polynomial of degree at most 1
2N . Then there is a unique (up

to multiplication by ±1) non-zero polynomial P0∈Λ(X) of minimal degree and with rela-

tively prime coefficients. Furthermore, a polynomial P∈Z[x] of degree at most N−degP0

is contained in Λ(X) if and only if P0 |P .

In the proof of Proposition 24 below, we will use the above results for the sequence

xn=S̃n. Under the hypothesis (5.1), we will show that there are many polynomials

P (x)=a0+...+aex
e such that |a0S̃j+...+aeS̃e+j |<Q for all j in a certain range. Using

the pigeonhole principle, we will find a polynomial that in addition satisfies

a0Sj+...+aeSe+j = 0 (5.3)

in the same range of j’s. These two properties imply that P∈Λ(X) for X=(Sn). The

next lemma shows that it is enough to satisfy (5.3) for a smaller range of j’s.

Lemma 29. Let m∈Z>0 and let p be a prime. For each 16j6m, let αj , βj∈Fp.

Write

Tn =

m∑
j=1

βjα
n
j

for each i∈Z>0. Let P (x)=a0+...+aex
e∈Fp[x] be a polynomial.

Suppose that the elements αj are pairwise distinct and βj 6=0 for all j. Suppose

further that

a0Tn+a1Tn+1+...+aeTn+e = 0

for all n=0, ...,m−1.

Then, P (αj)=0 for all 16j6m and

a0Tn+a1Tn+1+...+aeTn+e = 0

for all n∈Z>0.

Proof. The hypothesis of the lemma implies that

m∑
j=1

βjα
n
j P (αj) = 0, (5.4)

for each n=0, ...,m−1.



224 e. breuillard and p. p. varjú

We note that the vectors (β1α
n
1 , ..., βmα

n
m) for n=0, ...,m−1 are linearly indepen-

dent, as can be seen using Vandermonde determinants. Hence, the system of linear

equations (5.4) in P (αj) as variables has only the trivial solution, that is P (αj)=0 for

each j, which proves the first claim. In addition,

a0Tn+a1Tn+1+...+aeTn+e =

m∑
j=1

βjα
n
j P (αj) = 0

for each n∈Z>0 and this establishes the second claim.

Proof of Proposition 24. Set E=3blogQDc. Note that 16E6 1
3L, 2E>QD>3 and

bL/6Ec>4 logE. Our first aim is to show that there is a polynomial P1 6=0 of degree at

most E such that P1∈ΛE({S̃n}Ln=0).

Let ξ0, ..., ξE be a sequence of independent, unbiased ±1-valued random variables.

For any n=0, ..., L−E, we have

P
(∣∣∣∣ E∑

j=0

ξjS̃j+n

∣∣∣∣> Q

2

)
6 2 exp

(
−

(
1
2Q
)2

2
∑E

0 S̃
2
j+n

)
6

1

2L
,

by Hoeffding’s inequality and our assumption (5.1).

Therefore, the set

Ω :=

{
x= (x0, ..., xE)∈{−1, 1}E+1 :

∣∣∣∣ E∑
j=0

xjS̃j+n

∣∣∣∣< Q

2
for all n= 0, ..., L−E

}

has cardinality more than 1
2 ·2

E+1>QD.

By the pigeonhole principle, it follows that there are x 6=y∈Ω such that

E∑
j=0

xjS̃j+n =
E∑
j=0

yjS̃j+n

for all n=0, ..., D−1. We set aj=
1
2 (xj−yj)∈{−1, 0, 1}. It follows from Lemma 29 applied

M times to each

T in :=

mi∑
j=1

βi,jα
n
i,j

with the polynomial P=a0+...+aEx
E∈Z[x] that

E∑
j=0

ajSj+n = 0∈Z/QZ
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for all n∈Z>0. Since x, y∈Ω and aj=
1
2 (xj−yj), we know that

∣∣∣∣ E∑
j=0

ajS̃j+n

∣∣∣∣< Q

2
,

and hence
E∑
j=0

ajS̃j+n = 0

for any n=0, ..., L−E. This means that

P1(x) := aEx
E+...+a1x+a0 ∈ΛE({S̃n}Ln=0)⊂Λ({S̃n}d2L/3en=0 ),

because E6 1
3L.

Since
⌈

2
3L
⌉
>2E, by Corollary 28 there is a unique (up to multiplication by ±1)

polynomial P0∈Λ({S̃n}d2L/3en=0 ) with relatively prime coefficients and of minimal degree.

By Lemma 29, P0(αi,j)=0 for all i and j. Then, for each i and j, there is an irreducible

factor Pi,j of P0 over Z such that Pi,j(αi,j)=0.

Fix i and j. We already know that degPi,j6E, and we set out to prove that

M(Pi,j)6 (D logQ)30D logQ/L.

Write {βk}
degPij

k=1 for the roots of Pi,j . We set s=bL/6Ec. Since

L> 200D logQ log(D logQ),

we have s>4 logE. By Lemma 26, there is a prime q∈(s, 2s] such that βk/βl is not a

qth root of unity for any k 6=l. This means that the numbers {βqk}
degPi,j

k=1 are all distinct.

Note that q62s6L/3E.

We now employ the same argument as above and find a non-zero polynomial P2

of the form P2(x)=Q2(xq), for some Q(x)=b0+...+bEx
E∈Z[x] with bj∈{−1, 0, 1} for

j=1, ..., E and
E∑
k=0

bkS̃kq+n = 0

for any n=0, ..., L−Eq. Hence,

P2 ∈ΛEq({S̃n}Ln=0)⊂Λ({S̃n}d2L/3en=0 ),

because Eq6 1
3L.
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Since
⌈

2
3L
⌉
>2Eq, we have P0 |P2 by Corollary 28. This means that {βqk}

degPi,j

k=1 are

all roots of the polynomial Q2, and since they are all distinct we get

M(Pi,j)
q 6M(Q2)6 (E+1)1/2,

where the right-hand side follows from (1.6). As q>s=bL/6Ec and 2q>L/3E, we get

M(Pi,j)6 (E+1)1/2q 6 (E+1)3E/L6 (D logQ)30D logQ/L.

Remark 30. Let u1, ..., um∈Rn be a sequence of vectors with ‖uj‖61. A conjecture

of Komlós asserts that there is an absolute constant C such that, for each such sequence

of vectors, there is a sequence of signs ωj=±1 such that ‖ω1u1+...+ωmum‖∞<C. In

this remark, we point out that, if this conjecture holds, then assumption (5.1) in Propo-

sition 24 may be relaxed to an upper bound of the form cQ2, where c is an absolute

constant. Unfortunately, the best known result towards Komlós’s conjecture in [2] yields

no improvement.

We take a sequence y=(y0, ..., yE)∈{0, 1}E+1 and we will apply the conjecture to

the vectors uj=(yjS̃j , ..., yjS̃L−E+j) for j=0, ..., E. Under the weakened hypothesis∑
n

S̃2
n6 cQ2,

Komlós’s conjecture implies that for each choice of y, there is

ω(y) = (ω0(y), ..., ωE(y))∈{±1}E+1

such that ∣∣∣∣ E∑
j=0

ωj(y)yjS̃j+i

∣∣∣∣< Q

2

for all i=0, ..., L−E. Now, we see that the collection of sequences of the form

(ω0(y)y0, ..., ωE(y)yE)∈{−1, 0, 1}E

may be used in the place of Ω in the proof of Proposition 24 to obtain the same result

under the weaker hypothesis.

Now we turn to the proof of Proposition 25.

Given a measure µ on Z and x∈V , we write µ.δx for the measure on V defined by∑
a∈Z

µ(a)δax.
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With this notation, we can write

ν(l1,l2)
α =µ.δαl1+1 ∗...∗µ.δαl2

for any 06l1<l2<d.

Recall the notation ã, which is the unique integer representative of a∈Z/QZ in the

interval
(
− 1

2Q,
1
2Q
]
. For typographical convenience, we will also use the notation [a]∼

with the same meaning.

Lemma 31. Let µ be a measure on Z and let x, β∈V . Then,

|µ̂.δx(β)|6 exp

(
−

∑
a1,a2∈Z

µ(a1)µ(a2)([Ψ�tr((a1−a2)βx)]∼)2

Q2

)
.

Proof. By definition, we have

|µ̂.δx(β)|2 =
∑

a1,a2∈Z
µ(a1)µ(a2)χβ((a1−a2)x).

Since |µ̂.δx(β)|2∈R and Re(eQ(a))61−2ã2/Q2 if a∈Z/QZ, via (5.2) we get

|µ̂.δx(β)|2 6 1−2
∑

a1,a2∈Z

µ(a1)µ(a2)([Ψ�tr((a1−a2)βx)]∼)2

Q2
.

On the other hand, 1−t6exp(−t) if t∈[0, 1], so the claim follows.

Proof of Proposition 25. For γ∈V , write as earlier

Sn(γ) = Ψ�tr(γαn)∈Z/QZ.

Using

|ν̂(l1,l2)
α (β)|=

∣∣∣∣ l2∏
n=l1+1

µ̂.δαn(β)

∣∣∣∣,
Lemma 31 implies

|ν̂(l1,l2)
α (β)|6 exp

(
−

l2∑
n=l1+1

∑
a1,a2∈Z

µ(a1)µ(a2)(S̃n((a1−a2)β))2

Q2

)
.

Using l2−l1>L and then Proposition 24, we can write

l2∑
n=l1+1

(S̃n((a1−a2)β))2 >
L∑
n=0

(S̃n((a1−a2)βαl1+1))2>
Q2

2 log(4L)



228 e. breuillard and p. p. varjú

for all pairs a1 6=a2. Since suppµ⊂
(
− 1

2pi,
1
2pi
)

for all i, we know that a1−a2 is non-zero

in Fpi for all i, whenever a1 6=a2 in Z.

We note that ∑
a1 6=a2

µ(a1)µ(a2) = 1−‖µ‖22.

Therefore,

|ν̂(l1,l2)
α (β)|6 exp

(
−(1−‖µ‖22)

Q2

2 log(4L)

1

Q2

)
,

as claimed.

5.3. Proof of Proposition 23

We note that ν(0)=
∑
β∈V ν̂(β)/|V | for any measure ν on V . Hence, for any A⊂A� ,∣∣∣∣ ∑
α∈A

ν(d)
α (0)− |A|

|V |

∣∣∣∣6 1

|V |
∑
α∈A

∑
β∈V \{0}

|ν̂(d)
α (β)|. (5.5)

We begin by finding a preliminary estimate for∑
α∈A
‖ν(d1,d2)
α ‖22 6

∑
α∈V
‖ν(d1,d2)
α ‖22,

and then use the Cauchy–Schwarz inequality to convert it into an estimate on the right-

hand side of (5.5). Let (An)dn=0 and (A′n)dn=0 be sequences of independent random

variables with the same law as (Xn)dn=0. We observe that∑
α∈V
‖ν(d1,d2)
α ‖22 =

∑
α∈V

P(Ad1+1α
d1+1+...+Ad2α

d2 =A′d1+1α
d1+1+...+A′d2α

d2)

=E(|{α∈V :Ad1+1α
d1+1+...+Ad2α

d2 =A′d1+1α
d1+1+...+A′d2α

d2}|).

If Aj 6=A′j for at least one j∈(d1, d2], then the polynomial

(Ad1+1−A′d1+1)xd1+1+...+(Ad2−A′d2)xd2

has at most d2−d1 roots in any given field. This means that, for such Aj and A′j ,

|{α∈V :Ad1+1α
d1+1+...+Ad2α

d2 =A′d1+1α
d1+1+...+A′d2α

d2}|6 (d2−d1)MD

and∑
α∈V
‖ν(d1,d2)
α ‖22 6 (d2−d1)MD+|V |

∑
a∈Z

µ(a)2(d2−d1) 6 (d2−d1)MD+|V |(1−τ)(d2−d1).



irreducibility of random polynomials 229

We set d0=d− log(|V |)/ log(1−τ)e, and obtain

1

|V |
∑
α∈V

∑
β∈V

|ν̂(d,d+d0)
α (β)|2 =

∑
α∈V
‖ν(d,d+d0)
α ‖22 6 2dMD

0

for all d. We note that ν
(2d0)
α =ν

(−1,0)
α ∗ν(0,d0)

α ∗ν(d0,2d0)
α . Therefore, for each α∈V \{0},

we have, since |ν̂(−1,0)
α (β)|61,

1

|V |
∑
β∈V

|ν̂(2d0)
α (β)|6 1

|V |
∑
β∈V

|ν̂(0,d0)
α (β)·ν̂(d0,2d0)

α (β)|

6

(
1

|V |
∑
β∈V

|ν̂(0,d0)
α (β)|2

)1/2(
1

|V |
∑
β∈V

|ν̂(d0,2d0)
α (β)|2

)1/2
.

This gives us, by another application of the Cauchy–Schwarz inequality,

1

|V |
∑
α∈A

∑
β∈V

|ν̂(2d0)
α (β)|6

(
1

|V |
∑
α∈A

∑
β∈V

|ν̂(0,d0)
α (β)|2

)1/2(
1

|V |
∑
α∈A

∑
β∈V

|ν̂(d0,2d0)
α (β)|2

)1/2
6 2dMD

0 . (5.6)

Now, we set

d1 =

⌈
200

�
log(QD) log log(QD)

⌉
.

If α∈A⊂A� , then αi,j is not a root of a polynomial of degree at most 3 logQD with

Mahler measure at most (logQD)30 log(QD)/d1 , and we also have

d1 > 200 logQD log(logQD).

Therefore, we can apply Proposition 25 with L=d1 and get

|ν̂(d,d+d1)
α (β)|6 exp

(
− τ

8 log(4d1)

)
(5.7)

for all d, α∈A� and β∈V \{0}. (If β has some zero coordinates, then V splits as a direct

sum V =V0⊕V1, with β∈V1 having no non-zero coordinate in V1, and we need to apply

the proposition to V1 and the projected random walk on V1 modulo V0.)

Now, suppose that d>2d0+Kd1 for some K∈Z>0, and write

|ν̂(d)
α (β)|6 |ν̂(2d0)

α (β)| |ν̂(2d0,2d0+d1)
α (β)| ... |ν̂(2d0+(K−1)d1,2d0+Kd1)

α (β)|.

We combine (5.6) with (5.7) and obtain

1

|V |
∑
α∈A�

∑
β∈V

|ν̂(d)
α (β)|6 2dMD

0 exp

(
−K τ

8 log(4d1)

)
.
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By the assumption on d in the proposition, we can take K>d/2d1, and a simple

calculation yields that

2dMD
0 < exp

(
K

τ

16 log(4d1)

)
,

and hence we obtain the claim of the proposition. In the interest of these calculations, it

is useful to note that the lower bounds on logQD in terms of � and τ that we assumed

in the proposition implies that

max(log d0, log d1)6C log logQD.

5.4. The case α=2

In this section, we consider the special case V =Fp1⊕...⊕FpM and αi,1=2 for all i. We

write ν
(d1,d2)
2 for the measure ν

(d1,d2)
α with the above choice of V and α. We will use

this case later to estimate the probability that P (2) is a proper power for a random

polynomial, which, in turn, yields an estimate for the probability that P is a proper

power of a polynomial.

Our main result is the following.

Proposition 32. Let τ>0 and assume ‖µ‖2261−τ . Suppose further that suppµ⊂(
− 1

2pi,
1
2pi
)

for each i=1, ...,M . Then, there is an absolute constant C>0 such that, for

all x∈V and

d>
1

τ
(C log(Q))2,

we have

|ν(d)
2 (x)−Q−1|6Q−10.

The study of this case goes back to Chung, Diaconis and Graham [12], who obtained

very precise estimates for the mixing time, which are much better than the bound log(Q)2

implied by the above result. However, our application requires strong bounds for the

distance between ν
(d)
2 and the uniform distribution, which was not considered in [12].

Nevertheless, our proof draws on the ideas of [12] heavily.

We begin with a lemma on the Fourier coefficients of ν
(d)
2 . Its proof relies on

Lemma 31 and on the elementary fact that a sequence of the form β̃, β̃ ·2, ..., [β ·2blog2Qc]∼

cannot stay below 1
4Q.

Lemma 33. Let q=blog2(Q)c. Then, for any l∈[0, d−q) and β∈V \{0}, we have

|(ν̂2)(l,l+q)(β)|6 exp
(
− 1

16 (1−‖µ‖22)
)
.
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Proof. By Lemma 31, we have

|(ν̂2)(l,l+q)(β)|=
q∏
j=1

|(ν̂2)(l+j−1,l+j)(β)|

6 exp

(
−

l+q∑
n=l+1

∑
a1,a2∈Z

µ(a1)µ(a2)R(a1, a2, n)2

Q2

)
,

where

R(a1, a2, n) = [Ψ((a1−a2)2nβ)]∼.

We note that R(a1, a2, n+1)≡2R(a1, a2, n) mod Q. Therefore, if |R(a1, a2, n)|< 1
4Q,

then |R(a1, a2, n+1)|=2|R(a1, a2, n)|. Now, it is easy to see that, for any a1 6=a2, there

is n∈[l+1, l+q] such that |R(a1, a2, n)|> 1
4Q, and the claim follows.

Proof of Proposition 32. We note that

ν
(d)
2 (x)−Q−1 =

1

|Q|
∑

β∈V \{0}

ν̂
(d)
2 (β)χβ(x),

and hence it is enough to prove that, for all β∈V \{0},

|ν̂(d)
2 (β)|<Q−10.

To that end, we choose an integer L6d/q, write

ν
(d)
2 = ν

(−1,0)
2 ∗ν(0,q)

2 ∗...∗ν((L−1)q,Lq)
2 ∗ν(Lq,d)

2

and note that Lemma 33 implies

|ν̂(d)
2 (β)|< exp

(
− 1

16τL
)
.

This yields the desired estimate, if we set L=d160 log(Q)/τe, which is permitted if the

constant C is taken sufficiently large.

6. Expected number of roots of a random polynomial

In this section, we use the results of the previous section to calculate the expected number

of roots of a typical polynomial in Fp for a random prime. In the proofs of our main

result, we will compare these with the formulae in §4.

Let m, d>1, �∈
(
0, 1

100

)
and X>10. For a random polynomial P∈Z[x] of degree at

most d, we will now estimate the number BP (p) of admissible roots of P in Fp on average
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over the prime p. Here and below, a residue modulo p will be called admissible if it is

(�/m,mX)-admissible in the notation of Definition 15. For the irreducibility results, it

will be sufficient to set m=1, but for information on the Galois groups, we will need to

consider larger values of m. Nevertheless, m will not exceed a fixed power of log d.

We suppose that the coefficients of P , except for the leading coefficient and the con-

stant term, are identically distributed, and write µ for their common law. The notation

EP is used to denote expectation with respect to the law of the random polynomial P .

Our purpose in this section is the prove the following result.

Proposition 34. There are absolute constants c0, C0>0 such that the following

holds. Let τ,�>0, d,m∈Z>0 and let µ be a probability measure on Z supported on

[− exp(d1/10), exp(d1/10)]. Assume that ‖µ‖22<1−τ . Let X be a number such that

100m2 max{�−1, τ−1, d1/10}<X <
�τ

C0

d

(m log(md))3
(6.1)

and let g:R!R>0 be a function such that supp g⊂
[

1
2X,X

]
and g(x)62 exp(−x) for

all x. Then, setting

Z :=
∑
p

BP (p)m(log p)g(log p)−Bmw,

we have

EP (Z2)6
1

4

(
exp

(
−X

6

)
+exp

(
− c0τ�d

mX(log(md))2

))
,

where Bm stands for the m-th Bell number and w=
∑
p(log p)g(log p).

Recall that the Bell number Bm is the number of equivalence classes on a set with

m elements.

Corollary 35. Under the assumption of the previous proposition, with probability

at least

1−exp

(
−X

6

)
−exp

(
− c0τ�d

mX(log(md))2

)
the following holds for P :∣∣∣∣∑

p

BP (p)m(log p)g(log p)−Bmw
∣∣∣∣< 1

2
.

Proof. This is immediate from the last proposition after applying Chebyshev’s in-

equality

PP
(
|Z|> 1

2

)
6 4EP (Z2).

We now pass to the proof of Proposition 34 and begin by recording the following

consequence of Proposition 23.
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Lemma 36. There are absolute constants c0, C0>0 such that the following holds.

Let τ,�>0 and m, d∈Z>0. Suppose that the probability measure µ on Z is supported on

[− exp(d1/10), exp(d1/10)], and that ‖µ‖22<1−τ . Let X be such that

10 max{�−1, τ−1, d1/10}<X <
�τ

C0

d

(m log(md))3
,

and let p, p1, p2∈
[
exp
(

1
2X
)
, exp(X)

]
, with p1 6=p2, be primes. Then,

|EP [BP (p)m]−Bm|6Bm ·Err(X, d,m),

|EP [BP (p1)mBP (p2)m]−B2
m|6B2

m ·Err(X, d,m),

where

Err(X, d,m) = 40m2 exp

(
−X

5

)
+exp

(
− c0τ�d

mX(log(md))2

)
.

Proof. We write Ap for the set of (�/m,mX)-admissible elements of Fp. In the

notation of §5, we take M=1 and V =Fmp . Then,

E[BP (p)m] =
∑

α∈(Ap)m

ν(d)
α (0).

We decompose (Ap)
m as a disjoint union of subsets (Ap)

m(ε) for which Proposi-

tion 23 applies. To this end, we write Em for the set of equivalence relations on the set

{1, ...,m}. For each ε∈Em, we let V (ε) be the subgroup of V formed by the equations

αi=αj whenever (i, j)∈ε, and write (Ap)
m(ε) for the subset of (Ap)

m∩V (ε) made of

those m-tuples α such that αi=αj if and only if (i, j)∈ε.
Given ε∈Em, we may apply Proposition 23 to the group V (ε)'Fmε

p , where mε is

the number of equivalence classes in ε, and obtain∣∣∣∣ ∑
α∈(Ap)m(ε)

ν(d)
α (0)− |(Ap)

m(ε)|
pmε

∣∣∣∣< exp

(
−c0

τ�

mX

d

(log(md))2

)
. (6.2)

As we have already noted, the number of polynomials of degree at most 10mX and

Mahler measure at most exp(�/m) is at most exp
(

1
10X

)
by [17, Theorem 1]. Therefore,

|Fp\Ap|610mX exp
(

1
10X

)
and

06 1− |(Ap)
m(ε)|

pmε
6

10m2X exp
(

1
10X

)
p

6 20m2 exp

(
−X

5

)
.

Now, summing up (6.2) for ε∈Em, we arrive at the first claim.

The proof of the second claim is entirely similar using Proposition 23 for the random

walk on V =Fmp1⊕F
m
p2 . We leave the details to the reader.
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Lemma 37. Let X>10 and let g:R!R>0 be a function such that supp g⊂
[

1
2X,X

]
and g(x)62 exp(−x) for all x. Then,

w2 : =
∑
p

((log p)g(log p))2 6 8X2 exp

(
−X

2

)
,

w : =
∑
p

(log p)g(log p)6 4X2.

Proof. A simple calculation yields

∑
p

((log p)g(log p))2 6
∑

exp(X/2)6n6exp(X)

4
(log n)2

n2
6 8X2 exp

(
−X

2

)
,

∑
p

(log p)g(log p)6
∑

exp(X/2)6n6exp(X)

2
log n

n
6 4X2.

Proof of Proposition 34. Recall that

Z =
∑
p

BP (p)m log(p)g(log p)−Bmw.

Setting h(x)=log(x)g(log x), we compute

Z2 =
∑
p1,p2

(BP (p1)m−Bm)(BP (p2)m−Bm)h(p1)h(p2),

so

EP (Z2) =
∑
p1,p2

EP ((BP (p1)m−Bm)(BP (p2)m−Bm))h(p1)h(p2)

=
∑
p1,p2

EP (BP (p1)mBP (p2)m)h(p1)h(p2)

−2Bm
∑
p1

hp1
∑
p2

EP (BP (p2)m)h(p2)+B2
m

(∑
p

h(p)

)2
=
∑
p1,p2

EP (BP (p1)mBP (p2)m−B2
m)h(p1)h(p2)

−2Bm
∑
p1

h(p1)
∑
p2

EP (BP (p2)m−Bm)h(p2)

=
∑
p1 6=p2

EP (BP (p1)mBP (p2)m−B2
m)h(p1)h(p2)

−2Bmw
∑
p

EP (BP (p)m−Bm)h(p)+
∑
p

EP (BP (p)2m−B2
m)h(p)2.
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We use Lemma 36 to bound the first two terms and the crude bound BP (p)6d for the

third:

EP (Z2)6 3B2
m Err(X, d,m)w2+d2mw2.

We recall that 100m2d1/10<X, so that d2m6eX/50. We plug in the bounds for w and

w2 from Lemma 37 and the definition Err(X, d,m) from Lemma 36, and obtain

EP (Z2)6 48B2
mX

4

(
40m2 exp

(
−X

5

)
+exp

(
− c0τ�d

mX(log(md))2

))
+8X2 exp

(
−X

2
+
X

50

)
.

The constraints on X in the statement of the proposition imply that

c0τ�d

mX(log(md))2
>Cm log(md),

where C is an arbitrarily large number, provided we set C0 sufficiently large (depending

on c0). This means that we can absorb the factor 48B2
mX

2 into the constant c0. Similarly,

the lower bound on X implies that we can also absorb the factor 48B2
mX

4 ·40m2 at the

expense of replacing exp
(
− 1

5X
)

by exp
(
− 1

6X
)
.

7. Polynomials of small Mahler measure

In this section, we estimate the probability that the random polynomial P is divisible

by a non-cyclotomic polynomial of small Mahler measure. The following result and the

ideas in its proof are inspired by Konyagin’s paper [26].

Proposition 38. Let P=Adx
d+...+A1x+A0∈Z[x] be a random polynomial with

independent coefficients, and write µj for the law of Aj. Let τ>0 be a number. We

assume that

suppµj ⊂ [− exp(d1/10), exp(d1/10)]

for all j and ‖µj‖2261−τ for all j 6=0, d.

Then, the probability that there is a non-cyclotomic polynomial Q with

logM(Q)< 1
10τ

dividing P is at most 2 exp(−cτd4/5), where c>0 is an absolute constant.
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The exponent 4
5 is not optimal and there is a trade-off between it and the bound

imposed on the coefficients of P . Since any improvement of this bound would have no

effect on our theorems, we leave it to the interested reader to find the optimal bound

that can be derived from the proof.

We give two simple lemmas that estimate the probability that a fixed single polyno-

mial Q divides a random polynomial. Both of them are implicitly contained in [26]. The

first one is useful when degQ is large.

Lemma 39. Let P=Adx
d+...+A1x+A0∈Z[x] be a random polynomial with inde-

pendent coefficients, and write µj for the law of Aj. Let Q∈Z[x] be a polynomial of

degree n6d.

Then,

PP (Q |P )6 ‖µ0‖∞ ... ‖µn−1‖∞.

Proof. Write R for the remainder of Adx
d+...+Anx

n modulo Q in Q[x]. If Q|P ,

then R=−An−1x
n−1−...−A0. Therefore, the probability of Q|P conditioned on the

value of Adx
d+...+Anx

n is bounded by the maximal probability of A0, ..., An−1 taking

any given value, which is precisely the claimed bound.

Lemma 40. Let P=Adx
d+...+A1x+A0∈Z[x] be a random polynomial with inde-

pendent coefficients, and write µj for the law of aj. Let H∈Z>0 and τ>0 be numbers.

We assume suppµj⊂[−H,H] for all j and ‖µj‖2261−τ for all j 6=0, d. Let Q∈Z[x] be

a non-cyclotomic irreducible polynomial.

Then, for d larger than some absolute constant,

P(Q |P )6 exp(−cτd(logH+log d)−1(log d)−3),

where c>0 is some absolute constant.

Proof. Let

s=
log(2H(d+1)1/2)

c(log log d)3/(log d)3
,

where c is a sufficiently small constant so that

log(M(Q))>
c(log log d)3

(log d)3
.

The existence of such a constant follows by Dobrowolski’s bound [16].

By Lemma 26, there is a prime q∈(s, 2s] such that the ratio of any two roots of Q

is not a root of unity of order q. Let P1, P2∈Z[x] be two polynomials with coefficients of

absolute value at most H that differ only in some of the coefficients of monomials of the



irreducibility of random polynomials 237

form xqj for j∈Z>0. If Q|(P1−P2), then each number zω is a root for P1−P2, where z

is a root of Q and ω is a qth root of unity. And, by our choice of q, all zω are distinct as

z ranges over the roots of Q and ω over the qth roots of unity. This implies that

M(P1−P2)>M(Q)q > 2H(d+1)1/2,

which is impossible by (1.6). This means that, for any given choice of integers bj∈[−H,H]

for those j6d that are not a multiple of q, in each class of Z[x] modulo Q there is at

most one polynomial P=a0+...+adx
d with aj=bj for all such j.

Hence, conditioning on the value of aj for all indices j that are not multiples of q,

the probability of Q|P is bounded by the probability that the rest of the coefficients take

any particular given value. Therefore,

P(Q |P )6 ‖µ‖bd/qc−1
∞ .

Proof of Proposition 38. We fix a small number ε>0. Let j>0 be an integer, and

write Qj for the set of non-cyclotomic irreducible polynomials Q with degQ=j and

logM(Q)< 1
10τ . By the estimate of Dubickas and Konyagin [17, Theorem 1], we have

|Qj |6exp
(

1
10τj

)
if j is sufficiently large.

Using Lemma 39, we then have

P(∃Q∈Qj :Q |P )6 exp
(

1
10τj

)
exp
(
− 1

2τj
)
6 exp

(
− 1

10τj
)

for each j. By Lemma 40 applied with H=exp(d1/10),

P
(
∃Q∈

⋃
j<d4/5

Qj :Q |P
)
6 exp

(
τd4/5

10

)
exp(−τd4/5)6 exp

(
−τd

4/5

10

)
,

provided d is sufficiently large depending on an absolute constant.

Summing up the above bounds, we get

P
(
∃Q∈

⋃
j

Qj :Q |P
)
6 exp

(
−τd

4/5

10

)
+
∑

j>d4/5

exp

(
−τj

10

)
,

which proves the claim.

8. Proper powers

In this section, we estimate the probability that a random polynomial P is of the form

ΦQk with k>1, where Φ is the product of cyclotomic factors.
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Proposition 41. Let P=Adx
d+...+A1x+A0∈Z[x] be a random polynomial with

independent coefficients. Assume that A1, ..., Ad−1 are identically distributed with com-

mon law µ. Assume further that all coefficients are bounded by exp(d1/10) almost surely.

Let τ>0 be a number such that ‖µ‖22<1−τ .

Then, there are absolute constants c, C>0 such that the probability that P=ΦQk,

where Φ is a product of cyclotomic polynomials, Q∈Z[x] and k>2, is less than

2 exp(−c(τd)1/2),

provided d is larger than C/τ4.

In the next two lemmas we keep the assumptions of Proposition 41. The first is a

reformulation of Proposition 32.

Lemma 42. There is an absolute constant c0>0 such that the following holds. Let

q<exp(c0(τd)1/2) be a product of distinct primes larger than 2 exp(d1/10). Then, for

every a∈Z, we have

|PP [P (2)≡ a mod q]−q−1|<q−10.

Lemma 43. Fix R∈Z[x], and fix an integer 26k6d1/5. Then,

PP [P =RQk for some Q∈Z[x]]6 exp(−c(τd)1/2),

where c>0 is an absolute constant.

In the proof that follows, we will use the upper bound on k in only one place, where

we apply the prime number theorem in arithmetic progressions. It would be sufficient to

impose a significantly milder upper bound on k, but we will see that P=RQk may hold

with k>d1/5 only if Q is cyclotomic.

Proof of Lemma 43. If R(2)=0 and R divides P , then P (2)=0. Picking a prime q

in the interval
(

1
2 exp(c0(τd)1/2), exp(c0(τd)1/2)

)
, Lemma 42 implies that

PP [P (2)≡ 0 mod q]<
2

q
.

So, we can safely assume in the rest of the proof that R(2) 6=0. We note also that

|R(2)|6 |P (2)|6 exp(d1/10)2d+1.

We denote by P the collection of primes

p∈
[

1
2 exp

(
1
2c0(τd)1/2

)
, exp

(
1
2c0(τd)1/2

)]
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such that p-R(2) and k |p−1. It follows from the prime number theorem in arithmetic

progressions [14, Chapter 20, (10)] that there are more than

|P|> exp
(

1
4c0(τd)1/2

)
such primes, if d is sufficiently large (i.e. τd larger than an effective constant: we are

counting primes between 1
2x and x that are congruent to 1 modulo k, with k allowed to

take any value �(log x)2/5, say).

For each p∈P, we denote by Xp the random variable that is equal to 1 if

P (2)≡R(2)ak mod p

for some a∈Z/pZ, and that is equal to 0 otherwise. If P=RQk for some Q∈Z[x], then

clearly Xp=1 for all p∈P.

It follows from Lemma 42 applied first to q=p1 and then to q=p1p2 that

EP [Xp1 ] =EP [X2
p1 ] =

(p1−1)/k+1

p1
+O

(
exp

(
−9c0(τd)1/2

2

))
EP [Xp1Xp2 ] =

(p1−1)/k+1

p1
· (p2−1)/k+1

p2
+O

(
exp

(
−9c0(τd)1/2

2

))
for any p1 6=p2∈P. Therefore, writing Y =

∑
p∈P Xp, since k>2,

EPY 6 2
3 |P|,

and the variance Var(Y )=EPY 2−(EPY )2 is bounded by

Var(Y ) =
∑
p∈P

(
(p−1)/k+1

p
−
(

(p−1)/k+1

p

)2)
+O

(
|P|2 exp

(
−9c0(τd)1/2

2

))
6

2

3
|P|+1< |P|,

provided d is sufficiently large. We conclude from Chebyshev’s inequality that

PP (Y = |P|)6PP
(
Y −EPY >

1

3
|P|
)
6Var(Y )

(
3

|P|

)2
<

9

|P|
,

which proves the lemma.

Proof of Proposition 41. Boyd and Montgomery [7] gave an asymptotic formula for

the number of polynomials Φ in Z[x] of degree n that are the product of their cyclotomic

factors. In particular, they proved that there are at most exp(C0n
1/2) such polynomials,

where C0 is an absolute constant (C0=4 works for large enough n).
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For a fixed Φ, we may apply Lemma 39 and conclude that the probability that Φ

divides P is at most exp
(
− 1

2τ deg(Φ)
)
. Therefore, the probability that P=ΦQk for some

Φ with

deg Φ> 4
C0

τ
d1/2

is at most exp(−C0d
1/2).

We consider now the probability that P=ΦQk, with Φ having smaller degree. We

can assume that Q is not a product of cyclotomic factors, otherwise it can be absorbed

into Φ, and it is covered by the previous case. We note that, if P=ΦQk, then, by (1.6),

M(Q) =M(P )1/k 6 exp

(
d1/10

k

)
(d+1)1/2k.

Since Q is not a product of cyclotomic factors, this implies that k6d1/5 (say) by Do-

browolski’s bound (1.6).

Again, by [7], the number of polynomials in the role of Φ that are not covered by

the previous case is at most

exp

(
2C0

(
C0

τ

)1/2
d1/4

)
.

We can now use Lemma 43 to estimate the probability of P=ΦQk for individual choices

of Φ and k, and conclude the proof.

9. Proof of the main results

We first give a simple lemma that allows us to decide when a permutation group is m-

transitive. Recall that the Bell number Bm is the number of equivalence relations on a

set with m elements.

Lemma 44. Let G be a permutation group acting on a set Ω and let m∈Z>0. Sup-

pose |Ω|>m. The number |Ωm/G| of orbits of G acting diagonally on Ωm satisfies

|Ωm/G|>Bm,

with equality if and only if the action of G on Ω is m-transitive.

Proof. If G is m-transitive, then its orbits on Ωm are in one-to-one correspondence

with equivalence relations on the set of coordinates. Given an equivalence relation on

the m coordinates, the corresponding orbit is the set of tuples in Ωm whose coordinates

are equal if and only if they are related by the equivalence relation. Since |Ω|>m, all

equivalence relations can occur. Hence |Ωm/G|=Bm.
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Now in the general case G6Sym(Ω), so each orbit of G is contained in an orbit of

Sym(Ω). Thus |Ωm/G|>|Ωm/ Sym(Ω)|=Bm.

If G is not m-transitive, then the orbit of the full symmetric group Sym(Ω) consisting

of tuples with distinct coordinates splits into multiple orbits of G, and hence

|Ωm/G|>Bm.

9.1. Proof of Theorem 2

We set �= 1
100τ , m=1 and let X>10. Recall that we denote by P̃ the product of the

(X,�)-admissible irreducible factors of P and that Ω is the set of complex roots of P̃

(see Definition 14). We aim to show that the Galois group G of the splitting field of P̃

acts transitively on Ω with high probability.

Recall that hX is the function hX(u)=2e−X1(X−log 2,X](u). It follows from the prime

number theorem that

w :=
∑
p

log(p)hX(log p)! 1

as X!∞. We apply Corollary 35 for g=hX with m=1. It applies if X is large enough,

and we conclude that ∣∣∣∣∑
p

BP (p) log(p)hX(log p)−1

∣∣∣∣6 2

3
(9.1)

holds for any

X ∈
[
100d1/10,

τ2

100C0
(log d)−3d

]
,

with probability at least

1−exp

(
−X

6

)
−exp

(
− c0τ

2d

100X(log(d))2

)
,

provided d>100/τ say. Taking X=τ
(

1
100c0d

)1/2
/ log d (which is allowed provided dτ4

is sufficiently large) this bound becomes >1−2 exp
(
− 1

6X
)
. We now assume that (9.1)

holds for P , and ζK satisfies RH for all K=Q(a) for any root a of P . By Proposition 19,

we then have ∑
p

BP (p) log(p)hX(log p) = |Ω/G|+O
(

exp

(
−X

10

))
.

If d is sufficiently large, we can conclude that∣∣1−|Ω/G|∣∣< 1
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under the above assumptions on P . We therefore conclude that |Ω/G|=1, and hence G

acts transitively on Ω, i.e. P̃ is irreducible.

By Proposition 38, with probability at least 1−2 exp(−cτd4/5), any exceptional fac-

tor of P is cyclotomic. If that holds in addition to the hypothesis we have already made,

then P=ΦP̃ k, where Φ∈Z[x] is a product of a power of x and cyclotomic polynomials,

and k∈Z>0.

By Proposition 41, we know that k=1 with probability at least 1−2 exp(−c(τd)1/2).

Furthermore, the probability that

deg(Φ)>
C

τ

√
d

is at most exp(− 1
4Cd

1/2), because this is true for any given polynomial Φ by Lemma 39

and, as recalled in the proof of Proposition 41, there are at most exp
(

1
4Cd

1/2
)

such

polynomials for some absolute constant C>0. This establishes part (1) of Theorem 2.

The proof of part (2) is similar, but we need to also consider moments of BP (p) of

order m>1 in order to show that |Ωm/G|=Bm, and hence conclude, by Lemma 44, that

G acts m-transitively on Ω. An old fact, going back to Bochert and Jordan [23] in the

19th century, asserts that every degree-d permutation group that is at least (30 log d)2-

transitive must contain the alternating group Alt(d). A simple proof of a slightly better

bound can be found in [1] (see also [15, Theorem 5.5.B], where Wielandt’s stronger bound

6 log d is proved). Using the classification of finite simple groups, it is now known that

there is a bound independent of d, and indeed every 6-transitive group contains Alt(d)

(see [11, Corollary 5.4]). But we choose not to rely on the classification, since, at the

expense of losing a log(d) factor in the probability of exceptions, we can avoid it. In

fact, if instead we use Wielandt’s bound (whose proof is more involved), we can get the

slightly better bound exp(−cτd1/2/(log d)3/2) in (2) of Theorem 2.

So, let m>1, �= 1
100τ and X>10 and consider the product P̃ of the irreducible

(�/m,mX)-admissible factors of P , and as earlier the number BP (p) of (�/m,mX)-

admissible roots of P in Fp.
By Corollary 35 applied to g=hX , we get that∣∣∣∣∑

p

BP (p)m log(p)hX(log p)−Bmw
∣∣∣∣< 1

2
(9.2)

with probability at least

1−exp

(
−X

6

)
−exp

(
− c0τ

2d

100mX(log(md))2

)
,
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provided X is in the interval allowed by (6.1). We now set m=d30(log d)2e and

X2 =
c0τ

2

100

d

m(log(md))2
.

Note then that when τ4d is large enough, X is in the allowed interval, and that (9.2)

holds with probability at least 1−2 exp
(
− 1

6X
)
. Assume now that (9.2) holds for P ,

and that ζK satisfies RH for all K=Q(a1, ..., am) for any choice of m roots of P . By

Proposition 19, we then get

∑
p

BP (p)m log(p)hX(log p) = |Ωm/G|+O
(

exp

(
−X

10

))
.

If d is large enough, |w−1|=O
(
X2 exp

(
− 1

2X
))

by Proposition 9 (assuming RH for ζQ).

Since Bm62m
2

6exp
(

1
100X

)
, this implies that

∣∣Bm−|Ωm/G|∣∣6 1
2 +Bm|1−w|+O

(
exp
(
− 1

10X
))
< 1,

as soon as d is large enough, and hence that |Ωm/G|=Bm. So, by Lemma 44, G acts

m-transitively on Ω and, by the 19th century transitivity bound recalled earlier, since

deg P̃6d, G contains the alternating group Alt(deg P̃ ). Finally, as in part (1), we have,

except for a small set of exceptions, P=ΦP̃ , and this completes the proof of the theorem.

9.2. Proof of Corollaries 3 and 4

The following lemma is implicitly contained in [26, p. 345]

Lemma 45. Let ωn be the n-th cyclotomic polynomial of degree ϕ(n). Then, for all

n and d,

P[ωn |Pd]6
(
C(µ)

n

d

)ϕ(n)/2

,

where C(µ)>0 depends only on µ.

Proof. Write

Qd =

n−1∑
j=0

Bjx
j ,

where

Bj :=

d∑
i=0

i≡j mod n

Ai.
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Note that, if ωn |Pd, then ωn |Qd, and hence Lemma 39 implies that

P[ωn |Pd]6
ϕ(n)−1∏

0

‖µj‖∞,

where µj is the law of Bj , which is the sum of roughly bd/nc i.i.d. variables with common

law µ. Since µ has a finite second moment, there is a constant C(µ)>0 such that we

have ‖µj‖∞6(C(µ)n/d)1/2, as follows, say, from the local limit theorem. The claim

follows.

We apply this lemma for different ranges of n. If N6ϕ(n)6100N , then n is bounded

in terms of N and

P[ωn |P ]6

(
C(µ)n

d

)N/2
=ON,µ(d−N/2).

If 100N<ϕ(n)6d1/2, then n6Cd1/2 log log d for some absolute constant c>0 and

P[ωn |P ]6

(
C(µ)c log log d

d1/2

)50N

.

If d1/26ϕ(n)6d, then

P[ωn |P ]6 ‖µ‖d
1/2/2
∞ ,

by Lemma 39. Summing over all such n’s, we get

P[ωn |P for some n with ϕ(n)>N ] =Oµ,N (d−N/2).

In order to apply Theorem 2, we need to truncate the coefficients. But

P
[

d
max
i=0
|Ai|>ed

1/10
]
6 (d+1)P[|A0|>ed

1/10

]6 (d+1)e−2d1/10E[|A0|2],

by Chebyshev’s inequality. The proof of Corollary 3 now follows by combining the above

inequalities with Theorem 2.

To get Corollary 4, take N=2 and observe that the law of P in the statement is

designed to make sure that x-P always. Note also that Lemma 45 still holds, even though

A0 and Ad are not distributed like the other Ai’s, so the above estimates continue to hold.

Since P has non-negative coefficients and at least two positive ones, we have P (1)>0.

So, it is only left to estimate P[ω2 |P ]=P[P (−1)=0]. Looking at P (−1) yields a random

walk on Z, and it is therefore a simple matter to verify that

P[P (−1) = 0] =

√
2

πd
+O(d−1),

as desired.
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9.3. Proof of Theorem 5

The proof is identical to that of part (1) of Theorem 2, except that we take X=d(log d)−β

and apply Proposition 20 instead of Proposition 19. We note that the exceptional zeros

are not present by the assumptions of the theorem, so the right-hand side of the displayed

formula in Proposition 20 becomes

|Ω/G|+O(exp(−c(log d)α−β)).

9.4. Proof of Theorem 6

Set β :=α−γ. As in the proof of Theorem 2, we set �= 1
10τ for the admissibility parameter

(see Definition 14). By Proposition 38, with probability at least 1−2 exp(−cτd4/5), every

non-cyclotomic irreducible factor of P has Mahler measure at least exp(�). We may

thus assume that P has this property, and let P̃ be the product of the non-cyclotomic

irreducible factors of P . As before, Ω is the set of roots of P̃ , and G is the Galois group

of the splitting field of P .

We use Proposition 34 with m=1, X=X1=2d(log d)−β and X=X2=d(log d)−β for

the functions g=gX1,k and g=gX2,k, respectively, where k=
⌊

1
10 (log d)α−β

⌋
. We can

conclude that

EP (Z2
i ) =O(exp(−c(log d)β−2))

holds for each i=1, 2, where

Zi : =
∑
p

BiP (p) log(p)gXi,k(log p)−wi,

wi : =
∑
p

log(p)gXi,k(log p),

and BiP (p) is the set of (Xi,�)-admissible roots of P in Fp. Therefore, by Chebychev’s

inequality

PP (|Zi|>t)6 t2EP (Z2
i ),

we obtain that, with probability at least 1−2 exp(−c(log d)β−2),

|Zi|=O(exp(−c(log d)β−2)) (9.3)

holds for each i=1, 2.

We note that

|1−wi|<C exp(−c(log d)α−β),
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as can be seen for example from Proposition 13 applied for K=Q, since the Riemann

zeta function ζQ has no zeros in a sufficiently small neighborhood of 1. (Significantly

better bounds can be obtained by the proof of Proposition 13, but this is not needed.)

We now assume that P satisfies (9.3) for both i=1, 2. We apply Proposition 20 and

obtain, for i=1, 2,

Zi+wi =
∑

O∈Ω/G

(1−GXi,k(%KO,0))+O(exp(−c(log d)α−β)). (9.4)

Now, we combine the above estimates and |w1−w2|<C exp(−c(log d)α−β) to get∑
O∈Ω/G

(GX2,k(%KO,0)−GX1,k(%KO,0))6C(exp(−c(log d)α−β)+exp(−c(log d)β−2)).

We note that

(GX2,k(%KO,0)−GX1,k(%KO,0)) =

(
1− GX1,k(%K,0)

GX2,k(%KO,0)

)
GX2,k(%KO,0)

>

(
1−exp

(
− (1−%KO,0)(X1−X2)

4

))
GX2,k(%KO,0)

> c exp(−c0(log d)γ)d(log d)−βGX2,k(%KO,0).

Here, we used the bound on GX1,k/GX2,k from Lemma 11, and then the assumption on

the exceptional zeros from the theorem, and the constant c0 is the constant c in that

bound. Therefore, we can conclude that∑
O∈Ω/G

GX2,k(%KO,0)6C(exp(−c(log d)α−β)+exp(−c(log d)β−2)),

if we choose c0 sufficiently small, since α−β, β−2>γ and γ>1.

We combine the last estimate with (9.3) and (9.4), and we can write

|Ω/G|= 1+O(exp(−c(log d)α−β)+exp(−c(log d)β−2)).

It follows that |Ω/G|=1, as it is an integer. Therefore, P̃ is irreducible. Now we can

finish the proof by applying Proposition 41.

9.5. Proof of Theorem 7

We pick a number α′∈(β, α). We use Proposition 34 with m=1, g=gX,k, where X=

d(log d)−β and k=
⌊

1
10 (log d)α

′−β⌋. After applying Chebychev’s inequality as in the proof

of Theorem 6, we get that∑
p

BP (p) log(p)gX,k(log p) =w+O(exp(−c(log d)β−2)),
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holds with probability at least 1−C exp(−c(log d)β−2), where

w=
∑
p

log(p)gX,k(log p).

Moreover, as before, using Proposition 13 for the field of rational numbers, we see

that |w−1|=O(exp(−c(log d)α−β)). Hence,∑
p

BP (p) log(p)gX,k(log p) = 1+O(exp(−c(log d)min{β−2,α−β})), (9.5)

with probability at least 1−C exp(−c(log d)β−2).

According to the Deuring–Heilbronn phenomenon, if the Dedekind zeta function ζK

of a number field K has a real zero very close to 1, then it cannot have other zeros

nearby 1. More precisely (see [27, Theorem 5.1]), there is a positive, absolute, effectively

computable constant c0>0 such that, for every number field K, if ζK has a real zero

%K,0, then every other zero % satisfies

|1−%|> c0
log(2d∆K)

log

(
c0

|1−%K,0| log(2d∆K)

)
.

So assume, by contradiction, that ζK has a zero %K,0 with

|1−%K,0|< exp(−(log d)α+1)

for each K=Q(a) and for each non-zero complex root a of P which is not a root of

unity (this is void, and hence always holds if P is a product of cyclotomic polynomials

or factors of the type xm). Note then that

|1−%K,0|<
1

4 log |∆K |

(because, by Lemma 21, |∆K |6d(1+τ−1)2d), and hence, by [33, Lemma 3], %K,0 must be

real and is the unique Siegel zero of ζK . Thus, every other zero % satisfies

|1−%|> c

d log d
log

(
c exp((log d)α+1)

d log d

)
>

(log d)α
′

d
,

provided d is sufficiently large.

So, we can apply Proposition 20 and, using Lemma 11, write∑
p

BP (p) log(p)gX,k(log p) =
∑

O∈Ω/G

(1−GX,k(%KO,0))+O(exp(−c(log d)α
′−β))

6|Ω/G|X exp(−(log d)α+1)+C exp(−c(log d)α
′−β)

6d2 exp(−(log d)α+1)+C exp(−c(log d)α
′−β).

But this is incompatible with (9.5).
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